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Abstract. We investigate the Mahler measure of a particular family of rational functions with
arbitrary number of variables and arbitrary degree in one of the variables, generalizing previous
results for families of arbitrary number of variables but linear dependence in each variable obtained
in [Lal06].

1. Introduction

The (logarithmic) Mahler measure of a non-zero rational function P ∈ C(x1, . . . , xn)
× is defined

as

m(P ) :=
1

(2πi)n

∫
Tn

log |P (x1, . . . , xn)|
dx1

x1

· · · dxn

xn

,

where the integration is taken with respect to the Haar measure on the n-dimensional unit torus
Tn = {(x1, . . . , xn) ∈ Cn : |x1| = · · · = |xn| = 1}.
When P is a single variable polynomial, Jensen’s formula implies that m(P ) can be expressed in

terms of the roots of P . While in the multivariable case there is no general formula for m(P ), various
examples are known where m(P ) is related to special values of functions that are arithmetically
significant, such as the Riemann zeta function, L-functions, etc. The first formula of this type was
given by Smyth [Smy81, Boy81]:

m(1 + x+ y) =
3
√
3

4π
L(χ−3, 2),

where L(χ−3, s) is the Dirichlet L-function associated to the primitive character χ−3 of conductor
3. The appearance of these special values has been explained in terms of evaluations of regulators
and Beilinson’s conjectures by Deninger [Den97], Boyd [Boy98], and Rodriguez-Villegas [RV99] (see
also the book of Brunault and Zudilin [BZ20] for a more detailed exposition).

Very few examples are known with more than three variables. Such examples represent important
evidence towards understanding the relationship between Mahler measure and regulators. In [Lal03,
Lal06] Laĺın considered the Mahler measures of the following families of rational functions:

Rn(x1, . . . , xn, z) :=z +

(
1− x1

1 + x1

)
· · ·

(
1− xn

1 + xn

)
,

Sn(x1, . . . , xn, x, y, z) :=(1 + x)z +

(
1− x1

1 + x1

)
· · ·

(
1− xn

1 + xn

)
(1 + y),

Tn(x1, . . . , xn, x, y) :=1 +

(
1− x1

1 + x1

)
· · ·

(
1− xn

1 + xn

)
x+

(
1−

(
1− x1

1 + x1

)
· · ·

(
1− xn

1 + xn

))
y.
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Notice that multiplication by (1 + x1) · · · (1 + xn) turns the above functions into polynomials,
without changing the Mahler measure. They are written as rational functions for convenience.

For a1, . . . an ∈ C, define the symmetric functions as the coefficients of the polynomial (x +
a1) · · · (x+ an), namely,

(1) sℓ(a1, . . . , an) =

 1 if ℓ = 0,∑
i1<···<iℓ

ai1 · · · aiℓ if 0 < ℓ ≤ n,
0 if n < ℓ.

We also set s0 = 1 when n = 0.
Recall that the Bernoulli numbers Bk are given by

x

ex − 1
=

∞∑
k=0

Bkx
k

k!
.

Let for n ≥ 1,

L(χ−4, ℓ) =
∞∑
k=1

χ−4(k)

kℓ
, χ−4(k) =

(
−4

k

)
.

The Mahler measures of the polynomials Rn, Sn, Tn are then given by the following formulas
[Lal06, LL16]. For k ≥ 1,

m (R2k) =
k∑

h=1

sk−h(2
2, 42, . . . , (2k − 2)2)

(2k − 1)!

(
2

π

)2h

A(h),

where

A(h) := (2h)!

(
1− 1

22h+1

)
ζ(2h+ 1).

For k ≥ 0,

m (R2k+1) =
k∑

h=0

sk−h(1
2, 32, . . . , (2k − 1)2)

(2k)!

(
2

π

)2h+1

B(h),

where

B(h) := (2h+ 1)!L(χ−4, 2h+ 2).

For k ≥ 1,

m (S2k) =
k∑

h=1

sk−h(2
2, 42, . . . , (2k − 2)2)

(2k − 1)!

(
2

π

)2h+2

C(h),

where

C(h) :=
h∑

ℓ=1

(
2h

2ℓ

)
(−1)h−ℓ

4h
B2(h−ℓ)π

2h−2ℓ(2ℓ+ 2)!

(
1− 1

22ℓ+3

)
ζ(2ℓ+ 3).

For k ≥ 0,

m (S2k+1) =
k∑

h=0

sk−h(1
2, 32 . . . , (2k − 1)2)

(2k)!

(
2

π

)2h+3

D(h),

where

D(h) :=
h∑

ℓ=0

(
2h+ 1

2ℓ+ 1

)
(−1)h−ℓ

2(2h+ 1)
B2(h−ℓ)π

2h−2ℓ(2ℓ+ 3)!L(χ−4, 2ℓ+ 4).
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For k ≥ 1,

m (T2k) =
log 2

2
+

k∑
h=1

sk−h(2
2, 42, . . . , (2k − 2)2)

(2k − 1)!

(
2

π

)2h

E(h),

where

E(h) :=(2h)!

2

(
1− 1

22h+1

)
ζ(2h+ 1) +

h∑
ℓ=1

(22(h−ℓ)−1 − 1)

(
2h

2ℓ

)
(−1)h−ℓ+1

2h

×B2(h−ℓ)π
2h−2ℓ(2ℓ)!

(
1− 1

22ℓ+1

)
ζ(2ℓ+ 1).

For k ≥ 0,

m (T2k+1) =
log 2

2
+

k∑
h=1

sk−h(2
2, 42, . . . , (2k − 2)2)

(2k + 1)!

(
2

π

)2h+2

F(h),

where

F(h) :=
(2h+ 2)!

2

(
1− 1

22h+3

)
ζ(2h+ 3) +

π2k2

2
(2h)!

(
1− 1

22h+1

)
ζ(2h+ 1)

+ k(2k + 1)
h∑

ℓ=1

(22(h−ℓ)−1 − 1)

(
2h

2ℓ

)
(−1)h−ℓ+1

4h
B2(h−ℓ)π

2h+2−2ℓ(2ℓ)!

(
1− 1

22ℓ+1

)
ζ(2ℓ+ 1).

The above formulas are quite miraculous. Their computations are possible because the Möbius
transformation 1−x

1+x
has a particular elegant effect mapping the unit circle to the imaginary axis.

The resulting differential in the change of variables also has very special properties, allowing for
certain recurrences relating the case n + 2 to the case n, which explains why the above formulas
depend on the parity of n.

A similar phenomenon was recently explored by Nair [Nai23] who considered the family

Qn(x1, . . . , xn, z) := z +

(
ω + ωx1

1 + x1

)
· · ·

(
ω + ωxn

1 + xn

)
,

where

ω =
−1 +

√
3i

2
,

and proved similar formulas involving linear combinations of values of ζ(k)
πk−1 and L(χ−3,k)

πk−1 with certain
rational coefficients.

In [Boy06], Boyd proposed the study of polynomials of the form a(x) + b(x)y + c(x)z, where
a(x), b(x), c(x) are products of cyclotomic polynomials. The reason for studying this particular class
of polynomials comes from the Cassaigne–Maillot formula for the Mahler measure of a + by + cz
[Mai00], which has an expression that is particularly convenient for numerical integration. The
investigation of such polynomials led to the discovery of several interesting numerical formulas
involving L-functions of elliptic curves. Recently Brunault further pursued these computations
with higher degree cyclotomic polynomials. This led to the discovery of certain formulas with
arbitrary degree such as

(2) m
(
1 + (x2 − x+ 1)y + (x+ 1)rz

)
= r

3
√
3

4π
L (χ−3, 2) ,

where r is an arbitrary positive integer.



4 MATILDE N. LALIN, SIVA SANKAR NAIR, AND SUBHAM ROY

In this work our aim is to combine both ideas. More precisely, we generalize the family Sn to

Sn,r(x1, . . . , xn, x, y, z) := (1 + x)z +

[(
1− x1

1 + x1

)
· · ·

(
1− xn

1 + xn

)]r
(1 + y)

and we prove the following result.

Theorem 1. Let r ≥ 1. For k ≥ 1, we have

m(S2k,r) =
k∑

h=1

sk−h(2
2, 42, . . . , (2k − 2)2)

(2k − 1)!

(
2

π

)2h

Cr(h),

where

Cr(h) :=r(2h)!

(
1− 1

22h+1

)
ζ(2h+ 1)

+
r2(2h− 1)!

π2

{
(−1)h+17B2hπ

2h

2r2(2h)!
ζ(3)

(
22h−1 + (−1)r22h−1 + (−1)r+1

)
+ (2h+ 2)(2h+ 1)

1− 2−2h−3

r2h+2
(1− (−1)r)ζ(2h+ 3)

−
2r−1∑
ℓ=0

(−1)ℓ

[
2h+2∑
t=2

(
(t− 1)(t− 2)

2
(−1)t

(
Lit(ξ

ℓ
2r)− Lit(−ξℓ2r)

)
−
(

t− 1

2h− 1

)
(2− 21−t)ζ(t)

)

× (2πi)2h+3−t

(2h+ 3− t)!
B2h+3−t

(
ℓ

2r

)]}
.

For k ≥ 0, we have

m(S2k+1,r) =
k∑

h=0

sk−h(1
2, 32, . . . , (2k − 1)2)

(2k)!

(
2

π

)2h+1

Dr(h),

where

Dr(h) :=r(2h+ 1)!L(χ−4, 2h+ 2)

+
2ir2(2h)!

π2

{
(−1)h+1(22h+4 − 1)B2h+4π

2h+4

r2h+3(2h+ 4)!
− i

(−1)hE2hπ
2h+1

r222h(2h)!

(
Li3((−i)r)− 1

8
Li3((−1)r)

)
+ (2h+ 3)(2h+ 2)

1

r2h+3

(
Li2h+4((−i)r)− 1

22h+4
Li2h+4((−1)r)

)
+

2r−1∑
ℓ=0

(−1)ℓ

[
2h+3∑
t=1

(
(t− 1)(t− 2)

2
(−1)tLit(−iξℓ2r) +

(
t− 1

2h

)
Lit(−i)

)

× (2πi)2h+4−t

(2h+ 4− t)!
B2h+4−t

(
ℓ

2r

)]}
.

In the above formulas, ξ2r denotes a primitive 2r-root of unity, Liℓ(z) denotes the polylogarithm
function (see Definition 5), and Bn(t) denotes de Bernoulli polynomial given by

xext

ex − 1
=

∞∑
k=0

Bk(t)x
k

k!
.
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The importance of Theorem 1 is that it provides formulas for the Mahler measure of a family
with arbitrarily many variables and arbitrarily large degree. In contrast, the previous results
involve the families Rn, Sn and Tn that have arbitrarily many variables, but are linear in those
variables. Moreover, the degree r plays a non-crucial role in the Mahler measure of Sn,r, as varying
r fundamentally changes m(Sn,r), as opposed to formula (2), where r is merely a factor in the final
formula.

We remark that in the case r = 1, Theorem 1 reduces to the cases previously known for Sn,
namely,

C1(h) =
4

π2
C(h) and D1(h) =

4

π2
D(h).

The case r = 2 also admits an interesting simplification as follows.

C2(h) =(−1)h+1 7

4h
B2hπ

2h−2
(
22h − 1

)
ζ(3)

+ 4
h−1∑
ℓ=0

(
2h

2ℓ

)
(−1)h−ℓ

h

(
22h−2ℓ − 1

)
B2(h−ℓ)π

2h−2ℓ−2(2ℓ+ 2)!

(
1− 1

22ℓ+3

)
ζ(2ℓ+ 3)

+
h∑

ℓ=1

(
2h− 1

2ℓ− 1

)
(−1)h−ℓ

22h−2ℓ−2
E2(h−ℓ)π

2h−2ℓ−1(2ℓ+ 1)!L(χ−4, 2ℓ+ 2)

and

D2(h) =(−1)h
21

22h+2
E2hπ

2h−1ζ(3)

+ 8
h−1∑
ℓ=0

(
2h+ 1

2ℓ+ 1

)
(−1)h−ℓ

2h+ 1
B2(h−ℓ)π

2h−2ℓ−2(2ℓ+ 3)!
(
22h−2ℓ − 1

)
L(χ−4, 2ℓ+ 4)

+
h∑

ℓ=1

(
2h

2ℓ

)
(−1)h−ℓ

22h+1
E2(h−ℓ)π

2h−2ℓ−1(2ℓ+ 2)!
(
22ℓ+3 − 1

)
ζ(2ℓ+ 3),

where the Ek are the Euler numbers given by

2ex

1 + e2x
=

∞∑
k=0

Ekx
k

k!
.

Tables 1 and 2 record the formulas for the Mahler measures of Sn,1 and Sn,2 respectively for the
first few values of n. We have included the case n = 0, not covered in Theorem 1, for comparison
purposes. We see that, although there is a clear distinction between the cases n even and odd for
m(Sn,1) in the sense that the formulas for n even only contain special values of the Riemann zeta
function, and the formulas for n odd only contain special values of the Dirichlet L-function, for
m(Sn,2) the formulas are mixed.

When r > 2 it is more difficult to evaluate Cr(h) and Dr(h) in terms of special values of the
Riemann zeta function and Dirichlet L-functions, due to the difficulty relating polylogarithms
evaluated at roots of unity of higher order to special values of L-functions. We illustrate the
formulas for the Mahler measures of S1,r for the first few values of r in Table 3. We remark
the appearance of Dirichlet L-functions in the characters χ12(11, ·) :=

(
12
·

)
of conductor 12 and

χ8(5, ·) :=
(
8
·

)
of conductor 8. This is a key distinction from the previous results for the families

Rn, Sn and Tn.
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π2m(1 + x+ (1 + y)z) 7
2
ζ(3)

π4m
(
1 + x+

(
1−x1

1+x1

)(
1−x2

1+x2

)
(1 + y)z

)
93ζ(5)

π6m
(
1 + x+

(
1−x1

1+x1

)
. . .

(
1−x4

1+x4

)
(1 + y)z

)
1905
2
ζ(7) + 31π2ζ(5)

π8m
(
1 + x+

(
1−x1

1+x1

)
. . .

(
1−x6

1+x6

)
(1 + y)z

)
7154ζ(9) + 635π2ζ(7) + 248π4

15
ζ(5)

π3m
(
1 + x+

(
1−x1

1+x1

)
(1 + y)z

)
24L(χ−4, 4)

π5m
(
1 + x+

(
1−x1

1+x1

)
. . .

(
1−x3

1+x3

)
(1 + y)z

)
320L(χ−4, 6) + 4π2L(χ−4, 4)

π7m
(
1 + x+

(
1−x1

1+x1

)
. . .

(
1−x5

1+x5

)
(1 + y)z

)
2688L(χ−4, 8)+160π2L(χ−4, 6)+

9π4

5
L(χ−4, 4)

Table 1. Mahler measure of Sn,1 for n ≤ 6.

π2m(1 + x+ (1 + y)z) 7
2
ζ(3)

π4m

(
1 + x+

[(
1−x1

1+x1

)(
1−x2

1+x2

)]2
(1 + y)z

)
96πL(χ−4, 4)− 21π2

2
ζ(3)

π6m

(
1 + x+

[(
1−x1

1+x1

)
. . .

(
1−x4

1+x4

)]2
(1 + y)z

)
1280πL(χ−4, 6)− 372π2ζ(5) +

112π3L(χ−4, 4)− 21π4

2
ζ(3)

π8m

(
1 + x+

[(
1−x1

1+x1

)
. . .

(
1−x6

1+x6

)]2
(1 + y)z

)
10752πL(χ−4, 8)− 3810π2ζ(7) +
1920π3L(χ−4, 6)− 496π4ζ(5) +

596π5

5
L(χ−4, 4)− 21π6

2
ζ(3)

π3m

(
1 + x+

[(
1−x1

1+x1

)]2
(1 + y)z

)
21π
2
ζ(3)

π5m

(
1 + x+

[(
1−x1

1+x1

)
. . .

(
1−x3

1+x3

)]2
(1 + y)z

)
31π
2
ζ(5)− 96π2L(χ−4, 4) +

21π3

2
ζ(3)

π7m

(
1 + x+

[(
1−x1

1+x1

)
. . .

(
1−x5

1+x5

)]2
(1 + y)z

)
127π
24

ζ(7)− 1280π2L(χ−4, 6) +
62π3

3
ζ(5)−

112π4L(χ−4, 4) +
21π5

2
ζ(3)

Table 2. Mahler measure of Sn,2 for n ≤ 6.
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π3m
(
1 + x+

(
1−x1

1+x1

)
(1 + y)z

)
24L(χ−4, 4)

π3m

(
1 + x+

(
1−x1

1+x1

)2

(1 + y)z

)
21π
2
ζ(3)

π3m

(
1 + x+

(
1−x1

1+x1

)3

(1 + y)z

)
−8L(χ−4, 4) + 12

√
3πL(χ12(11, ·), 3)

π3m

(
1 + x+

(
1−x1

1+x1

)4

(1 + y)z

)
−105π

2
ζ(3) + 64

√
2πL(χ8(5, ·), 3)

Table 3. Mahler measure of S1,r for r ≤ 4.

The proof of Theorem 1 relies on similar recursive strategies as used in the proofs of the previous
results from [Lal06, Nai23] discussed above. For Theorem 1 we introduce a clever application of
partial fractions that allows us to write the Mahler measure in terms of hyperlogarithms evaluated
at roots of unity. This new idea allows us to make the important transition from the previous
results at r = 1 to the more general case of arbitrary r. These hyperlogarithms give rise to multiple
polylogarithms that can then be reduced to length-one polylogarithms.

This article is organized as follows. Section 2 presents some preliminary results on evaluating
certain necessary integrals that where proven in previous work ([Lal03, Lal06, LL16]). An intro-
duction to the general theory of polylogarithms and hyperlogarithms is given in Section 3. The
proof of Theorem 1 is given in Sections 4 and 5. More precisely, Section 4 describes the iterative
process that leads to the Mahler measure being expressed in terms of integrals that can be related
to hyperlogarithms, while these integrals are evaluated in Section 5. Discussions of the case r = 2
and of the cases n = 1 and r = 3, 4 are included in Section 6.
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2. Some preliminary results

The goal of this section is to state some results concerning the evaluation of certain integrals
that were proven in [Lal03, Lal06, LL16] and that are necessary for the proof of Theorem 1.

Let Pα(y, w, z) = 1 + y + α(1 + w)z. The Mahler measure of this polynomial was initially
computed by Smyth [Boy81, Smy02]. We state here a version given in [Lal03, Theorem 17].

Theorem 2.

π2m(1 + y + α(1 + w)z) =

 2L3 (|α|) for |α| ≤ 1,

π2 log |α|+ 2L3 (|α|−1) for |α| > 1,
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where, for β > 0,

L3 (β) = − 2

β

∫ 1

0

dt

t2 − 1
β2

◦ dt

t
◦ dt

t
:= − 2

β

∫
0≤t1≤t2≤t3≤1

dt1
t21 − 1

β2

dt2
t2

dt3
t3

.

The following proposition allows us to compute an integral that will be key for the iterative
process leading to Theorem 1.

Proposition 3. [Lal06, Proposition 5], [LL16, Proposition 5.5] Let a, b > 0 and k ∈ Z≥0. We have∫ ∞

0

x logk xdx

(x2 + a2)(x2 + b2)
=

(π
2

)k+1 Ak

(
2 log a

π

)
− Ak

(
2 log b

π

)
a2 − b2

,

where the Ak(x) are polynomials in Q[x] given by

R(T ;x) =
exT − 1

sinT
=

∑
k≥0

Ak(x)
T k

k!
.

Remark 4. The polynomials Ak(x) satisfy the following recurrence.

Ak(x) =
xk+1

k + 1
+

1

k + 1

k+1∑
j>1

odd

(−1)
j+1
2

(
k + 1

j

)
Ak+1−j(x),

and can be explicitly given by

Ak(x) = − 2

k + 1

k∑
h=0

Bh

(
k + 1

h

)
(2h−1 − 1)ihxk+1−h,

where the Bn are the Bernoulli numbers. (See the Appendix to [Lal06] and [LL16, Lemma 5.2].)

3. Integrals and polylogarithms

In order to understand how special values of zeta functions and L-series arise in our formulas, we
need the definition of polylogarithms. Here we follow the notation of Goncharov [Gon95, Gon96].

Definition 5. Multiple polylogarithms are defined as the power series

Lin1,...,nm(x1, . . . , xm) :=
∑

0<k1<k2<···<km

xk1
1 xk2

2 . . . xkm
m

kn1
1 kn2

2 . . . knm
m

,

which are convergent for |xi| ≤ 1 and |xm| < 1 if nm = 1. The length of a polylogarithm function
is the number m and its weight is the number w = n1 + · · ·+ nm.

Definition 6. Hyperlogarithms are defined as the iterated integrals

In1,...,nm(a1 : · · · : am : am+1) :=∫ am+1

0

dt

t− a1
◦ dt

t
◦ · · · ◦ dt

t︸ ︷︷ ︸
n1

◦ dt

t− a2
◦ dt

t
◦ · · · ◦ dt

t︸ ︷︷ ︸
n2

◦ · · · ◦ dt

t− am
◦ dt

t
◦ · · · ◦ dt

t︸ ︷︷ ︸
nm

,

where ni are integers, ai are complex numbers, and∫ bk+1

0

dt

t− b1
◦ · · · ◦ dt

t− bk
=

∫
0≤t1≤···≤tk≤bk+1

dt1
t1 − b1

· · · dtk
tk − bk

.
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The value of the integral above only depends on the homotopy class of the path connecting 0
and am+1 on C \ {a1, . . . , am}.

It is easy to see (for instance, in [Gon96]) that,

In1,...,nm(a1 : · · · : am : am+1) = (−1)mLin1,...,nm

(
a2
a1

,
a3
a2

, . . . ,
am
am−1

,
am+1

am

)
,

Lin1,...,nm(x1, . . . , xm) = (−1)mIn1,...,nm((x1 . . . xm)
−1 : · · · : x−1

m : 1),

which gives an analytic continuation of multiple polylogarithms.
We remark that we recover the special value of the Riemann zeta function ζ(n) for n ≥ 2 as

Lin(1) = ζ(n), Lin(−1) = −
(
1− 1

2n−1

)
ζ(n).

The evaluations at x = i also give the Riemann zeta function as well as a Dirichlet L-function:

Re(Lin(i)) = − 1

2n

(
1− 1

2n−1

)
ζ(n), Im(Lin(i)) = L(χ−4, n).

We also have the following useful identity due to Jonquière [Jon89]

Lin(e
2πix) + (−1)nLin(e

−2πix) = −(2πi)n

n!
Bn(x),

where Bn(x) is the Bernoulli polynomial, and 0 ≤ Re(x) < 1 if Im(x) ≥ 0 and 0 < Re(x) ≤ 1 if
Im(x) < 0. Notice that in particular we have for 0 < ℓ < 2r,

Li1(ξ
ℓ
2r)− Li1(ξ

−ℓ
2r ) =

(r − ℓ)πi

r
,

where ξ2r is a primitive 2r-root of the unity.
We recall a technical result that will help us recognize special values of the Riemann zeta function

and Dirichlet L-functions from certain integrals.

Lemma 7. [Lal06, Lemma 9] We have the following length-one identities:∫ 1

0

logj x
dx

x2 − 1
= (−1)j+1j!

(
1− 1

2j+1

)
ζ(j + 1),∫ 1

0

logj x
dx

x2 + 1
= (−1)jj!L(χ−4, j + 1).

Some combinations of length 2 polylogarithms can be written in terms of length 1 polylogarithms.
We use some results due to Nakamura [Nak12] and Panzer [Pan17]. Here we state the formulation
of [LL18].

Theorem 8. [LL18, Theorem 3] Let r, s be positive integers, k = r + s, and let u, v be complex
numbers such that |u| = |v| = 1. In addition, we assume that v ̸= 1 if s = 1. Let

Rek =

{
Re k odd,

i Im k even.
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Then,

2Rek(Lir,s(u, v)) =(−1)kLik(uv) + (−1)k+1Lir(u)Lis(v) + (−1)r−1Lir(u)Lis(v)

+ (−1)r−1

((
k − 1

r − 1

)
Lik(u) +

(
k − 1

s− 1

)
Lik(v)

)
+

k−1∑
t=1

((
t− 1

r − 1

)
Lit(u) +

(
t− 1

s− 1

)
(−1)k+tLit(v)

)
× ((−1)rLik−t(uv) + (−1)s+tLik−t(uv)).

The following statement is a direct application of the above result.

Corollary 9. Let ξ2r denote a primitive 2r-root of unity. If h is a nonnegative integer, we have

2i Im
(
Li3,2h+1(iξ

−ℓ
2r ,−i)

)
=Li2h+4(ξ

ℓ
2r)− Li3(−iξℓ2r)Li2h+1(i) + Li3(−iξℓ2r)Li2h+1(−i)

+

((
2h+ 3

2

)
Li2h+4(−iξℓ2r) +

(
2h+ 3

2h

)
Li2h+4(−i)

)
+

2h+3∑
t=1

((
t− 1

2

)
Lit(−iξℓ2r) +

(
t− 1

2h

)
(−1)tLit(−i)

)
× (−Li2h+4−t(ξ

−ℓ
2r )− (−1)tLi2h+4−t(ξ

ℓ
2r)).(3)

If h is a positive integer, we have

2Re(Li3,2h
(
±ξ−ℓ

2r ,±1
)
) =− Li2h+3(ξ

ℓ
2r) + 2Li3(±ξℓ2r)Li2h(±1)

+

((
2h+ 2

2

)
Li2h+3(±ξℓ2r) +

(
2h+ 2

2h− 1

)
Li2h+3(±1)

)
+

2h+2∑
t=1

((
t− 1

2

)
Lit(±ξℓ2r)−

(
t− 1

2h− 1

)
(−1)tLit(±1)

)
× (−Li2h+3−t(ξ

−ℓ
2r ) + (−1)tLi2h+3−t(ξ

ℓ
2r)).(4)

Lemma 10. We have

2r−1∑
ℓ=0

(−1)ℓLih(ξ
ℓ
2r) =

2− 21−h

rh−1
ζ(h),

(5)
2r−1∑
ℓ=0

(−1)ℓLih(−ξℓ2r) = (−1)r
2− 21−h

rh−1
ζ(h),

and

2r−1∑
ℓ=0

(−1)ℓLih(−iξℓ2r) =
2

rh−1

(
Lih((−i)r)− 2−hLih((−1)r)

)
.
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Proof. Indeed, we have

2r−1∑
ℓ=0

(−1)ℓLih(ξ
ℓ
2r) =

∞∑
n=1

2r−1∑
ℓ=0

(−1)ℓξℓn2r
nh

=
∞∑
n=1

2r−1∑
ℓ=0

(ξn+r
2r )ℓ

nh

=2r
∞∑
n=1

n≡rmod2r

1

nh
=

2r

rh

∞∑
j=0

1

(2j + 1)h

=
2(1− 2−h)

rh−1
ζ(h).

The proof of (5) is similar. We also have

2r−1∑
ℓ=0

(−1)ℓLih(−iξℓ2r) =
∞∑
n=1

2r−1∑
ℓ=0

(−1)ℓ(−iξℓ2r)
n

nh
=

∞∑
n=1

(−i)n

nh

2r−1∑
ℓ=0

(ξn+r
2r )ℓ

=2r
∞∑
n=1

n≡rmod2r

(−i)n

nh
=

2r

rh

∞∑
j=0

(−i)(2j+1)r

(2j + 1)h

=
2

rh−1

(
Lih((−i)r)− 2−hLih((−1)r)

)
.

□

We finish this section by recalling some particular formulas for special values of ζ(s) and L(χ−4, 2):

ζ(2n) =
(−1)n+1B2n(2π)

2n

2(2n)!
and L(χ−4, 2n+ 1) =

(−1)nE2nπ
2n+1

22n+2(2n)!
,

where Bn and En denote the nth Bernoulli and Euler numbers respectively.

4. General set-up

We start by first describing a general setting that could be applied to various rational functions.
Then we will specialize this setting in the particular polynomial from the statement.

Let Pα ∈ C(x) be a non-zero rational function such that its coefficients depend (as rational

functions) on a parameter α ∈ C. We replace α by
[(

x1−1
x1+1

)
· · ·

(
xn−1
xn+1

)]r
and obtain a new rational

function P̃ ∈ C(x, x1, . . . , xn). By definition of the Mahler measure, one can see that

m(P̃ ) =
1

(2πi)n

∫
Tn

m

(
P[(

x1−1
x1+1

)
···(xn−1

xn+1)
]r
)

dx1

x1

. . .
dxn

xn

.

We first apply a change of variables to polar coordinates, xj = eiθj :

=
1

(2π)n

∫ π

−π

· · ·
∫ π

−π

m
(
P[in tan( θ1

2 )··· tan(
θn
2 )]

r

)
dθ1 . . . dθn.
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Now let yi = tan
(
θi
2

)
. We get,

=
1

πn

∫ ∞

−∞
· · ·

∫ ∞

−∞
m
(
P(iny1···yn)r

) dy1
y21 + 1

. . .
dyn

y2n + 1

=
2n−1

πn

∫ ∞

0

· · ·
∫ ∞

0

m
(
P(iny1···yn)r

) dy1
y21 + 1

. . .
dyn

y2n + 1

+
2n−1

πn

∫ ∞

0

· · ·
∫ ∞

0

m
(
P(−iny1···yn)r

) dy1
y21 + 1

. . .
dyn

y2n + 1
.

By making one more change of variables, x̂1 = y1, . . . , x̂n−1 = y1 · · · yn−1, x̂n = y1 · · · yn, we finally
obtain

=
2n−1

πn

∫ ∞

0

· · ·
∫ ∞

0

m
(
P(inx̂n)r

) x̂1dx̂1

x̂2
1 + 1

x̂2dx̂2

x̂2
2 + x̂2

1

. . .
x̂n−1dx̂n−1

x̂2
n−1 + x̂2

n−2

dx̂n

x̂2
n + x̂2

n−1

+
2n−1

πn

∫ ∞

0

· · ·
∫ ∞

0

m
(
P(−inx̂n)r

) x̂1dx̂1

x̂2
1 + 1

x̂2dx̂2

x̂2
2 + x̂2

1

. . .
x̂n−1dx̂n−1

x̂2
n−1 + x̂2

n−2

dx̂n

x̂2
n + x̂2

n−1

.

Thus, to obtain our final formula, we need to compute this integral.
By iterating Proposition 3, the above integral can be written as a linear combination, with coef-

ficients that are rational numbers and powers of π in such a way that the weights are homogeneous,
of integrals of the form

(6)

∫ ∞

0

m
(
P(inx)r

)
logj x

dx

x2 ± 1
+

∫ ∞

0

m
(
P(−inx)r

)
logj x

dx

x2 ± 1
.

One can see that j is even if and only if n is odd and the corresponding sign in that case is “+”.
This leads to the following construction.

Definition 11. [Lal06, Definition15] Let ak,j ∈ Q be defined for k ≥ 1, n = 2k and j = 0, . . . , k−1
by ∫ ∞

0

· · ·
∫ ∞

0

m
(
P(±inx̂n)r

) x̂1dx̂1

x̂2
1 + 1

x̂2dx̂2

x̂2
2 + x̂2

1

· · · x̂n−1dx̂n−1

x̂2
n−1 + x̂2

n−2

dx̂n

x̂2
n + x̂2

n−1

=
k∑

h=1

ak,h−1

(π
2

)2k−2h
∫ ∞

0

m
(
P(±inx)r

)
log2h−1 x

dx

x2 − 1
.

Let bk,j ∈ Q be defined for k ≥ 0, n = 2k + 1 and j = 0, . . . , k by∫ ∞

0

· · ·
∫ ∞

0

m
(
P(±inx̂n)r

) x̂1dx̂1

x̂2
1 + 1

x̂2dx̂2

x̂2
2 + x̂2

1

· · · x̂n−1dx̂n−1

x̂2
n−1 + x̂2

n−2

dx̂n

x̂2
n + x̂2

n−1

=
k∑

h=0

bk,h

(π
2

)2k−2h
∫ ∞

0

m
(
P(±inx)r

)
log2h x

dx

x2 + 1
.

The following result is proven in [Lal06].

Theorem 12. [Lal06, Theorem 17] For k ≥ 1 and h = 0, . . . , k − 1, we have

ak,h =
sk−1−h(2

2, . . . , (2k − 2)2)

(2k − 1)!
.
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For k ≥ 0 and h = 0, . . . , k, we have

bk,h =
sk−h(1

2, . . . , (2k − 1)2)

(2k)!
,

where we recall that the symmetric polynomials are given by (1).

It remains to evaluate the integrals of the type (6).

5. Integral reduction

In this section, we focus on evaluating the integral

Ir,j :=

∫ ∞

0

m
(
P(inx)r

)
logj x

dx

x2 + (−1)j

for the polynomial Pα = 1 + y + α(1 + w)z and we deduce our main result. Notice that in this
case the Mahler measure is independent of the complex argument of α, and it therefore suffices to
evaluate m (Pxr). We have the following result.

Proposition 13. Let Pα = 1 + y + α(1 + w)z. When h ≥ 0 we have

Ir,2h =
2ir2(2h)!

π2

{
(−1)h+1(22h+4 − 1)B2h+4π

2h+4

r2h+3(2h+ 4)!
− i

(−1)hE2hπ
2h+1

r222h(2h)!

(
Li3((−i)r)− 1

8
Li3((−1)r)

)
+ (2h+ 3)(2h+ 2)

1

r2h+3

(
Li2h+4((−i)r)− 1

22h+4
Li2h+4((−1)r)

)
+

2r−1∑
ℓ=0

(−1)ℓ

[
2h+3∑
t=1

(
(t− 1)(t− 2)

2
(−1)tLit(−iξℓ2r) +

(
t− 1

2h

)
Lit(−i)

)

× (2πi)2h+4−t

(2h+ 4− t)!
B2h+4−t

(
ℓ

2r

)]}
+ r(2h+ 1)!L(χ−4, 2h+ 2).

When h ≥ 1 we have

Ir,2h−1 =
r2(2h− 1)!

π2

{
(−1)h+17B2hπ

2h

2r2(2h)!
ζ(3)

(
22h−1 + (−1)r22h−1 + (−1)r+1

)
+ (2h+ 2)(2h+ 1)

1− 2−2h−3

r2h+2
(1− (−1)r)ζ(2h+ 3)

−
2r−1∑
ℓ=0

(−1)ℓ

[
2h+2∑
t=2

(
(t− 1)(t− 2)

2
(−1)t

(
Lit(ξ

ℓ
2r)− Lit(−ξℓ2r)

)
−
(

t− 1

2h− 1

)
(2− 21−t)ζ(t)

)

× (2πi)2h+3−t

(2h+ 3− t)!
B2h+3−t

(
ℓ

2r

)]}
+ r(2h)!

(
1− 1

22h+1

)
ζ(2h+ 1).

Proof. We start by splitting the integral according to 0 ≤ x ≤ 1 and 1 ≤ x.

Ir,j =

∫ 1

0

m(Pxr) logj x
dx

x2 + (−1)j
+

∫ ∞

1

m(Pxr) logj x
dx

x2 + (−1)j
.
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By applying Theorem 2, we obtain

Ir,j =

∫ 1

0

(
− 4

xrπ2

)∫ 1

0

dt

t2 − 1
x2r

◦ dt

t
◦ dt

t

logj xdx

x2 + (−1)j

+

∫ ∞

1

(
log (xr) +

(
−4xr

π2

)∫ 1

0

dt

t2 − x2r
◦ dt

t
◦ dt

t

)
logj xdx

x2 + (−1)j
.

Denoting the t-variables by 0 ≤ t1 ≤ t2 ≤ t3 ≤ 1, we consider the following changes of variables.
For the first term above, we let

t1 =
sr1
xr

, t2 =
sr2
xr

, t3 =
sr3
xr

,

and for the second term we let

t1 =
xr

sr1
, t2 =

xr

sr2
, t3 =

xr

sr3
.

This leads to

Ir,j =− 4

π2

∫ 1

0

rsr−1ds

s2r − 1
◦ rds

s
◦ rds

s
◦ logj xdx

x2 + (−1)j

+ r

∫ ∞

1

logj+1 xdx

x2 + (−1)j
− 4

π2

∫ ∞

1

logj xdx

x2 + (−1)j
◦ (−r)ds

s
◦ (−r)ds

s
◦ (−r)sr−1ds

1− s2r
.

In the last two integrals, we reverse s → 1
s
and x → 1

x
to get

Ir,j =− 4

π2

∫ 1

0

rsr−1ds

s2r − 1
◦ rds

s
◦ rds

s
◦ logj xdx

x2 + (−1)j

− r

∫ 1

0

logj+1 xdx

x2 + (−1)j
− 4

π2

∫ 1

0

rsr−1ds

s2r − 1
◦ rds

s
◦ rds

s
◦ logj xdx

x2 + (−1)j

=− 8r2

π2

∫ 1

0

rsr−1ds

s2r − 1
◦ ds

s
◦ ds

s
◦ logj xdx

x2 + (−1)j
− r

∫ 1

0

logj+1 xdx

x2 + (−1)j

=− 4r2j!(−1)j

π2ij+1

∫ 1

0

rsr−1ds

s2r − 1
◦ ds

s
◦ ds

s
◦
(

1

x− ij+1
− 1

x+ ij+1

)
dx ◦ du

u
◦ · · · ◦ du

u︸ ︷︷ ︸
j times

− r

∫ 1

0

logj+1 xdx

x2 + (−1)j
.

Let ξ2r be a primitive (2r)th root of unity. We can then write

sr − 1 =
r−1∏
ℓ=0

(s− ξ2ℓ2r) and sr + 1 =
r−1∏
ℓ=0

(s− ξ2ℓ+1
2r ).

By applying logarithmic derivatives above, we get

rsr−1

sr − 1
=

r−1∑
ℓ=0

1

s− ξ2ℓ2r
and

rsr−1

sr + 1
=

r−1∑
ℓ=0

1

s− ξ2ℓ+1
2r

.

This gives

rsr−1

s2r − 1
=

rsr−1

2(sr − 1)
− rsr−1

2(sr + 1)
=

1

2

2r−1∑
ℓ=0

(−1)ℓ

s− ξℓ2r
.
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Finally we have

Ir,j =− 2r2j!(−1)j

π2ij+1

2r−1∑
ℓ=0

(−1)ℓI3,j+1

(
ξℓ2r : i

j+1 : 1
)
+

2r2j!(−1)j

π2ij+1

2r−1∑
ℓ=0

(−1)ℓI3,j+1

(
ξℓ2r : −ij+1 : 1

)
− r

∫ 1

0

logj+1 xdx

x2 + (−1)j

=− 2r2j!(−1)j

π2ij+1

2r−1∑
ℓ=0

(−1)ℓLi3,j+1(i
j+1ξ−ℓ

2r , i
−j−1) +

2r2j!(−1)j

π2ij+1

2r−1∑
ℓ=0

(−1)ℓLi3,j+1(−ij+1ξ−ℓ
2r ,−i−j−1)

− r

∫ 1

0

logj+1 xdx

x2 + (−1)j
.(7)

By Lemma 7, we have

(8) −r

∫ 1

0

logj+1 xdx

x2 + (−1)j
=


r(j + 1)!

(
1− 1

2j+2

)
ζ(j + 2) j odd,

r(j + 1)!L(χ−4, j + 2) j even.

When j = 2h is even, we have that

− 2r2j!(−1)j

π2ij+1

2r−1∑
ℓ=0

(−1)ℓ
(
Li3,j+1(i

j+1ξ−ℓ
2r , i

−j−1)− Li3,j+1(−ij+1ξ−ℓ
2r ,−i−j−1)

)
=

2r2i(−1)h(2h)!

π2

2r−1∑
ℓ=0

(−1)ℓ
(
Li3,2h+1(i(−1)hξ−ℓ

2r , i(−1)h+1)− Li3,2h+1(i(−1)h+1ξ−ℓ
2r , i(−1)h)

)
=

2r2i(2h)!

π2

2r−1∑
ℓ=0

(−1)ℓ
(
Li3,2h+1(iξ

−ℓ
2r ,−i)− Li3,2h+1(−iξ−ℓ

2r , i)
)

=
2r2i(2h)!

π2

2r−1∑
ℓ=0

(
(−1)ℓLi3,2h+1(iξ

−ℓ
2r ,−i)− (−1)2r−ℓLi3,2h+1(−iξ2r−ℓ

2r , i)
)

= −4r2(2h)!

π2

2r−1∑
ℓ=0

(−1)ℓ Im
(
Li3,2h+1(iξ

−ℓ
2r ,−i)

)
.(9)

When j = 2h− 1 is odd, we have that

− 2r2j!(−1)j

π2ij+1

2r−1∑
ℓ=0

(−1)ℓ
(
Li3,j+1(i

j+1ξ−ℓ
2r , i

−j−1)− Li3,j+1(−ij+1ξ−ℓ
2r ,−i−j−1)

)
=

2r2(−1)h(2h− 1)!

π2

2r−1∑
ℓ=0

(−1)ℓ
(
Li3,2h((−1)hξ−ℓ

2r , (−1)h)− Li3,2h(−(−1)hξ−ℓ
2r ,−(−1)h)

)
=

2r2(2h− 1)!

π2

2r−1∑
ℓ=0

(−1)ℓ
(
Li3,2h(ξ

−ℓ
2r , 1)− Li3,2h(−ξ−ℓ

2r ,−1)
)
.(10)
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Notice that one can combine

(−1)ℓLi3,2h
(
ξ−ℓ
2r , 1

)
+ (−1)2r−ℓLi3,2h

(
ξ−2r+ℓ
2r , 1

)
=(−1)ℓLi3,2h

(
ξ−ℓ
2r , 1

)
+ (−1)ℓLi3,2h

(
ξℓ2r, 1

)
=(−1)ℓ2Re(Li3,2h

(
ξ−ℓ
2r , 1

)
)

and similarly with

(−1)ℓLi3,2h
(
−ξ−ℓ

2r ,−1
)
+ (−1)2r−ℓLi3,2h

(
−ξ−2r+ℓ

2r ,−1
)
=(−1)ℓ2Re(Li3,2h

(
−ξ−ℓ

2r ,−1
)
).

By combining the above with (10), we finally have that, when j = 2h− 1 is odd,

− 2r2j!(−1)j

π2ij+1

2r−1∑
ℓ=0

(−1)ℓ
(
Li3,j+1(i

j+1ξ−ℓ
2r , i

−j−1)− Li3,j+1(−ij+1ξ−ℓ
2r ,−i−j−1)

)
=

2r2(2h− 1)!

π2

2r−1∑
ℓ=0

(−1)ℓ
(
Re

(
Li3,j+1(ξ

−ℓ
2r , 1)

)
− Re

(
Li3,j+1(−ξ−ℓ

2r ,−1)
))

.(11)

In order to continue the simplification, we apply Corollary 9. Equation (3) gives, for j = 2h,

2i
2r−1∑
ℓ=0

(−1)ℓ Im
(
Li3,2h+1(iξ

−ℓ
2r ,−i)

)
=

2r−1∑
ℓ=0

(−1)ℓ

[
Li2h+4(ξ

ℓ
2r)− Li3(−iξℓ2r)Li2h+1(i) + Li3(−iξℓ2r)Li2h+1(−i) +

(
2h+ 3

2

)
Li2h+4(−iξℓ2r)

+
2h+3∑
t=1

((
t− 1

2

)
Lit(−iξℓ2r) +

(
t− 1

2h

)
(−1)tLit(−i)

)
(−Li2h+4−t(ξ

−ℓ
2r )− (−1)tLi2h+4−t(ξ

ℓ
2r))

]
.

We now apply part of Lemma 10 and other identities from Section 3 to see that the above equals

=
(−1)h+1(22h+4 − 1)B2h+4π

2h+4

r2h+3(2h+ 4)!
− i

(−1)hE2hπ
2h+1

r222h(2h)!

(
Li3((−i)r)− 1

8
Li3((−1)r)

)
+ (2h+ 3)(2h+ 2)

1

r2h+3

(
Li2h+4((−i)r)− 1

22h+4
Li2h+4((−1)r)

)

+
2r−1∑
ℓ=0

(−1)ℓ

[
2h+3∑
t=1

(
(t− 1)(t− 2)

2
(−1)tLit(−iξℓ2r) +

(
t− 1

2h

)
Lit(−i)

)
(2πi)2h+4−t

(2h+ 4− t)!
B2h+4−t

(
ℓ

2r

)]
.

(12)
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Equation (4) gives for j = 2h− 1,

2
2r−1∑
ℓ=0

(−1)ℓ
(
Re

(
Li3,j+1(ξ

−ℓ
2r , 1)

)
− Re

(
Li3,j+1(−ξ−ℓ

2r ,−1)
))

=
2r−1∑
ℓ=0

(−1)ℓ

[
2Li3(ξ

ℓ
2r)Li2h(1)− 2Li3(−ξℓ2r)Li2h(−1) +

(
2h+ 2

2

)(
Li2h+3(ξ

ℓ
2r)− Li2h+3(−ξℓ2r)

)
+

2h+2∑
t=1

((
t− 1

2

)(
Lit(ξ

ℓ
2r)− Lit(−ξℓ2r)

)
−
(

t− 1

2h− 1

)
(−1)t (Lit(1)− Lit(−1))

)

× (−Li2h+3−t(ξ
−ℓ
2r ) + (−1)tLi2h+3−t(ξ

ℓ
2r))

]
.

Again, we apply part of Lemma 10 and other identities from Section 3 to see that the above equals

=
(−1)h+17B2hπ

2h

2r2(2h)!
ζ(3)

(
22h−1 + (−1)r22h−1 + (−1)r+1

)
+ (2h+ 2)(2h+ 1)

1− 2−2h−3

r2h+2
(1− (−1)r)ζ(2h+ 3)

−
2r−1∑
ℓ=0

(−1)ℓ

[
2h+2∑
t=2

(
(t− 1)(t− 2)

2
(−1)t

(
Lit(ξ

ℓ
2r)− Lit(−ξℓ2r)

)
−
(

t− 1

2h− 1

)
(2− 21−t)ζ(t)

)

× (2πi)2h+3−t

(2h+ 3− t)!
B2h+3−t

(
ℓ

2r

)]
.

(13)

Combining equations (12) and (13) with (9), (11), and (8) in (7) concludes the proof of the
statement. □

Proof of Theorem 1. By Definition 11, we have that

m(S2k,r) =
k∑

h=1

ak,h−1

(
2

π

)2h

Ir,2h−1

and

m(S2k+1,r) =
k∑

h=0

bk,h

(
2

π

)2h+1

Ir,2h.

The result the follows from Theorem 12 and Proposition 13, by setting Cr(h) := Ir,2h−1 andDr(h) :=
Ir,2h. □

6. Some particular cases

In this section we focus on the simplest cases, for low values of r or n.
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For the case r = 1, and j = 2h, we have, from (12),

1∑
ℓ=0

(−1)ℓ Im
(
Li3,2h+1(i(−1)−ℓ,−i)

)
= −(2h+ 3)(h+ 1)L(χ−4, 2h+ 4) + (2h+ 1)L(χ−4, 2h+ 2)

π2

4

+
h+1∑
s=2

(2s− 1)(s− 1)L(χ−4, 2s)
(−1)h+1−sB2h+4−2sπ

2h+4−2s

(2h+ 4− 2s)!
.

This gives, for r = 1,

I1,2h =
2

π2

h∑
ℓ=0

(
2h+ 1

2ℓ+ 1

)
(−1)h−ℓ

2h+ 1
B2(h−ℓ)π

2h−2ℓ(2ℓ+ 3)!L(χ−4, 2ℓ+ 4) =
4

π2
D(h),

where we have set s = ℓ+ 2.
For the case r = 1, and j = 2h− 1, we have, from (13),

1∑
ℓ=0

(−1)ℓ
(
Re

(
Li3,j+1((−1)−ℓ, 1)

)
− Re

(
Li3,j+1(−(−1)−ℓ,−1)

))
=(h+ 1)(2h+ 1)

(
2− 1

22h+2

)
ζ(2h+ 3)− h

(
1− 1

22h+1

)
ζ(2h+ 1)π2

−
h∑

s=2

s(2s− 1)

(
2− 1

22s

)
ζ(2s+ 1)

(−1)h−sB2h+2−2sπ
2h+2−2s

(2h+ 2− 2s)!
.

This gives, for r = 1,

I1,2h−1 =
1

π2

h∑
ℓ=1

(
2h

2ℓ

)
(−1)h−ℓ

h
B2(h−ℓ)π

2h−2ℓ(2ℓ+ 2)!

(
1− 1

22ℓ+3

)
ζ(2ℓ+ 3) =

4

π2
C(h),

where we have set s = ℓ+ 1.
For the case r = 2 and j = 2h, we have, from (12),

3∑
ℓ=0

(−1)ℓ Im
(
Li3,2h+1(i

1−ℓ,−i)
)

=
(−1)h+121π2h+1

22h+6(2h)!
E2hζ(3) + (2h+ 1)L(χ−4, 2h+ 2)

π2

8

−
h+1∑
s=2

(
2s− 1

2

)
(−1)h−sL(χ−4, 2s)

(
22h+4−2s − 1

) π2h+4−2s

(2h+ 4− 2s)!
B2h+4−2s

+
h+1∑
s=2

(
2s

2

)
(−1)h−s

(
22s+1 − 1

)
ζ(2s+ 1)

π2h+3−2s

22h+4(2h+ 2− 2s)!
E2h+2−2s.
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This gives, for r = 2,

I2,2h =
(−1)h21

22h+2
E2hπ

2h−1ζ(3)

+ 8
h−1∑
ℓ=0

(
2h+ 1

2ℓ+ 1

)
(−1)h−ℓ

2h+ 1
B2(h−ℓ)π

2h−2ℓ−2(2ℓ+ 3)!
(
22h−2ℓ − 1

)
L(χ−4, 2ℓ+ 4)

+
h∑

ℓ=1

(
2h

2ℓ

)
(−1)h−ℓ

22h+1
E2(h−ℓ)π

2h−2ℓ−1(2ℓ+ 2)!
(
22ℓ+3 − 1

)
ζ(2ℓ+ 3)

=D2(h).

For the case r = 2, and j = 2h− 1, we have, from (13),

3∑
ℓ=0

(−1)ℓ
(
Re

(
Li3,2h(i

−ℓ, 1)
)
− Re

(
Li3,2h(−i−ℓ,−1)

))
=
(−1)h+17π2h

16(2h)!
B2h

(
22h − 1

)
ζ(3)− h

(
2− 1

22h

)
ζ(2h+ 1)

π2

4

−
h∑

s=1

(
2s

2

)
(−1)h−s

(
2− 1

22s

)
ζ(2s+ 1)

(
22h+2−2s − 1

) π2h+2−2s

(2h+ 2− 2s)!
B2h+2−2s

−
h+1∑
s=1

(
2s− 1

2

)
(−1)h−sL(χ−4, 2s)

π2h+3−2s

22h+2−2s(2h+ 2− 2s)!
E2h+2−2s.

This gives, for r = 2,

I2,2h−1 =
(−1)h+17

4h
B2hπ

2h−2
(
22h − 1

)
ζ(3)

+ 4
h−1∑
ℓ=0

(
2h

2ℓ

)
(−1)h−ℓ

h

(
22h−2ℓ − 1

)
B2(h−ℓ)π

2h−2ℓ−2(2ℓ+ 2)!

(
1− 1

22ℓ+3

)
ζ(2ℓ+ 3)

+
h∑

ℓ=1

(
2h− 1

2ℓ− 1

)
(−1)h−ℓ

22h−2ℓ−2
E2(h−ℓ)π

2h−2ℓ−1(2ℓ+ 1)!L(χ−4, 2ℓ+ 2)

=C2(h).

The evaluation of Ir,j and m(Sn,r) for r > 2 quickly becomes computationally involved. We will
focus on the case n = 1. This corresponds to the case k = h = 0 and Ir,0. We remark that for
j = 0 we have

Ir,0 =Re

[
12i

π2r
Li4((−i)r)− 2

π
Li3((−i)r) +

2r

π

2r−1∑
ℓ=0

(−1)ℓLi3(−iξℓ2r)ℓ

]

− 3r2

16π
ζ(3) +

1

4π
Li3((−1)r)
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and

m(S1,r) =Re

[
24i

π3r
Li4((−i)r)− 4

π2
Li3((−i)r) +

4r

π2

2r−1∑
ℓ=0

(−1)ℓLi3(−iξℓ2r)ℓ

]

− 3r2

8π2
ζ(3) +

1

2π2
Li3((−1)r).

We get different cases according to the class of rmod 4.
For r = 2s+ 1, we have

m(S1,2s+1) =
24(−1)s

(2s+ 1)π3
L(χ−4, 4)−

3(2s+ 1)2

8π2
ζ(3) +

4(2s+ 1)

π2

4s+1∑
ℓ=0

(−1)ℓ Re(Li3(−iξℓ4s+2))ℓ.

For r = 4s, we have

m(S1,4s) =− 12s2 + 7

2π2
ζ(3) +

16s

π2

8s−1∑
ℓ=0

(−1)ℓ Re(Li3(−iξℓ8s))ℓ.

For r = 4s+ 2, we have

m(S1,4s+2) =− 6s2 + 6s− 2

π2
ζ(3) +

16s+ 8

π2

8s+3∑
ℓ=0

(−1)ℓRe(Li3(−iξℓ8s+4))ℓ.

Specializing in r = 1, 2 we recover the formulas for the Mahler measures of S1,1 and S1,2. We
now provide additional details for the cases r = 3, 4.
For r = 3, we must find

5∑
ℓ=0

(−1)ℓ Re(Li3(−iξℓ6))ℓ =− Re(Li3(e
11πi
6 )) + 2Re(Li3(e

πi
6 ))− 3Re(Li3(i))

+ 4Re(Li3(e
5πi
6 ))− 5Re(Li3(e

7πi
6 ))

=Re(Li3(e
πi
6 ))− Re(Li3(e

5πi
6 ))− 3Re(Li3(i)),

since Li(z) = Li(z). Now consider

Re(Li3(e
πi
6 )) =

∞∑
k=1

cos kπ
6

k3

=

√
3

2

(
1

13
− 1

53
− 1

73
+

1

113
+ · · ·

)
+

1

2

(
1

23
− 1

43
− 2

63
− 1

83
+

1

103
+

2

123
+ · · ·

)
.

This sum is absolutely convergent and we may rearrange the terms as desired. Let χ12(11, n) be the
Dirichlet character of conductor 12 given by

(
12
n

)
. This corresponds to the character χ12,4 according

to Mathematica. Its values are given by

n 1 5 7 11
χ12(11, n) 1 −1 −1 1

so that √
3

2

(
1

13
− 1

53
− 1

73
+

1

113
+ · · ·

)
=

√
3

2
· L(χ12(11, ·), 3).
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We can also write

1

2

(
1

23
− 1

43
− 2

63
− 1

83
+

1

103
+

2

123
+ · · ·

)
=

1

2

(
1

23
− 1

43
+

1

63
− 1

83
+

1

103
− 1

123
+ · · ·

)
− 3

2

(
1

63
− 1

123
+

1

183
+ · · ·

)
= −

(
1

2 · 23
− 3

2 · 63

)
Li3(−1)

=
ζ(3)

24
.

Therefore,

Re(Li3(e
πi
6 )) =

ζ(3)

24
+

√
3

2
L(χ12(11, ·), 3).

Similarly, we can show that

Re(Li3(e
5πi
6 )) =

ζ(3)

24
−

√
3

2
L(χ12(11, ·), 3),

and using that Re(Li3(i)) = − 3
32
ζ(3), we obtain

5∑
ℓ=0

(−1)ℓ Re(Li3(−iξℓ6))ℓ =
9

32
ζ(3) +

√
3L(χ12(11, ·), 3),

which gives

m(S1,3) =
12
√
3

π2
L(χ12(11, ·), 3)−

8

π3
L(χ−4, 4).

When m = 4, using similar manipulations, we can also show

Re(Li3(e
πi
4 )) = − 3

44
ζ(3) +

1√
2
L(χ8(5, ·), 3),

Re(Li3(e
3πi
4 )) = − 3

44
ζ(3)− 1√

2
L(χ8(5, ·), 3),

where χ8(5, n) is the Dirichlet character of conductor 8 given by
(
8
n

)
. This corresponds to the

character χ8,2 according to Mathematica. Its values are given by

n 1 3 5 7
χ8(5, n) 1 −1 −1 1

.

Thus,

7∑
ℓ=0

(−1)ℓ Re(Li3(−iξℓ8))ℓ = −4Re(Li3(e
πi
4 ))− 12Re(Li3(e

3πi
4 ))− 23

8
ζ(3)

= −43

16
ζ(3) + 4

√
2L(χ8(5, ·), 3),

and

m(S1,4) = −105

2π2
ζ(3) +

64
√
2

π2
L(χ8(5, ·), 3).
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7. Conclusion

Our results show that the Mahler measure of the family Sn,r is even richer and more interesting
than the previously known Mahler measure of Sn,1. It is clear from the case n = 1 that we can
not expect a formula of the form (2). Such formula is certainly true if we consider an analogous
construction for the Rn family, namely, if we let

Rn,r(x1, . . . , xn, z) := z +

[(
1− x1

1 + x1

)
· · ·

(
1− xn

1 + xn

)]r
,

Then, we trivially have that

m(Rn,r(x1, . . . , xn, z)) =m(Rn,r(x1, . . . , xn,−zr)) =
r∑

j=0

m

(
z − ξjr

(
1− x1

1 + x1

)
· · ·

(
1− xn

1 + xn

))
=rm(Rn,1(x1, . . . , xn, z)).

Thus, the case of Rn,1 is trivial. Similar considerations apply to the family Qn,r given by

Qn,r(x1, . . . , xn, z) := z +

[(
ω + ωx1

1 + x1

)
· · ·

(
ω + ωxn

1 + xn

)]r
,

An interesting project would be to consider the construction of this article for the family Tn:

Tn,r(x1, . . . , xn, x, y) := 1 +

[(
1− x1

1 + x1

)
· · ·

(
1− xn

1 + xn

)]r
x+

(
1−

[(
1− x1

1 + x1

)
· · ·

(
1− xn

1 + xn

)]r)
y.

As we remarked in the introduction, there is a clear distinction between the cases n even and odd
for m(Sn), namely, the formulas for n even only contain special values of the Riemann zeta function,
and the formulas for n odd only contain special values of the Dirichlet L-function at χ−4. However,
for m(Sn,2), the formulas are mixed. The case of m(Rn) also shows an alternation of formulas
involving special values of the Riemann zeta function or special values of the Dirichlet L-function,
and by the discussion above, since m(Rn,r) = rm(Rn), the same is true for m(Rn,r) independently
of r. Finally, all the formulas involving m(Tn) are given in terms of log 2 and special values of the
Riemann zeta function. It would be interesting to see how this extends to m(Tn,r).
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