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1 The hyperbolic space

In this introduction we follow mainly Milnor [6].
Hyperbolic geometry is a non-Euclidean geometry, meaning that it starts with the

negation of the parallel postulate of Euclidean geometry. The first rigorous works in the
subject were due to Lobachevsky (1829), Bolyai (1832), and Gauss (late 1820’s) .

There are several models for the hyperbolic space, but we will concentrate in the Half-
space model of Beltrami (1868). Our space is given by

Hn = {(x1, . . . , xn−1, xn) |xi ∈ R, xn > 0},

where the metric is given by

ds2 =
dx2

1 + · · · + dx2
n

x2
n

.

From this, we can see that the volume element is given by

dV =
dx1 . . . dxn

xn
n

.

Notice that the boundary is given by

∂Hn = {(x1, . . . , xn−1, 0)} ∪∞.

The geodesics of Hn are given by vertical lines and semicircles whose endpoints lie in
{xn = 0} and intersect it orthogonally.

Poincaré (1882) studied the orientation preserving isometries of H2 which is a group
that can be identified with the projective linear group

PSL(2, R) =

{(

a b
c d

)

∈ M(2, R)

∣

∣

∣

∣

ad − bc = 1

}

/ ± I.

Under the identification z = x1 + x2i, the action is given by z → az+b
cz+d

.

Latter Poincaré (1883) also determined the orientation preserving isometries of H3,
which is PSL(2, C). To see this, it is convenient to interpret H3 as a subspace of the
quaternions

H3 = {z = x1 + x2i + x3j |x3 > 0},
1mlalin@math.ubc.ca– http://www.math.ubc.ca/~mlalin
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Figure 1: Geodesics in H3

(where i2 = j2 = k2 = −1, ij = −ji = k).
Then the action is given again by z → (az + b)(cz + d)−1 = (az + b)(z̄c̄ + d̄)|cz + d|−2.
The action of PSL(2, C) can be also described by means of Poincaré extension. The

action is clear in the boundary of the space. Now, given a point p in H3, it can be described
as intersection of three hemispheres with equators in the boundary. The isometry moves the
equators to three new equators in the boundary, which determine three new hemispheres
which intersect in the image of p.

Poincaré was concerned with the study of discrete groups of hyperbolic isometries.
Picard (1884) observed that the fundamental domain for the action of PSL(2, Z[i]) in H3

had a finite volume. Humbert (1919) extended this result.

2 Volumes in H3

In this section we follow Milnor [6], and Thurston [10].
The basic function to express volume is the Lobachevsky function

l(θ) = −
∫ θ

0
log |2 sin t|dt. (1)

We note that

l(θ) =
1

2
Im

(

Li2

(

e2iθ
))

,

where

Li2(z) =

∞
∑

n=1

zn

n2
, |z| ≤ 1, (2)

is the dilogarithm. The name comes as an analogy to the formula

− log(1 − z) =

∞
∑

n=1

zn

n
.

It has a (multivalued) analytic continuation to C \ [1,∞) via the formula

Li2(z) = −
∫ z

0
log(1 − x)

dx

x
.

A horosphere centered at z ∈ ∂H3 is a hypersurface in H3 that is orthogonal to all the
geodesics going through z.

Consider an ideal tetrahedron ∆ in H3 (with vertices in ∂H3). For a small horosphere
that is centered around a vertex, it intersects the simplex in a triangle whose angles are the
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Figure 2: Ideal tetrahedron in H3
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Figure 3: The shapes of an ideal tetrahedron

three dihedral angles along the edges meeting at the vertex. This triangle is defined up to
similarity. Since the horosphere is isometric to an Euclidean plane, the sum of the angles
is π. From this, dihedral angles at opposite edges must be the same, and the triangles cut
by horospheres centered at each vertex are similar.

Theorem 1 (Milnor [6, 10], after Lobachevsky)
The volume of an ideal tetrahedron with dihedral angles α, β, and γ is given by

Vol(∆) = l(α) + l(β) + l(γ). (3)

The proof is achieved by moving a vertex to ∞ and using baricentric subdivision to get six
simplices (orthoschemes) with three right dihedral angles, one vertex at ∞ and another at
∂H3.

We now consider the triangle with angles α, β, and γ. Similarity classes of triangles
can be parameterized by the complex upper-half plane by sending two vertices to 0, 1, and
the third vertex is z. Moreover, the numbers z, 1

1−z
, and 1 − 1

z
give all the same triangle

(depending on the choice of the vertices that are sent to 0, 1). To specify the number z
(shape) one has to choose an edge, the dihedral angle at this edge will be arg(z). The
tetrahedron will be denoted by ∆(z).

If the ideal vertices are z1, z2, z3, z4, the shape can be obtained by means of the cross
ratio,

z = [z1 : z2 : z3 : z4] =
(z3 − z2)(z4 − z1)

(z3 − z1)(z4 − z2)
.

Now we consider the Bloch-Wigner modification of the dilogarithm,

D(z) = Im(Li2(z) + log |z| log(1 − z)).

This function is continuous in P1(C) and real-analytic in P1(C) \ {0, 1,∞}. Moreover, it
satisfies many functional equations such as

D(z) = −D(1 − z) = −D

(

1

z

)

, (4)
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as well as
D(z) = −D(z̄), (5)

equations such as the five-term relation:

D(x) + D(1 − xy) + D(y) + D

(

1 − y

1 − xy

)

+ D

(

1 − x

1 − xy

)

= 0, (6)

and

D(z) =
1

2

(

D
(z

z̄

)

+ D

(

1 − z−1

1 − z̄−1

)

+ D

(

(1 − z)−1

(1 − z̄)−1

))

. (7)

The above equation can be combined with Milnor’s theorem to prove that

Vol(∆(z)) = D(z). (8)

The five-term relation (6) has an interpretation in this context as well. If we fix five
points in ∂H3 ∼= P1(C), then the sum of the signed volumes of the five possible tetrahedra
must be zero:

5
∑

i=0

(−1)iVol([z1 : · · · : ẑi : · · · : z5]) = 0,

and this is the content of the five-term relation.

2.1 Dedekind ζ-function

Let F be a number field (i.e. finite extension of Q). Then [F : Q] = n = r1 + 2r2, where r1

is the number of real embeddings and r2 the number of pairs of complex embeddings. Let
τ1, . . . , τr1

the set of real embeddings and σ1, . . . , σr2
a set of complex embeddings (where

we choose one for each pair of conjugate embeddings).
Recall that the Dedekind ζ-function of F is given by

ζF (s) =
∑

A ideal 6=0

1

N(A)s
, Re s > 1, (9)

where N(A) = |OF /A| is the norm of the ideal. The ζ-function can be also written as an
Euler product,

∏

P prime

1

1 − N(P)−s
.

Theorem 2 (Dirichlet’s class number formula) ζF (s) extends to a meromorphic function
for all complex s with only one simple pole at s = 1 with residue

lim
s→1

(s − 1)ζF (s) =
2r1(2π)r2hF regF

ωF

√

|DF |
, (10)

where

• hF is the class number. The number of elements in the ideal class group, formed by
classes of ideals in OF with the equivalent relation I ∼ J iff (a)I = (b)J , a, b ∈ OF .

• ωF is the number of roots of unity in F .
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• DF is the discriminant. Take an integral basis of OF , {ω1, . . . , ωn} and take the
determinant of {Tr(ωiωj)}. It measures the size of OF .

• regF is the regulator. Take a fundamental system of units {u1, . . . , ur1+r2−1} (i.e., a
basis for O∗

F modulo torsion), and consider the function

L(ui) = (log |τ1ui|, . . . , log |τr1
ui|, 2 log |σ1ui|, . . . , 2 log |σr2−1ui|).

Then regF is the determinant of the matrix. I.e., the regulator is (up to a sign) the
volume of fundamental domain for L(O∗

F ).

Note that the functional equation

ξF (s) = ξF (1 − s), ξF (s) =

( |DF |
4r2πn

) s

2

Γ
(s

2

)r1

Γ(s)r2ζF (s),

(where Γ(s) =
∫ ∞
0 tz−1e−tdt) allows us to write

lim
s→0

s1−r1−r2ζF (s) = −hF regF

ωF
.

This was observed by Lichtenbaum [5].
On the other hand, if F is totally real (r2 = 0), then a theorem of Klingen and Siegel

says
ζF (2m) = r(m)

√

|DF |π2mn, m > 0,

where r(m) ∈ Q. This result generalizes Euler’s ζ(2m) = (−1)m−1(2π)2mBm

2(2m)!

2.2 Building manifolds

Now we follow Zagier – Gangl [12].
Here is a method of Bianchi and Humbert to construct hyperbolic three-manifolds with

finite volume. Let F = Q
(√

−d
)

where d ≥ 1 is a square-free integer (the discrimi-
nant is −Dd where Dd equals d or 4d according to whether d ≡ 3(mod 4) or otherwise).
Then PSL (2,Od), where Od is the ring of integers of Q

(√
−d

)

is a discrete subgroup of
PSL(2, C). Let Γ a torsion-free subgroup of finite index of PSL (2,Od). Then H3/Γ is an
oriented hyperbolic three-manifold.

For example, if d = 3, Od = Z[ω] where ω = −1+
√
−3

2 . Riley [9] proved that there is a
subgroup Γ ⊂ PSL(2, Z[ω]) of index 12, such that H3/Γ is diffeomorphic to the complement
of the Fig-8 knot.

Theorem 3 (Essentially Humbert)

Vol
(

H3/PSL(2,Od)
)

=
Dd

√
Dd

4π2
ζQ(

√
−d)(2). (11)

In the example that means

Vol(S3 \ Fig − 8) = 12
3
√

3

4π2
ζQ(

√
−3)(2) = 3D

(

e
2iπ

3

)

= 2D
(

e
iπ

3

)

.
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On the other hand, any hyperbolic 3-manifold can be triangulated into tetrahedra (ideal
tetrahedra, after applying Dehn surgery on some of the cusps) and we can assume that the
arguments are algebraic numbers. Combining the results from the previous section, we can
express ζ

Q(
√
−d) as a combination of D evaluated in algebraic numbers.

For a general number field, let [F : Q] = r1 + 2r2 with r2 = 1, Zagier [11] takes Γ to be
the group of units of an order in a quaternion algebra B over F that is ramified at all real
places (i.e. B ⊗F F ∼= Hamiltonian quaternions for each real completion). The quotient
M = H3/Γ is a compact manifold whose volume is a rational multiple of

√

|DF |
π2(n−1)

ζF (2).

For r2 > 1, Zagier [11] starts with B, defining Γ as before. Now the complex embeddings
give a map σ = (σi)i : B → M(2, C)r2 such that σ(Γ) is a discrete subgroup of PSL(2, C)r2

such that the quotient M =
(

H3
)r2 /Γ is a compact 3r2-dimensional manifold whose volume

is a rational multiple of
√

|DF |
π2(r1+r2)

ζF (2).

M can be written as a union of ∆(z1) × · · · × ∆(zr2
). The volume is then a sum of r2-fold

products of dilogarithms.

2.3 The Bloch group

As we said before, any complete hyperbolic 3-manifold can be triangulated into tetrahedra
(ideal tetrahedra, if we allow to remove a finite number of closed geodesics to M , see
Neumann–Yang [7]) and the volume can be written as

Vol(M) =

J
∑

j=1

D(zj).

The parameters must satisfy

J
∑

j=1

zj ∧ (1 − zj) = 0 ∈
2

∧

C∗.

(
∧2

C∗ is the set of all formal linear combinations x ∧ y, x, y ∈ C, such that x ∧ x = 0 and
x1x2 ∧ y = x1 ∧ y + x2 ∧ y.) This condition is consequence of combinatorial restrictions for
the triangulation (see [8]).

We may rephrase this condition by stating that Vol(M) = D(ξM), where ξM ∈ A(Q̄),
and

A(F ) =
{

∑

ni[zi] ∈ Z[F ]
∣

∣

∣

∑

ni (zi ∧ (1 − zi)) = 0
}

. (12)

Changing the triangulations should not change the volume, and this is the case, due to the
five-term relation (6).

Let

C(F ) =

{

[x] + [1 − xy] + [y] +

[

1 − y

1 − xy

]

+

[

1 − x

1 − xy

] ∣

∣

∣

∣

x, y ∈ F, xy 6= 1

}

, (13)
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then the Bloch group is defined as

B(F ) = A(F )/C(F ).

We have that D : B(C) → R is a well-defined function, and that Vol(M) = D(ξM ) for
some ξM ∈ B(Q̄) (here we use Bloch’s result that B(C)Q = B(Q̄)Q), independently of the
triangulation (this was preciselly proved by Nuemann–Yang [7]). Therefore, for r2 = 1,
ζF (2) is equal to

√

|D|π2(n−1)D(ξ).

2.4 The K-theory connection

It turns out that all this construction has a parallel in terms of algebraic K-theory. To any
ring R one can associate algebraic K-groups K0(R), K1(R) = R∗, etc. The construction is
not explicit and it is hard to describe what these groups are.

[More detail: By theorems of Milnor, Moore, Suslin,

Kn(F ) ⊗ Q = PrimHn(GL2n−1(F ), Q),

where GL(R) = ∪n≥1GLn(R) and PrimHn(G) = {x ∈ Hn(G) |∆∗(x) = x ⊗ 1 + 1 ⊗ x},
where ∆∗ : Hn(G) → Hn(G × G) is the map induced by the diagonal ∆ : G → G × G.]

Now for a number field, Borel proved that for n ≥ 2, Kn(F )⊗Q ' Kn(OF )⊗Q is free
abelian and its rank is given by

dimQ(Kn(F ) ⊗ Q) =







0 n ≥ 2 even,
r1 + r2 n ≡ 1mod 4,
r2 n ≡ 3mod 4.

Let n+ = r1+r2 and n− = r2. Then n∓ means that we take n− or n+ according to whether
n ≡ −1 or 1mod 4.

Moreover, there is a map
regm : K2m−1(C) → R,

called regulator, such that the composition

K2m−1(F ) → K2m−1(R)r1 × K2m−1(C)r2 → Rn∓

maps the free part of K2m−1(F ) isomorphically onto a cocompact lattice of Rn∓ whose
covolume is a rational multiple of

√

|DF |ζF (m)/πkn± .
[More detail: There is a distinguished class, called the Borel class,

Bn ∈ H2n−1(GL2n−1(C), R(n − 1))

in the continuous cohomology. The pairing with this class is what provides the Borel regu-
lator.]

In the case of m = 2, Bloch gave a map φF from K3(F ) to B(F ) and Suslin proved this
map is an isomorphism (up to finite kernel and cokernel). This map is essentially D for
m = 2.

K3(F )
reg2

// Rr2

B(F )

φF

OO

(D◦σ1 ,...,D◦σr2
)

;;
w

w
w

w
w

w
w

w
w

From that,
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Theorem 4 For a number field [F : Q] = r1 + 2r2,

• B(F ) is finitely generated of rank r2.

• For a Q-basis ξ1, . . . ξr2
of B(F ) ⊗ Q and σ1, . . . , σr2

a set of complex embeddings of
F into C (choosing one for each pair), then

ζF (2) ∼Q∗

√

|DF |π2(r1+r2) det {D (σi (ξj))}1≤i,j≤r2
. (14)

3 Zagier’s conjecture

One wishes to generalize the above result to values ζF (m). The k-polylogarithm is defined
as

Lik(z) =

∞
∑

n=1

zn

nk
|z| ≤ 1. (15)

As in the case of the dilogarithm, it has an analytic continuation to C \ [1,∞), and one
may consider the corrected function

Lk(z) = Rek





k−1
∑

j=0

2jBj

j!
logj |z|Lik−j(z)



 , (16)

where Rek is equal to Re or Im depending on whether k is odd or even, and Bj is the jth
Bernoulli number. Like D, it is continuous in P1(C) and real analytic in P1(C) \ {0, 1,∞}.

Then one proceeds to construct the generalized Bloch groups

Bk(F ) = Ak(F )/Ck(F ).

Morally, Ck(F ) will be the set of functional equations of the kth polylogarithm and Ak(F )
is the set of allowed elements.

Here is Zagier’s construction:

Ak(F ) := {ξ ∈ Z[F ] | ιφ(ξ) ∈ Ck−1(F ) ∀φ ∈ Hom(F ∗, Z)}}, (17)

where ιφ(
∑

ni[xi]) =
∑

niφ(xi)[xi].

Ck(F ) := {ξ ∈ Ak(F ) | Lk(σ(ξ)) = 0 ∀σ ∈ ΣF} . (18)

Then

Conjecture 5 Let F be a number field. Let n+ = r1 + r2, n− = r2, and ∓ = (−1)k−1.
Then

• Bk(F ) is finitely generated of rank n∓.

• For a Q-basis ξ1, . . . ξn∓ of Bk(F )⊗Q and take {τ1, . . . τr1
, σ1, . . . , σr2

} or {σ1, . . . , σr2
}

(according to n∓). Then

ζF (k) ∼Q∗

√

|DF |πkn± det {Lk (σi (ξj))}1≤i,j≤n∓
. (19)
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3.1 An example

This example is taken from [12].

For F = Q(
√

5), r1 = 2, r2 = 0. Then [1] and
[

1+
√

5
2

]

∈ A3(F ), form a basis for B3(F )

and
∣

∣

∣

∣

∣

L3(1) L3(1)

L3

(

1+
√

5
2

)

L3

(

1−
√

5
2

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

ζ(3) ζ(3)

1
10ζ(3) + 25

48

√
5L(3, χ5)

1
10ζ(3) − 25

48

√
5L(3, χ5)

∣

∣

∣

∣

∣

∣

= −25

24

√
5ζ(3)L(3, χ5) = −25

24

√
5ζF (3).

3.2 More K-theory

The motivation for the conjectures is that K2m−1(F ) and Bm(F ) should be isomorphic and
the regulator map should be given by Lm. It is not known in general, but a regulator map
and a map between K2m−1(F ) and Bm(F ) have been defined by de Jeu and Beilinson-
Deligne. Goncharov [3] proved the surjectivity of this map for m = 3, thus proving Zagier’s
conjecture for ζF (3).

Goncharov [3] defines a complex

GF (k) : Gk(F )
∂→ Gk−1 ⊗ F ∗ ∂→ Gk−2 ⊗ ∧2F ∗ ∂→ · · · ∂→ G2 ⊗ ∧k−2F ∗ ∂→ ∧kF ∗

where Gk(F ) = Z[F ]/Ck(F ) and ∂[x]⊗x1∧· · ·∧xl = [x]⊗x∧x1∧· · ·∧xl. The cohomology
of this complex at the first place is given by H1(GF (k)) ' Bk(F ).

Goncharov conjectures

Hi(GF (k) ⊗ Q) ' grγ
kK2k−i(F ) ⊗ Q

meaning that the cohomology is given by Adams filtration in K-theory. This sharpens
Zagier’s conjecture.

3.3 The rational factor

We may wonder about the rational factor in Zagier’s conjecture.

Conjecture 6 (Birch-Tate) Let F be a totally real field and w be the group of units in an
algebraic closure of F , and G the Galois group. Let w2 the subgroup that is fixed by the
action of σ2 for each σ ∈ G. Then

ζF (−1)r1 =

∣

∣

∣

∣

K2(OF )

w2

∣

∣

∣

∣

.

This follows from Iwasawa main conjecture (up to a power of 2), proved by Mazur and
Wiles.

Lichtenbaum [5] conjectured

Conjecture 7

lim
s→−m

(s + m)−n∓|ζF (s)| =

∣

∣

∣

∣

∣

K2m(OF )

K ind
2m+1(OF )

tor

∣

∣

∣

∣

∣

regm(ξ).

up to a power of 2.
More can be said with Bloch-Kato conjectures but we will not go further.
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4 Volumes in higher dimensions

An orthoscheme in Hn is a simplex bounded by hyperplanes H0, . . . ,Hn such that Hi⊥Hj

whenever |i − j| > 1. Then they have at most n non-right dihedral angles. If vi is the
vertex opposite to Hi, then at most v0 and vn can be at ∂Hn. If both of them are, the
orthoscheme is called doubly asymptotic.

Theorem 8 (Schläfli’s formula) R ⊂ Hn is an orthoscheme,

dVoln(R) =
1

n − 1

n
∑

j=1

Voln−2(Fj)dαj .

where Fj = R ∩ Hj−1 ∩ Hj, αj is the angle attached at Fj. and Vol0(Fj) = 1.

This formula reduces the volume of a hyperbolic 2m-simplex to volumes in hyperbolic
dimension 2m − 1 and lower.

For dimension 5, the volume can be expressed as sum of trilogarithmic expressions
(Böhn, Müller, Kellerhals [4]).

A hyperbolic manifold is an orientable complete Riemannian manifold with constant
sectional curvature −1. By Gauss-Bonnet theorem, if M is 2m-dimensional, its volume is
given by

Vol(M) = −1

2
Vol(S2m)χ(M).

Theorem 9 (Goncharov, [2]) Any (2m− 1)-dimensional hyperbolic manifold of finite vol-
ume M defines an element γ(M) ∈ K2m−1(Q̄) ⊗ Q such that

Vol(M) = regm(γ(M)).

Conjecture 10 (Goncharov, [2]) Let M be a (2m − 1)-dimensional hyperbolic manifold,
then there is a ξM ∈ Bm(Q̄) ⊗ Q̄∗ such that

Vol(M) = Lm(ξM ).

This conjecture is a consequence of combining Zagier’s conjecture with Theorem 9. Gon-
charov proves this conjecture for k = 3 using Theorem 9.

The hyperbolic volumes Vol(M 2m−1) are discrete for m > 2. According to a theorem
of Wang, there is only a finite number of manifolds with volume less than c for any given
c ∈ R.

On the other hand, for m = 2, the volumes of hyperbolic 3-manifolds are nondiscrete,
due to Thurston and Jorgensen.
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