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Abstract. We prove a formula relating the Mahler measure of an infinite family of three-
variable polynomials to a combination of the Riemann zeta function at s = 3 and special
values of the Bloch–Wigner dilogarithm by evaluating a regulator. The evaluation requires
two different applications of Jensen’s formula and analyzing the integral in two different
planes (as opposed to only one plane as usually). The degrees of the monomials involving
one of the variables is allowed to vary freely, leading to an interesting application of the
Boyd–Lawton formula.

1. Introduction

The (logarithmic) Mahler measure of a non-zero rational function P ∈ C(x1, . . . , xn) is
defined by

m(P ) :=
1

(2πi)n

∫
Tn

log |P (x1, . . . , xn)|dx1

x1

· · · dxn
xn

,

where the integration is taken over the unit torus Tn = {(x1, . . . , xn) ∈ Cn : |x1| = · · · =
|xn| = 1} with respect to the Haar measure.

This construction originated for one-variable polynomials in the search for large prime
numbers (for example, see Lehmer’s work [Leh33]) and was later extended to multi-variable
polynomials by Mahler [Mah62] in applications to classical heights of polynomials. Even-
tually Mahler measure was found to yield special values of functions of number theoretic
significance, such as the Riemann zeta function and other L-functions. The first examples
of these relationships were given by Smyth [Smy81, Boy81b]

m(x+ y + 1) =
3
√

3

4π
L(χ−3, 2),

m(x+ y + z + 1) =
7

2π2
ζ(3),

where L(χ−3, s) is the Dirichlet L-function in the character of conductor 3 and ζ(s) is the
Riemann zeta function.

Deninger explained the appearance of L-functions in some Mahler measure formulas in
terms of Beilinson’s conjectures via relationships with regulators in [Den97]. (Additional
insight into this direction can be found in the works of Boyd [Boy98] and Rodriguez-Villegas
[RV99].) We see from this point of view that the Riemann zeta function and the L-functions
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which appear in Mahler measure formulas come from special values of polylogarithms arising
from regulators. The cases involving the Riemann zeta function and Dirichlet L-functions
have been linked to particular applications of the Borel regulator and evaluations of poly-
logarithms in algebraic numbers [BRV02, BRVD03, Lal07, Lal08].

Our goal is to employ the regulator to prove the following result.

Theorem 1. Let a, b be coprime positive integers. Then, if b is odd,

m
(
xa+b + 1 + (xa + 1)y + (xb − 1)z

)
=

(
4− 1

ab(a+ b)

)
3ζ(3)

4π2
− a+ b

abπ2

∑
1≤k≤a+b+1

2

D

(
exp

(
(2k − 1)πi

a+ b

))(
(2k − 1)π

a+ b
− π

)

+
a

b(a+ b)π2

∑
1≤k≤a+1

2

D

(
exp

(
(2k − 1)πi

a

))(
(2k − 1)π

a
− π

)

+
b

a(a+ b)π2

∑
1≤k≤ b+1

2

D

(
exp

(
(2k − 1)πi

b

))(
(2k − 1)π

b
− π

)
.

If b is even,

m
(
xa+b + 1 + (xa + 1)y + (xb − 1)z

)
=

(
3 +

1

ab(a+ b)

)
ζ(3)

π2
− a+ b

abπ2

∑
1≤k≤a+b

2

D

(
exp

(
2kπi

a+ b

))(
2kπ

a+ b
− π

)

+
a

b(a+ b)π2

∑
1≤k≤a

2

D

(
exp

(
2kπi

a

))(
2kπ

a
− π

)

+
b

a(a+ b)π2

∑
1≤k≤ b

2

D

(
exp

(
2kπi

b

))(
2kπ

b
− π

)
.

In the above formulas, D(z) denotes the Bloch–Wigner dilogarithm defined by equation
(5).

The idea to study this formula arose from some conversations with David Boyd and
Mathew Rogers. Boyd [Boy06] made a systematic study of numerical examples of the form
p0(x) + p1(x)y+ p2(x)z with p0(x), p1(x), and p2(x) given by products of cyclotomic polyno-
mials, and Rogers discovered the particular case of the above formula when b = 1.

We remark that Theorem 1 gives the Mahler measure of a whole polynomial family with a
fixed number of three variables and unbounded degree. To our knowledge, the only previous
result of such nature is the following formula due to D’Andrea and Laĺın (Theorem 6 in
[DL07], see also Theorem 9 in [Lal07]).

(1) m

(
z − (1− x)a(1− y)b

(1− xy)a+b

)
=

2b

π2
(L3(φa2)−L3(−φa1)) +

2a

π2
(L3(φb1)−L3(−φb2)),

where φ1 is the root of xa+b + xb − 1 = 0 which lies in the interval [0, 1], φ2 is the root of
xa+b − xb − 1 = 0 which lies in [1,∞), and L3(z) is the trilogarithm given by equation (8).

However, equation (1) differs from Theorem 1 in two fundamental ways. Firstly, the
variation of exponents in (1) affects linear terms (of the form 1 − w) and ultimately the
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coefficients of the rational function vary as a, b vary, while the variation of exponents in
Theorem 1 only affects the powers of x but not the coefficients. This leads to an interesting
application of Boyd–Lawton limit formula. More precisely,

lim
a→∞
b→∞

m
(
xa+b + 1 + (xa + 1)y + (xb − 1)z

)
=m(xw + 1 + (w + 1)y + (x− 1)z)

=
9

2π2
ζ(3),

as proven in ([DL07], Theorem 7). Moreover, as Boyd–Lawton formula predicts, the same
limit is valid if we fix a and let b go to infinity, or vice versa.

Secondly, the proof of Theorem 1 presents an innovative technical aspect regarding the
integration of the regulator. Usually the first step in the integration consists of an application
of Jensen’s formula that eliminates one variable. The rest of the work is done with the
remaining two variables, in a variety defined by a construction proposed by Maillot [Mai03]
based on a idea of Darboux [Dar75]. Concretely, we normally complete the computation by
integrating in a curve defined in the xy-plane. However, in this case, due to the complexity
of the singularities involved, it does not suffice with eliminating one variable, and we have
to consider another point of view and eliminate a different variable. More precisely, we have
to both integrate in a curve defined in the xy-plane and in another curve defined in the
zx-plane. This introduces interesting new considerations on orientation and repetition of
terms.

This paper is organized as follows. In Section 2 we define and present some results on
polylogarithms and explain the regulator integration. The integral over the plane xy is
treated in Section 3, while the one over the plane zx is treated in Section 4. We combine the
relevant terms coming from both integrals in Section 5 to obtain the main result. In Section
6 we discuss the Boyd–Lawton limit for this formula, while we explore avenues for future
research in Section 7.

2. Preliminaries on polylogarithms and the regulator integration

Here we proceed to present the necessary background on polylogarithms and the algebraic
integration of the regulator that leads to the Mahler measure. This section follows the theory
presented in [Lal07], and was built from previous works such as [Den97, RV99, BRV02].

2.1. Polylogarithms. The classical nth polylogarithm function is defined by the power
series

Lin(z) :=
∞∑
k=1

zk

kn
z ∈ C, |z| < 1.

This function can be continued analytically to C\(1,∞) by means of the following integral

Li1(z) = − log(1− z), Lin+1(z) =

∫ z

0

Lin(x)
dx

x
.

Lin satisfies some functional equations such as

(2) Lin(z) = rn−1
∑
wr=z

Lin(w), |z| ≤ 1.
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In this paper we will work with Zagier’s modification of the polylogarithm [Zag91].

(3) Ln(z) := Ren

(
n−1∑
j=0

2jBj

j!
logj |z|Lin−j(z)

)
,

where Bj is the jth Bernoulli number and Rek denotes Re or Im, depending on whether
n is odd or even. This function is one-valued, continuous in P1(C), and real analytic in
P1(C) \ {0, 1,∞}. Notice that in particular, if |z| = 1, then Ln(z) = Ren(Lin(z)).

Ln satisfies cleaner functional equations than Lin, such as

(4) Ln

(
1

z

)
= (−1)n−1Ln(z), Ln(z̄) = (−1)n−1Ln(z),

where z̄ denotes the complex conjugate of z.
For n = 2, equation (3) becomes the Bloch–Wigner dilogarithm,

(5) D(z) = Im(Li2(z)− log |z|Li1(z)) = Im(Li2(z)) + log |z| arg(1− z),

which satisfies the five-term relation

(6) D(x) +D(y) +D(1− xy) +D

(
1− x
1− xy

)
+D

(
1− y

1− xy

)
= 0.

A particularly useful case of the above equation (setting x = z and y = 1) is

(7) D(1− z) = −D(z).

Similarly, the first equation in (4) can be deduced for D = L2 by setting x = z = 1
y

in (6).

Analogously, by setting n = 3 in (3), we obtain the trilogarithm

(8) L3(z) = Re

(
Li3(z)− log |z|Li2(z) +

1

3
log2 |z|Li1(z)

)
.

We close this subsection by defining the Borel group, a structure where we can naturally
evaluate the dilogarithm. For F a field, let

A2(F ) :=

{∑
j

nj{zj} ∈ Z[F ]

∣∣∣∣∣∑
j

nj(zj ∧ (1− zj)) = 0

}
,

where the corresponding term in the sum is omitted if zj = 0, 1. Let

C2(F ) :=

{
{x}+ {y}+ {1− xy}+

{
1− x
1− xy

}
+

{
1− y

1− xy

}∣∣∣∣x, y ∈ F ∗, xy 6= 1

}
.

Then C2(F ) ⊂ A2(F ) and we can define the Borel group by

B2(F ) := A2(F )/C2(F ).

Thus, if we extend the Bloch–Wigner dilogarithm to Z[C] by linearity, D is naturally defined
in B2(C). We denote by {z}2 the element of B2(F ) coming from {z} ∈ Z[F ]. The subindex
2 indicates that we work with the dilogarithm. It is possible to extend the definition of the
Borel groups to Ln. For more details, see [Zag91, Gon05].
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2.2. The regulator integral. Let P ∈ C[x, y, z]. Then we may write

P (x, y, z) =ad(x, y)zd + · · ·+ a0(x, y)

=ad(x, y)
d∏
j=1

(z − αj(x, y)),

where we view the roots αj(x, y) as algebraic functions.
Let P ∗(x, y) = ad(x, y). By applying Jensen’s formula (with respect to the variable z) to

the definition, we obtain

(9) m(P ) = m(P ∗) +
1

(2πi)2

d∑
j=1

∫
|x|=|y|=1

log+ |αj(x, y)|dx
x

dy

y
,

where log+ s = log s if s > 1 and 0 otherwise.
Recall that, while the argument arg z is a multivalued function, d arg z is well defined as

d arg z = Im
dz

z
.

Let
Γ = {P (x, y, z) = 0} ∩ {|x| = |y| = 1, |z| ≥ 1},

and

η(x, y, z) := log |x|
(

1

3
d log |y| ∧ d log |z| − d arg y ∧ d arg z

)
+ log |y|

(
1

3
d log |z| ∧ d log |x| − d arg z ∧ d arg x

)
+ log |z|

(
1

3
d log |x| ∧ d log |y| − d arg x ∧ d arg y

)
.

When d = 1, formula (9) may be rewritten as

(10) m(P ) = m(P ∗)− 1

4π2

∫
Γ

η(x, y, z).

The differential form η(x, y, z) is defined on the surface S = {P (x, y, z) = 0} minus the
set Z of poles and zeros of x, y, and z.

Since dη(x, y, z) = Re
(
dx
x
∧ dy

y
∧ dz

z

)
, we conclude that η in closed in S \ Z. For the rest

of this paper, we will focus on the case in which η is also exact, which will imply that we can
proceed with the integration by means of Stokes’ theorem. The exactness of η may happen,
for example, due to the following identity

η(x, 1− x, y) = dω(x, y),

where

ω(x, y) := −D(x)d arg y +
1

3
log |y|(log |1− x|d log |x| − log |x|d log |1− x|).

Thus, in order to apply Stokes’ theorem, we could require that

(11) x ∧ y ∧ z =
∑
j

rjxj ∧ (1− xj) ∧ yj
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in
∧3(C(S)∗)⊗Q for η to be exact.
In this case, ∫

Γ

η(x, y, z) =
∑
j

rj

∫
Γ

η(xj, 1− xj, yj) =
∑
j

rj

∫
∂Γ

ω(xj, yj),

where

∂Γ = {P (x, y, z) = 0} ∩ {|x| = |y| = |z| = 1}.

At first sight the set ∂Γ seems to have trivial boundary. However, ∂Γ as described above may
contain singularities which may give rise to a boundary when desingularized. We proceed to
change our point of view. Assume that P ∈ R[x, y, z] and is nonreciprocal (this condition is
true for the polynomials we consider in this work); then,

P (x, y, z) = P (x̄, ȳ, z̄).

This property, together with the condition |x| = |y| = |z| = 1, allows us to write

∂Γ = {P (x, y, z) = P (x−1, y−1, z−1) = 0} ∩ {|x| = |y| = |z| = 1}.

This argument was proposed by Maillot [Mai03], after an idea of Darboux [Dar75]. Observe
that we are integrating now on a path {|x| = |y| = |z| = 1} inside the curve

C = {Resz(P (x, y, z), P (x−1, y−1, z−1)) = 0}.

In order to easily compute ∫
∂Γ

ω(x, y),

we could also focus on the case when ω, defined in this new curve C, is exact. In fact, we
have

ω(x, x) = dL3(x).

The condition for ω to be exact is not as easily established as in the preceding cases
because ω is not multiplicative in the first variable. In fact, the first variable behaves as the
argument for the dilogarithm; in other words, the transformations are ruled by the five-term
relation, with the first variable belonging to the Borel group. We may express the condition
we need as

(12) {x}2 ⊗ y =
∑
j

rj{xj}2 ⊗ xj

in (B2(C(C))⊗ C(C)∗)Q. Finally, we have∫
γ

ω(x, y) =
∑
j

rj L3(xj)|∂γ ,

where γ = C ∩ T2.
In conclusion, our strategy for evaluating the Mahler measure of xa+b + 1 + (xa + 1)y +

(xb−1)z will consist of solving equation (11) first, and then equation (12) when appropriate.
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3. The treatment over the xy-plane

In this section we perform the integral by eliminating the variable z. As explained in the
previous section, we proceed to solve equation (11) first. Then we work on determining the
integration path ∂Γ. The final integration will be done by solving equation (12) in some
cases that will lead to terms involving the Riemann zeta function, and by direct evaluation
in other cases that will lead to terms involving the dilogarithm.

3.1. The initial integrand. Our first goal is to solve the corresponding equation (11).
Since we are working on S = {P (x, y, z) = 0}, we assume that

(13) z = −x
a+b + 1 + (xa + 1)y

xb − 1

and proceed.

Remark 2. In all our computations involving the wedge product we can ignore terms of the
form (±1) ∧ α ∧ β since they lead to η = 0.

We obtain

x ∧ y ∧ z =x ∧ y ∧ x
a+b + 1 + (xa + 1)y

xb − 1

=x ∧ y ∧ x
a+b + 1

xb − 1
+ x ∧ y ∧

(
1 +

(xa + 1)y

xa+b + 1

)
.(14)

The first term in (14) equals

x ∧ y ∧ x
a+b + 1

xb − 1
= − 1

a+ b
xa+b ∧

(
1 + xa+b

)
∧ y +

1

b
xb ∧

(
1− xb

)
∧ y,

while the second term gives

x ∧ y ∧
(

1 +
(xa + 1)y

xa+b + 1

)
=

(xa + 1)y

xa+b + 1
∧
(

1 +
(xa + 1)y

xa+b + 1

)
∧ x− x ∧ xa + 1

xa+b + 1
∧
(

1 +
(xa + 1)y

xa+b + 1

)
=

(xa + 1)y

xa+b + 1
∧
(

1 +
(xa + 1)y

xa+b + 1

)
∧ x− 1

a
xa ∧ (1 + xa) ∧

(
1 +

(xa + 1)y

xa+b + 1

)
+

1

a+ b
xa+b ∧ (1 + xa+b) ∧

(
1 +

(xa + 1)y

xa+b + 1

)
.

Combining everything, we obtain

x ∧ y ∧ z =
1

b
xb ∧

(
1− xb

)
∧ y − 1

a
xa ∧ (1 + xa) ∧

(
1 +

(xa + 1)y

xa+b + 1

)
+

1

a+ b
xa+b ∧ (1 + xa+b) ∧

(
1

y
+

xa + 1

xa+b + 1

)
+

(xa + 1)y

xa+b + 1
∧
(

1 +
(xa + 1)y

xa+b + 1

)
∧ x.
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Therefore, the goal is to integrate ω(∆) in ∂Γ, where

(15)

∆ =
1

b
{xb}2 ⊗ y −

1

a
{−xa}2 ⊗

(
1 +

(xa + 1)y

xa+b + 1

)
+

1

a+ b
{−xa+b}2 ⊗

(
1

y
+

xa + 1

xa+b + 1

)
+

{
−(xa + 1)y

xa+b + 1

}
2

⊗ x.

3.2. The integration path. Our goal in this subsection is to describe the integration path
∂Γ. By applying Maillot’s trick, the integration path is given by(

xa+b + 1 + (xa + 1)y

xb − 1

)(
x−a−b + 1 + (x−a + 1)y−1

x−b − 1

)
= 1,

which reduces to

(16) (xa + 1)(xa+b + 1)(y + 1)(y + xb) = 0.

The above set does not take into account singularities resulting from having zero divided
by zero in the rational fraction (13) expressing z. This essentially amounts to considering
the extra condition xb = 1. As we will see later in Section 4, the integration of this path
contributes to the final calculation.

We can write the integration path (16) as

∂Γxy =
4⋃
j=1

Tj,

where

T1 =

{
(x, y, z) ∈ C3

∣∣∣|x| = 1, y = −1, z = −x
a+b + 1 + (xa + 1)y

xb − 1

}
,

T2 =

{
(x, y, z) ∈ C3

∣∣∣xa+b = −1, |y| = 1, z = −x
a+b + 1 + (xa + 1)y

xb − 1

}
,

T3 =

{
(x, y, z) ∈ C3

∣∣∣xa = −1, |y| = 1, z = −x
a+b + 1 + (xa + 1)y

xb − 1

}
,

T4 =

{
(x, y, z) ∈ C3

∣∣∣|x| = |y| = 1, y = −xb, z = −x
a+b + 1 + (xa + 1)y

xb − 1

}
.

Representing the paths in the plane of arg x and arg y, we have the following arguments
to consider.
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Set arg x arg y

T1 (−π, π] π

T2
(2k−1)π
a+b

,−a+b−1
2

< k ≤ a+b+1
2

(−π, π]

T3
(2k−1)π

a
,−a−1

2
< k ≤ a+1

2
(−π, π]

T4 (−π, π] (b arg x+ π) mod 2π

Table 1: Arguments of x and y according to the corre-
sponding path in ∂Γxy.

Remark 3. The notation α mod 2π denotes a number −π < β ≤ π such that β ≡ α mod 2π.

We have illustrated the integration paths for a = 3 and b = 4 in Figure 1. Notice that the
paths are all contained in the square [−π, π]× [−π, π]. It is useful to understand the picture
with periodic boundary conditions.

It is not immediately obvious how to properly describe the exact paths of integration in

T1 and in T4, since this requires to write the fractions (2u−1)π
a

and (2v−1)π
a+b

in an increasing
order. More precisely, the set of end points of the paths in T1 is

E = E1 ∪ E2,

where

E1 =

{
arg x =

2kπ

b

∣∣∣∣− b2 < k ≤ b

2

}
corresponds to the first coordinates of the points where T1 and T4 intersect, and

E2 =

{
arg x =

(2k − 1)π

a

∣∣∣∣−a− 1

2
< k ≤ a+ 1

2

}
corresponds to the first coordinates of the points where T1 and T3 intersect. Also, the origin
points of the paths on T1 form the set

F =

{
arg x =

(2k − 1)π

a+ b

∣∣∣∣−a+ b− 1

2
< k ≤ a+ b+ 1

2

}
,

which corresponds to the first coordinates of the points where T1 intersects T2.
When considering the paths in T1 ∪ T4 with respect to their first coordinate arg x, the

paths in T4 have the opposite orientation to the ones in T1.
The following result tells us that we can not have two consecutive points of F , as they

are always separated by points of E1 or E2. It also tells us that these sets are essentially
disjoint, with the possibly exception at the boundary corresponding to ±π.

Proposition 4. Let a, b, u, v ∈ Z, a, b > 0.
9



arg x

arg y

−π π

π

−π

0

Figure 1. An illustration of the integration path when a = 3 and b = 4 in
the plance xy. The vectors in red are multiples of π

7
and the ones in blue are

multiples of π
3
.

(i) If

2u− 1

a
<

2v − 1

a+ b
<

2v + 1

a+ b
<

2u+ 1

a
,

then

2v − 1

a+ b
<

2(v − u)

b
<

2v + 1

a+ b
.

(ii) If

2u

b
<

2v − 1

a+ b
<

2v + 1

a+ b
<

2u+ 2

b
,

then

2v − 1

a+ b
<

2(v − u)− 1

a
<

2v + 1

a+ b
.
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(iii) If, in addition, a, b are coprime, −a−1
2
< u < a+1

2
and − b

2
< v < b

2
, we have

min

{
2u− 1

a
,
2v

b

}
<

2(u+ v)− 1

a+ b
< max

{
2u− 1

a
,
2v

b

}

Proof. From 2u−1
a

< 2v−1
a+b

, we see that

(2u− 1)(a+ b) < (2v − 1)a.

Therefore

(2u− 1)b < 2(v − u)a.

By adding 2(v − u)b on both sides, we obtain

(2v − 1)b < 2(v − u)(a+ b),

and the left-hand side inequality in (i) follows. The other inequality in (i) and those of (ii)
can be proven in a similar way.

Finally, (iii) is a consequence of the fact that 2u−1
a
6= 2v

b
, which is true since (a, b) = 1. �

Proposition 4 implies that there is a precise shuffle between the elements of E1 ∪ E2 and
those of F , in the sense that they alternate. Each element of F is placed between two
elements of E1 ∪ E2 and vice versa.

Accordingly, for −a+b−1
2

< k ≤ a+b+1
2

, we define

k` = max

{
max

{
2u

b

∣∣∣∣2ub ≤ 2k − 1

a+ b

}
,max

{
2v − 1

a

∣∣∣∣2v − 1

a
≤ 2k − 1

a+ b

}}
,

and similarly

ku = min

{
min

{
2u

b

∣∣∣∣2ub ≥ 2k − 1

a+ b

}
,min

{
2v − 1

a

∣∣∣∣2v − 1

a
≥ 2k − 1

a+ b

}}
.

By Stokes’s theorem, we orient the paths in the following way.
11



Set arg x arg y

T1

(2k−1)π
a+b

→ k`π,
(2k−1)π
a+b

→ kuπ.
−a+b−1

2
< k ≤ a+b+1

2
π

T2
(2k−1)π
a+b

−a+b−1
2

< k ≤ a+b+1
2

(
(2k−1)bπ
a+b

+ π
)

mod 2π → π(
(2k−1)bπ
a+b

+ π
)

mod 2π → −π

T3
(2k−1)π

a
−a−1

2
< k ≤ a+1

2

π →
(

(2k−1)bπ
a

+ π
)

mod 2π

−π →
(

(2k−1)bπ
a

+ π
)

mod 2π

T4
k`π → (2k−1)π

a+b
,

kuπ → (2k−1)π
a+b

.
−a+b−1

2
< k ≤ a+b+1

2
(b arg x+ π) mod 2π

Table 2: Orientation of the integral over the path ∂Γxy

Remark 5. In the case where b is even, then a is necessarily odd, and both T2 and T3

contribute with a path at x = π. In T2, this path is π → −π while in the case of T3, it is
−π → π.

3.3. Restricting the integrand to ∂Γxy. Our goal here is to restrict ∆ to each component
Tj of ∂Γxy. We will use the notation

∆j := ∆|Tj .

We will consider each ∆j and express as many terms as possible as the terms in equation
(12).

Remark 6. In all our computations we can ignore terms of the form {±1}2⊗α and {α}2⊗
(±1) since they lead to ω = 0. We proceed similarly for {0}2 ⊗ α and {α}2 ⊗ 0 as long
as |α| = 1. In addition, we apply identities (4) and (7) often, namely {α}2 = −

{
1
α

}
2

=
−{1− α}2.

Recall that in T1 we have y = −1. Therefore equation (15) becomes

∆1 =− 1

a
{−xa}2 ⊗

xa(xb − 1)

xa+b + 1
+

1

a+ b
{−xa+b}2 ⊗

xa(1− xb)
xa+b + 1

+

{
xa + 1

xa+b + 1

}
2

⊗ x.
12



In T2 we have xa+b = −1. Thus we have

∆2 =
1

b
{xb}2 ⊗ y −

1

a
{−xa}2 ⊗ y +

1

a
{−xa}2 ⊗ (xa + 1)

=
1

b
{xb}2 ⊗ y −

1

a

{
1

xb

}
2

⊗ y +
1

a
{−xa}2 ⊗ (xa + 1)

=
a+ b

ab
{xb}2 ⊗ y −

1

a
{xa + 1}2 ⊗ (xa + 1).

In T3 we have xa = −1 and this leads to

∆3 =
a

(a+ b)b
{xb}2 ⊗ y.

Over T4 we have y = −xb and

∆4 =
1

b
{xb}2 ⊗ xb −

1

a
{−xa}2 ⊗

1− xb

xa+b + 1
+

1

a+ b
{−xa+b}2 ⊗

xb − 1

xb(xa+b + 1)

+

{
xb(xa + 1)

xa+b + 1

}
2

⊗ x.

3.4. Integrating ω(∆). Here we proceed to integrate ω(∆) over Tj. We consider three
cases. We take T1 and T4 together, since they can be parametrized with the same path over
the first coordinate arg x.

3.4.1. Integration over T1 ∪ T4. We have∫
T1∪T4

ω(∆) =

∫
T1

ω(∆1) +

∫
T4

ω(∆4)

=

∫
T1

ω(∆1 −∆4).

We find

(17)

∆1 −∆4 =− 1

a
{−xa}2 ⊗ xa −

1

b
{xb}2 ⊗ xb +

1

a+ b
{−xa+b}2 ⊗ xa+b

+

{
xa + 1

xa+b + 1

}
2

⊗ x−
{
xb(xa + 1)

xa+b + 1

}
2

⊗ x.

Notice that the five-term relation for the dilogarithm (6) implies

{−xa}2 + {xb}2 + {1 + xa+b}2 +

{
xa + 1

xa+b + 1

}
2

+

{
1− xb

xa+b + 1

}
2

= 0,

and (7) gives {
1− xb

xa+b + 1

}
2

= −
{

1− 1− xb

xa+b + 1

}
2

= −
{
xb(xa + 1)

xa+b + 1

}
2

.

13



Combining this with equation (17), we obtain

∆1 −∆4 =− 1

a
{−xa}2 ⊗ xa −

1

b
{xb}2 ⊗ xb +

1

a+ b
{−xa+b}2 ⊗ xa+b

− {−xa}2 ⊗ x−
1

b
{xb}2 ⊗ xb − {1 + xa+b}2 ⊗ x

=− 2

a
{−xa}2 ⊗ xa −

2

b
{xb}2 ⊗ xb +

2

a+ b
{−xa+b}2 ⊗ xa+b.

Evaluating on ω, this leads to∫
T1∪T4

ω(∆) =

(
−2

a
L3(−xa)− 2

b
L3(xb) +

2

a+ b
L3(−xa+b)

)∣∣∣∣
∂T1

=2

( ∑
x∈E1∪E2

−
∑
x∈F

)(
−2

a
L3(−xa)− 2

b
L3(xb) +

2

a+ b
L3(−xa+b)

)
,

where the factor of 2 appears because each origin and final point is counted exactly twice in
the segments.

We will use identity (2) repeatedly. For example, the term
∑

x∈E1
L3(−xa) corresponds

to the sum of Li3 over all the b-roots of (−1)b. Indeed, (−xa)b = (−1)b for x ∈ E1, and since
(a, b) = 1, summing L3(−xa) over E1 is the same as summing L3(−x) over E1. Finally
L3(z) = Re Li3(z) for |z| = 1. A similar reasoning for each term leads to∫

T1∪T4
ω(∆) =2

(
− 2

ab2
Li3((−1)b)− 2Li3(1) +

2

(a+ b)b2
Li3((−1)b)

)
+ 2

(
−2Li3(1)− 2

ba2
Li3((−1)b) +

2

(a+ b)a2
Li3((−1)b)

)
− 2

(
− 2

a(a+ b)2
Li3((−1)b)− 2

b(a+ b)2
Li3((−1)b) + 2Li3(1)

)
=− 12ζ(3)− 4

ab(a+ b)
Li3((−1)b).

3.4.2. Integration over T2. Evaluating on ω, the integration over T2 leads to∫
T2

ω(∆2) =− a+ b

ab

∑
x=exp ( (2k−1)πi

a+b )
−a+b−1

2
<k≤a+b+1

2

D(xb)

∫
d arg y,

since the term coming from {xa + 1}2 ⊗ (xa + 1) is independent of y and constant in each
component of T3 and therefore its integral equals 0. Thus∫
T2

ω(∆2) =
2(a+ b)

ab

∑
−a+b−1

2
<k≤a+b+1

2

D

(
exp

(
(2k − 1)bπi

a+ b

))[(
(2k − 1)bπ

a+ b
+ π

)
mod 2π

]
.

Since (b, a + b) = 1, we observe that the sum above is taking place over exactly all the
a+ b−th roots of (−1)b.
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When b is odd, the formula becomes∫
T2

ω(∆2) =
2(a+ b)

ab

∑
−a+b−1

2
<k≤a+b+1

2

D

(
exp

(
(2k − 1)πi

a+ b

))[(
(2k − 1)π

a+ b
+ π

)
mod 2π

]

=
2(a+ b)

ab

∑
1≤k≤a+b+1

2

D

(
exp

(
(2k − 1)πi

a+ b

))(
(2k − 1)π

a+ b
− π

)

+
2(a+ b)

ab

∑
1≤k≤a+b+1

2

D

(
exp

(
−(2k − 1)πi

a+ b

))(
−(2k − 1)π

a+ b
+ π

)

=
4(a+ b)

ab

∑
1≤k≤a+b+1

2

D

(
exp

(
(2k − 1)πi

a+ b

))(
(2k − 1)π

a+ b
− π

)
.

When b is even, we have∫
T2

ω(∆2) =
2(a+ b)

ab

∑
−a+b

2
<k≤a+b

2

D

(
exp

(
2kπi

a+ b

))[(
2kπ

a+ b
+ π

)
mod 2π

]

=
2(a+ b)

ab

∑
1≤k≤a+b

2

D

(
exp

(
2kπi

a+ b

))(
2kπ

a+ b
− π

)

+
2(a+ b)

ab

∑
1≤k≤a+b

2

D

(
exp

(
− 2kπi

a+ b

))(
− 2kπ

a+ b
+ π

)

=
4(a+ b)

ab

∑
1≤k≤a+b

2

D

(
exp

(
2kπi

a+ b

))(
2kπ

a+ b
− π

)
,

where we have used that D(±1) = 0.

3.4.3. Integration over T3. Evaluating on ω, this integral leads to∫
T3

ω(∆3) =− a

(a+ b)b

∑
x=exp ( (2k−1)πi

a )
−a−1

2
<k≤a+1

2

D(xb)

∫
d arg y

=− 2a

(a+ b)b

∑
−a−1

2
<k≤a+1

2

D

(
exp

(
(2k − 1)bπi

a

)) [(
(2k − 1)bπ

a
+ π

)
mod 2π

]
.

As in the case of T2, we observe that since (b, a) = 1, the sum above is taking place over
exactly all the a−th roots of (−1)b.

When b is odd,∫
T3

ω(∆3) =− 2a

(a+ b)b

∑
−a−1

2
<k≤a+1

2

D

(
exp

(
(2k − 1)πi

a

))[(
(2k − 1)π

a
+ π

)
mod 2π

]

=− 4a

(a+ b)b

∑
1≤k≤a+1

2

D

(
exp

(
(2k − 1)πi

a

))(
(2k − 1)π

a
− π

)
.
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When b is even,∫
T3

ω(∆3) =− 2a

(a+ b)b

∑
−a

2
<k≤a

2

D

(
exp

(
2kπi

a

)) [(
2kπ

a
+ π

)
mod 2π

]

=− 4a

(a+ b)b

∑
1≤k≤a

2

D

(
exp

(
2kπi

a

))(
2kπ

a
− π

)
,

where we have used that D(±1) = 0.

4. The treatment over the zx-plane

The analysis from the previous section does not consider the singularities of−xa+b+1+(xa+1)y
xb−1

.

Indeed, we have singularities when xb− 1 = 0 and y = −xa+b+1
xa+1

. In sum, we need to consider
the set {

(x, y, z) ∈ C3
∣∣∣xb = 1, y = −1, |z| = 1

}
.

In order to study what happens when integrating in this path, we need to analyze it in
the plane zx. In this section we will proceed to make a full study analogous to the previous
section. Most of the terms that we will recover here were already present when we did the
analysis over the plane xy, and therefore we will not count these terms again.

Before starting with this analysis, we must reflect on the orientation. In this section we
eliminate the variable y as oppose to eliminating the variable z as we did in the previous
section. Looking at the formula for η and very particularly at equation (10), we see that the
term contributing to the Mahler measure corresponds to zx and not xz.

4.1. The initial integrand. We start by expressing ∆ in terms of x and z. Proceeding
similarly as in the xy plane case, we obtain

x ∧ y ∧ z =x ∧
xa+b + 1 +

(
xb − 1

)
z

xa + 1
∧ z

=x ∧ x
a+b + 1

xa + 1
∧ z + x ∧

(
1 +

(xb − 1)z

xa+b + 1

)
∧ z

=x ∧
(
xa+b + 1

)
∧ z − x ∧ (xa + 1) ∧ z + x ∧

(
1 +

(xb − 1)z

xa+b + 1

)
∧
(

(xb − 1)z

xa+b + 1

)
− x ∧

(
1 +

(xb − 1)z

xa+b + 1

)
∧
(
xb − 1

)
+ x ∧

(
1 +

(xb − 1)z

xa+b + 1

)
∧
(
xa+b + 1

)
.

In sum, this results in
(18)

∆′ =− 1

a
{−xa}2 ⊗ z +

1

b
{xb}2 ⊗

(
1 +

(xb − 1)z

xa+b + 1

)
− 1

a+ b
{−xa+b}2 ⊗

(
1

z
+

xb − 1

xa+b + 1

)
−
{
−(xb − 1)z

xa+b + 1

}
2

⊗ x.
16



4.2. The integration path. The integration boundaries are to be found in the same way
as the plane xy. The condition(

xa+b + 1 +
(
xb − 1

)
z

xa + 1

)(
x−a−b + 1 +

(
x−b − 1

)
z−1

x−a + 1

)
= 1

reduces to
(z − 1)(xa + z)(xa+b + 1)(xb − 1) = 0.

We remark that all the above conditions were considered in the xy-plane in equation (16),
except for the condition xb = 1. Indeed, z = 1 corresponds to (xa+1)(y+xb) = 0, xa+z = 0
corresponds to (xa + 1)(y + 1) = 0, and xa+b + 1 = 0 is already a factor in (16). As before,
we write

∂Γzx =
4⋃
j=1

T ′j ,

where

T ′1 =

{
(x, y, z) ∈ C3

∣∣∣|x| = 1, z = 1, y = −
xa+b + 1 +

(
xb − 1

)
z

xa + 1

}
,

T ′2 =

{
(x, y, z) ∈ C3

∣∣∣xa+b = −1, |z| = 1, y = −
xa+b + 1 +

(
xb − 1

)
z

xa + 1

}
,

T ′3 =

{
(x, y, z) ∈ C3

∣∣∣xb = 1, |z| = 1, y = −
xa+b + 1 +

(
xb − 1

)
z

xa + 1

}
,

T ′4 =

{
(x, y, z) ∈ C3

∣∣∣|x| = |z| = 1, z = −xa, y = −
xa+b + 1 +

(
xb − 1

)
z

xa + 1

}
,

We have illustrated the integration paths for a = 3 and b = 4 in Figure 2. In this case, it
is more natural to represent 0 ≤ arg z ≤ 2π and −π ≤ arg x ≤ π with the understanding, as
before, that we are working with periodic boundary conditions.

By doing an analysis similar to the one we used to produce Table 2, we conclude that the
paths can be described as follows.

Set arg z arg x

T ′1 2π
k`π → (2k−1)π

a+b
,

kuπ → (2k−1)π
a+b

.
−a+b−1

2
< k ≤ a+b+1

2

T ′2
2π →

(
(2k−1)aπ
a+b

)
mod 2π + π

0→
(

(2k−1)aπ
a+b

)
mod 2π + π

(2k−1)π
a+b

−a+b−1
2

< k ≤ a+b+1
2

17



T ′3

(
2kaπ
b

)
mod 2π + π → 2π(

2kaπ
b

)
mod 2π + π → 0

2kπ
b

− b
2
< k ≤ b

2

T ′4 (a arg x) mod 2π + π
(2k−1)π
a+b

→ k`π,
(2k−1)π
a+b

→ kuπ.
−a+b−1

2
< k ≤ a+b+1

2

Table 3: Orientation of the integral over the path ∂Γzx

4.3. Restricting the integrand to ∂Γzx and integrating ω(∆′). As before, we aim at
restricting ∆′ to each component of ∂Γzx in order to proceed with the integration over each
component. We write

∆′j = ∆′|T ′j .
We expect that the integral over T ′1∪T ′4 yield the same coefficient over ζ(3) as the integral

over T1 ∪ T4 did before. Note that

∆′1 =
1

b
{xb}2 ⊗

(
xa+b + xb

xa+b + 1

)
− 1

a+ b
{−xa+b}2 ⊗

(
xa+b + xb

xa+b + 1

)
−
{
− xb − 1

xa+b + 1

}
⊗ x,

and

∆′4 =− 1

a
{−xa}2 ⊗ (−xa) +

1

b
{xb}2 ⊗

(
1 + xa

xa+b + 1

)
− 1

a+ b
{−xa+b}2 ⊗

(
1 + x−a

xa+b + 1

)
−
{
xa+b − xa

xa+b + 1

}
⊗ x.

Combining the above terms,

∆′1 −∆′4 =
1

a
{−xa}2 ⊗ xa +

1

b
{xb}2 ⊗ xb −

1

a+ b
{−xa+b}2 ⊗ xa+b

−
{
− xb − 1

xa+b + 1

}
⊗ x+

{
xa+b − xa

xa+b + 1

}
⊗ x

=
2

a
{−xa}2 ⊗ xa +

2

b
{xb}2 ⊗ xb −

2

a+ b
{−xa+b}2 ⊗ xa+b,

where we have used, as before, the five-term relation (6).
In addition, we also obtain,

∆′2 =
a+ b

ab
{xb}2 ⊗ z −

1

b
{1− xb}2 ⊗

(
1− xb

)
,

∆′3 =− b

a(a+ b)
{−xa}2 ⊗ z.

4.3.1. Integration over T ′1∪T ′4. Given the relative reversal in the direction of the integration
path in T ′1 ∪ T ′4 compared to T1 ∪ T4, we recover∫

T ′1∪T ′4
ω(∆′) =

∫
T1∪T4

ω(∆).
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arg z

arg x

2ππ

π

−π

0

Figure 2. An illustration of the integration path when a = 3 and b = 4 in
the plane zx. The vectors in red are multiples of π

7
and the ones in yellow are

multiples of π
4
.

4.3.2. Integration over T ′2. Evaluating on ω, this integral leads to∫
T ′2

ω(∆′2) =− a+ b

ab

∑
x=exp ( (2k−1)πi

a+b )
−a+b−1

2
<k≤a+b+1

2

D(xb)

∫
d arg z

=− 2(a+ b)

ab

∑
−a+b−1

2
<k≤a+b+1

2

D

(
exp

(
(2k − 1)bπi

a+ b

))[(
a(2k − 1)π

a+ b

)
mod 2π

]

=− 2(a+ b)

ab

∑
−a+b−1

2
<k≤a+b+1

2

D

(
exp

(
(2k − 1)bπi

a+ b

))[(
(a+ b− b)(2k − 1)π

a+ b

)
mod 2π

]

=− 2(a+ b)

ab

∑
−a+b−1

2
<k≤a+b+1

2

D

(
exp

(
(2k − 1)bπi

a+ b

))[(
π − (2k − 1)bπ

a+ b

)
mod 2π

]

=

∫
T2

ω(∆2). 19



4.3.3. Integration over T ′3. This is the only term that we can not compare to the integration
of ∆ in the plane xy. Indeed, evaluating on ω, this integral leads to

∫
T ′3

ω(∆′3) =
b

a(a+ b)

∑
x=exp ( 2kπi

b )
− b

2
<k≤ b

2

D(−xa)
∫
d arg z

=− 2b

a(a+ b)

∑
− b

2
<k≤ b

2

D

(
− exp

(
2kaπi

b

)) [(
a2kπ

b

)
mod 2π

]

=− 2b

a(a+ b)

∑
− b

2
<k≤ b

2

D

(
exp

(
2kaπi

b
− πi

)) [((
a2kπ

b
− π

)
+ π

)
mod 2π

]
.

As in the case of T2, we observe that since (b, a) = 1, the sum above is taking place over
exactly all the b−th roots of (−1)b. Then this sum depends again on the parity of b.

For b odd we have∫
T ′3

ω(∆′3) =− 2b

a(a+ b)

∑
− b−1

2
<k≤ b+1

2

D

(
exp

(
(2k − 1)πi

b

)) [(
(2k − 1)π

b
+ π

)
mod 2π

]

=− 4b

a(a+ b)

∑
1≤k≤ b+1

2

D

(
exp

(
(2k − 1)πi

b

))(
(2k − 1)π

b
− π

)
.

For b even we have∫
T ′3

ω(∆′3) =− 2b

a(a+ b)

∑
− b

2
<k≤ b

2

D

(
exp

(
2kπi

b

)) [(
2kπ

b
+ π

)
mod 2π

]

=− 4b

a(a+ b)

∑
1≤k≤ b

2

D

(
exp

(
2kπi

b

))(
2kπ

b
− π

)
.

5. Conclusion of the proof

In this section we combine the results of Sections 3 and 4. Notice that the integral over
T1∪T4 corresponds to the integral over T ′1∪T ′4, and similarly for the integrals over T2 and T ′2.
However, the integrals over T3 and T ′3 correspond to different contributions. More precisely,
we can write that ∫

∂Γ

ω =
4∑
j=1

∫
Tj

ω +

∫
T ′3

ω.
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Putting everything together, we obtain, for b odd,∫
∂Γ

ω =− 3

(
4− 1

ab(a+ b)

)
ζ(3)

+
4(a+ b)

ab

∑
1≤k≤a+b+1

2

D

(
exp

(
(2k − 1)πi

a+ b

))(
(2k − 1)π

a+ b
− π

)

− 4a

(a+ b)b

∑
1≤k≤a+1

2

D

(
exp

(
(2k − 1)πi

a

))(
(2k − 1)π

a
− π

)

− 4b

a(a+ b)

∑
1≤k≤ b+1

2

D

(
exp

(
(2k − 1)πi

b

))(
(2k − 1)π

b
− π

)
.

For b even ∫
∂Γ

ω =− 4

(
3 +

1

ab(a+ b)

)
ζ(3)

+
4(a+ b)

ab

∑
1≤k≤a+b

2

D

(
exp

(
2kπi

a+ b

))(
2kπ

a+ b
− π

)

− 4a

(a+ b)b

∑
1≤k≤a

2

D

(
exp

(
2kπi

a

))(
2kπ

a
− π

)

− 4b

a(a+ b)

∑
1≤k≤ b

2

D

(
exp

(
2kπi

b

))(
2kπ

b
− π

)
.

Once we know
∫
∂Γ
ω, we can obtain the Mahler measure by using formula (10). In our

case, P ∗ = xb−1 or P ∗ = xa+1, and therefore m(P ∗) has no contribution to the final result.

6. An application of Boyd–Lawton Theorem

In this section we discuss the result of Theorem 1 in the light of Boyd–Lawton formula.
More specifically, the following statement is true.

Theorem 7. [Boy81b, Boy81a, Law83] Let P (x1, . . . , xn) ∈ C[x1, . . . , xn] and r = (r1, . . . , rn),
rj ∈ Z>0. Define Pr(x) as

Pr(x) = P (xr1 , . . . , xrn),

and let

q(r) = min

{
H(t) : t = (t1, . . . , tn) ∈ Zn, t 6= (0, . . . , 0),

n∑
j=1

tjrj = 0

}
,

where H(t) = max{|tj| : 1 ≤ j ≤ n}. Then

lim
q(r)→∞

m(Pr) = m(P ).

More precisely, the above theorem says that if we replace x1, . . . , xn by powers of a fixed
variable x and let the exponents go to infinity independently from each other, then the
Mahler measure of the one-variable polynomials obtained in this way approaches the Mahler
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measure of the original polynomial. In fact, more is true. We may choose to leave one of the
exponents fixed. For example, we may choose to fix r1, and only let r2, . . . , rn go to infinity
independently. This formula has been used in applications to polynomials of small Mahler
measure, see for example [BM05].

Theorem 1 provides an example of a variation of this result. More precisely, we will prove
the following.

Proposition 8. We have that

lim
a→∞
b→∞

m
(
xa+b + 1 + (xa + 1)y + (xb − 1)z

)
= lim

a→∞
m
(
xa+b + 1 + (xa + 1)y + (xb − 1)z

)
= lim

b→∞
m
(
xa+b + 1 + (xa + 1)y + (xb − 1)z

)
=m(xw + 1 + (w + 1)y + (x− 1)z) =

9

2π2
ζ(3),

where the first limit is taken with a and b independent of each other.

Here we remark that

m(xw + 1 + (w + 1)y + (x− 1)z) =m((1 + w)(1 + y)− (1− x)(w + z))

=m((1− w)(1− y)− (1− x)(1− z)),

and the Mahler measure of this last polynomial was computed in Theorem 7 of [DL07].
It is clear that the term involving ζ(3) in the formulas of Theorem 1 approaches 3

π2 ζ(3) as
either a or b go to infinity. Thus the proposition will be proven if we can prove the following.

Lemma 9. We have that

(19)

lim
a→∞

[
− a+ b

ab

∑
1≤k≤a+b+1

2

D

(
exp

(
(2k − 1)πi

a+ b

))(
(2k − 1)π

a+ b
− π

)

+
a

b(a+ b)

∑
1≤k≤a+1

2

D

(
exp

(
(2k − 1)πi

a

))(
(2k − 1)π

a
− π

)

+
b

a(a+ b)

∑
1≤k≤ b+1

2

D

(
exp

(
(2k − 1)πi

b

))(
(2k − 1)π

b
− π

)]

=
3

2
ζ(3),
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and

(20)

lim
a→∞

[
− a+ b

ab

∑
1≤k≤a+b

2

D

(
exp

(
2kπi

a+ b

))(
2kπ

a+ b
− π

)

+
a

b(a+ b)

∑
1≤k≤a

2

D

(
exp

(
2kπi

a

))(
2kπ

a
− π

)

+
b

a(a+ b)

∑
1≤k≤ b

2

D

(
exp

(
2kπi

b

))(
2kπ

b
− π

)]

=
3

2
ζ(3).

Remark that the above formulas are independent of b. Thus, we may choose to take the
limit when b goes to infinity in addition to the limit when a goes to infinity, and it does
not change the result. Due to symmetry, the same formulas apply if we take the limit when
b goes to infinity instead of the limit when a goes to infinity. Thus, Lemma 9 suffices to
conclude the three limits in the statement of Proposition 8.

Proof of Lemma 9. We prove the first limit (19), the second limit (20) is proven similarly.
First notice that

(21) lim
a→∞

b

a(a+ b)

∑
1≤k≤ b+1

2

D

(
exp

(
(2k − 1)πi

b

))(
(2k − 1)π

b
− π

)
= 0,

since the sum is independent of a and therefore constant.
Recall that D(exp (θi)) = Im Li2(exp (θi)) and we also have

d

dθ
Lin(exp (θi)) = iLin−1(exp (θi)).

By applying Riemann’s summation,

lim
a→∞

[
− a+ b

ab

∑
1≤k≤a+b+1

2

D

(
exp

(
(2k − 1)πi

a+ b

))(
(2k − 1)π

a+ b
− π

)

+
a

b(a+ b)

∑
1≤k≤a+1

2

D

(
exp

(
(2k − 1)πi

a

))(
(2k − 1)π

a
− π

)]

=
1

π
lim
a→∞

(
a2

2b(a+ b)
− (a+ b)2

2ab

)∫ π

0

θ Im Li2(exp (θi))dθ

− lim
a→∞

(
a2

2b(a+ b)
− (a+ b)2

2ab

)∫ π

0

Im Li2(exp (θi))dθ.
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We apply integration by parts and the above equals

− 3

2π

(
θ Im (−iLi3(exp (θi)))|π0 −

∫ π

0

Im (−iLi3(exp (θi)))dθ

)
+

3

2
Im (−iLi3(exp (θi)))|π0

=
3

2
Li3(−1) +

3

2π
Im(Li4(1)− Li4(−1)) +

3

2
(Li3(1)− Li3(−1))

=
3

2
ζ(3).

Combining this with equation (21), we obtain the result.
�

7. Conclusion

As we have seen, the result of Theorem 1, in addition to being interesting on its own,
provides a nontrivial example of Boyd–Lawton formula. We remark that in this case, we
obtain the Mahler measure of a four-variable polynomial as limit of Mahler measures of three-
variable polynomials. However, (1−w)(1− y)− (1− x)(1− z) has zero constant coefficient,
and therefore it behaves like a three-variable polynomial from the Mahler measure point of
view. In fact, its Mahler measure formula has a single term with a trilogarithm, namely, a
polylogarithm of weight 3, which is typical of a three-variable polynomial. It would be more
interesting to find an example where the limiting polynomial behaves like a four-variable
polynomial from the Mahler measure point of view.

The Mahler measures of two-variable polynomials of the form (1 − xa)y + (1 − xb) were
extensively studied in [BRV02]. (In fact, the authors considered more generally products of
terms of the form (1− xa).) Their formulas are very similar to the dilogarithm terms in our
main result, as they are also given as linear combinations of dilogarithms evaluated in roots
of unity. Our results can be interpreted as a three-variable version of some of the results from
[BRV02]. It would be interesting to see if this parallel extends to other examples without
imposing that one exponent is the sum of the other two, or examples with more variables.
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