Polylogarithms and Hyperbolic volumes Matilde N. Lalín

University of British Columbia and PIMS, Max-Planck-Institut für Mathematik, University of Alberta
mlalin@math.ubc.ca
http://www.math.ubc.ca/~mlalin

$$
\text { July 2nd, } 2007
$$

The hyperbolic space

Beltrami's Half-space model:

$$
\begin{gathered}
\mathbb{H}^{n}=\left\{\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \mid x_{i} \in \mathbb{R}, x_{n}>0\right\}, \\
\mathrm{d} s^{2}=\frac{\mathrm{d} x_{1}^{2}+\ldots+\mathrm{d} x_{n}^{2}}{x_{n}^{2}}, \\
\mathrm{~d} V=\frac{\mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}}{x_{n}^{n}} \\
\partial \mathbb{H}^{n}=\left\{\left(x_{1}, \ldots, x_{n-1}, 0\right)\right\} \cup \infty .
\end{gathered}
$$

Geodesics are given by vertical lines and semicircles whose endpoints lie in $\left\{x_{n}=0\right\}$ and intersect it orthogonally.

Orientation preserving isometries of \mathbb{H}^{2}

$$
\begin{aligned}
\operatorname{PSL}(2, \mathbb{R})= & \left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M(2, \mathbb{R}) \right\rvert\, a d-b c=1\right\} / \pm I . \\
& z=x_{1}+x_{2} i \rightarrow \frac{a z+b}{c z+d} .
\end{aligned}
$$

Orientation preserving isometries of \mathbb{H}^{3} is $\operatorname{PSL}(2, \mathbb{C})$.

$$
\mathbb{H}^{3}=\left\{z=x_{1}+x_{2} i+x_{3} j \mid x_{3}>0\right\},
$$

subspace of quaternions $\left(i^{2}=j^{2}=k^{2}=-1\right.$, $i j=-j i=k$).
$z \rightarrow(a z+b)(c z+d)^{-1}=(a z+b)(\bar{z} \bar{c}+\bar{d})|c z+d|^{-2}$.

Poincaré: study of discrete groups of hyperbolic isometries.

Volumes in \mathbb{H}^{3}

Picard: fundamental domain for $\operatorname{PSL}(2, \mathbb{Z}[i])$ in \mathbb{H}^{3} has a finite volume.

Humbert extended this result.

Lobachevsky function:

$$
\begin{aligned}
& л(\theta)=-\int_{0}^{\theta} \log |2 \sin t| \mathrm{d} t . \\
& \pi(\theta)=\frac{1}{2} \operatorname{Im}\left(\mathrm{Li}_{2}\left(e^{2 i \theta}\right)\right),
\end{aligned}
$$

where

$$
\begin{aligned}
\mathrm{Li}_{2}(z) & =\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}, \quad|z| \leq 1 . \\
\mathrm{Li}_{2}(z) & =-\int_{0}^{z} \log (1-x) \frac{\mathrm{d} x}{x}
\end{aligned}
$$

(multivalued) analytic continuation to $\mathbb{C} \backslash[1, \infty)$

Let Δ be an ideal tetrahedron (vertices in $\partial \mathbb{H}^{3}$).

Theorem 1 (Milnor, after Lobachevsky)

The volume of an ideal tetrahedron with dihedral angles α, β, and γ is given by

$$
\operatorname{Vol}(\Delta)=\pi(\alpha)+\quad \pi(\beta)+\quad \pi(\gamma) .
$$

Move a vertex to ∞ and use baricentric subdivision to get six simplices with three right dihedral angles.

Triangle with angles α, β, γ, defined up to similarity.

Let $\Delta(z)$ be the tetrahedron determined up to transformations by any of $z, 1-\frac{1}{z}, \frac{1}{1-z}$.

If ideal vertices are $z_{1}, z_{2}, z_{3}, z_{4}$,

$$
z=\left[z_{1}: z_{2}: z_{3}: z_{4}\right]=\frac{\left(z_{3}-z_{2}\right)\left(z_{4}-z_{1}\right)}{\left(z_{3}-z_{1}\right)\left(z_{4}-z_{2}\right)}
$$

Bloch-Wigner dilogarithm

$$
D(z)=\operatorname{Im}\left(\mathrm{Li}_{2}(z)+\log |z| \log (1-z)\right) .
$$

Continuous in $\mathbb{P}^{1}(\mathbb{C})$, real-analytic in $\mathbb{P}^{1}(\mathbb{C}) \backslash$ $\{0,1, \infty\}$.

$$
D(z)=-D(1-z)=-D\left(\frac{1}{z}\right)=-D(\bar{z})
$$

Five-term relation:

$$
\begin{gathered}
D(x)+D(1-x y)+D(y)+D\left(\frac{1-y}{1-x y}\right)+D\left(\frac{1-x}{1-x y}\right)=0 \\
D(z)=\frac{1}{2}\left(D\left(\frac{z}{\bar{z}}\right)+D\left(\frac{1-z^{-1}}{1-\bar{z}^{-1}}\right)+D\left(\frac{(1-z)^{-1}}{(1-\bar{z})^{-1}}\right)\right) \\
\operatorname{Vol}(\Delta(z))=D(z)
\end{gathered}
$$

Five points in $\partial \mathbb{H}^{3} \cong \mathbb{P}^{1}(\mathbb{C})$, then the sum of the signed volumes of the five possible tetrahedra must be zero:

$$
\sum_{i=0}^{5}(-1)^{i} \operatorname{Vol}\left(\left[z_{1}: \ldots: \widehat{z_{i}}: \ldots: z_{5}\right]\right)=0
$$

$$
D(x)+D(1-x y)+D(y)+D\left(\frac{1-y}{1-x y}\right)+D\left(\frac{1-x}{1-x y}\right)=0 .
$$

Dedekind ζ-function

F number field
$[F: \mathbb{Q}]=n=r_{1}+2 r_{2}$
$\tau_{1}, \ldots, \tau_{r_{1}}$ real embeddings
$\sigma_{1}, \ldots, \sigma_{r_{2}}$ a set of complex embeddings (one for each pair of conjugate embeddings).

Dedekind ζ-function

$$
\zeta_{F}(s)=\sum_{\mathfrak{A} \text { ideal } \neq 0} \frac{1}{N(\mathfrak{A})^{s}}, \quad \text { Re } s>1
$$

$N(\mathfrak{A})=\left|\mathcal{O}_{F} / \mathfrak{A}\right|$ norm.

Euler product

$$
\prod_{\mathfrak{P} \text { prime }} \frac{1}{1-N(\mathfrak{P})^{-s}} .
$$

Theorem 2 (Dirichlet's class number formula) $\zeta_{F}(s)$ extends meromorphically to \mathbb{C} with only one simple pole at $s=1$ with

$$
\lim _{s \rightarrow 1}(s-1) \zeta_{F}(s)=\frac{2^{r_{1}}(2 \pi)^{r_{2}} h_{F} \mathrm{reg}_{F}}{\omega_{F} \sqrt{\left|D_{F}\right|}}
$$

where

- h_{F} is the class number.
- ω_{F} is the number of roots of unity in F.
- D_{F} is the discriminant.
- reg_{F} is the regulator.

Regulator
$\left\{u_{1}, \ldots, u_{r_{1}+r_{2}-1}\right\}$ basis for \mathcal{O}_{F}^{*} modulo torsion
$L\left(u_{i}\right):=$
$\left(\log \left|\tau_{1} u_{i}\right|, \ldots, \log \left|\tau_{r_{1}} u_{i}\right|, 2 \log \left|\sigma_{1} u_{i}\right|, \ldots, 2 \log \left|\sigma_{r_{2}-1} u_{i}\right|\right)$
reg_{F} is the determinant of the matrix.
$=$ (up to a sign) the volume of fundamental domain for $L\left(\mathcal{O}_{F}^{*}\right)$.

Functional equation

$$
\begin{gathered}
\xi_{F}(s)=\xi_{F}(1-s), \\
\xi_{F}(s)=\left(\frac{\left|D_{F}\right|}{4 r_{2} \pi^{n}}\right)^{\frac{s}{2}}\left\ulcorner(\frac { s } { 2 }) ^ { r _ { 1 } } \left\ulcorner(s)^{r_{2}} \zeta_{F}(s) .\right.\right. \\
\lim _{s \rightarrow 0} s^{1-r_{1}-r_{2}} \zeta_{F}(s)=-\frac{h_{F} r \operatorname{reg}}{F} \omega_{F}
\end{gathered}
$$

Euler:

$$
\zeta(2 m)=\frac{(-1)^{m-1}(2 \pi)^{2 m} B_{m}}{2(2 m)!}
$$

Klingen , Siegel:
F is totally real $\left(r_{2}=0\right)$,
$\zeta_{F}(2 m)=r(m) \sqrt{\left|D_{F}\right|} \pi^{2 m n}$ for $m>0$.
where $r(m) \in \mathbb{Q}$.

Building manifolds

Bianchi, Humbert :
$F=\mathbb{Q}(\sqrt{-d}) d \geq 1$ square-free
「 a torsion-free subgroup of $\operatorname{PSL}\left(2, \mathcal{O}_{d}\right)$,
$\left[\operatorname{PSL}\left(2, \mathcal{O}_{d}\right): \Gamma\right]<\infty$.
Then \mathbb{H}^{3} / Γ is an oriented hyperbolic threemanifold.

Example: $d=3, \mathcal{O}_{3}=\mathbb{Z}[\omega], \omega=\frac{-1+\sqrt{-3}}{2}$.
Riley: $\left[\operatorname{PSL}\left(2, \mathcal{O}_{3}\right): \Gamma\right]=12$.
\mathbb{H}^{3} / Γ diffeomorphic to $S^{3} \backslash$ Fig - 8 .

Theorem 3 (Essentially Humbert)

$$
\begin{gathered}
\operatorname{Vol}\left(\mathbb{H}^{3} / P S L\left(2, \mathcal{O}_{d}\right)\right)=\frac{D_{d} \sqrt{D_{d}}}{4 \pi^{2}} \zeta_{\mathbb{Q}(\sqrt{-d)}}(2) . \\
D_{d}= \begin{cases}d & d \equiv 3 \bmod 4, \\
4 d & \text { otherwise } .\end{cases}
\end{gathered}
$$

M hyperbolic 3-manifold

$$
\operatorname{Vol}(M)=\sum_{j=1}^{J} D\left(z_{j}\right)
$$

$$
\zeta_{\mathbb{Q}(\sqrt{-d})}=\frac{D_{d} \sqrt{D_{d}}}{2 \pi^{2}} \sum_{j=1}^{J} D\left(z_{j}\right) .
$$

Example:

$$
\begin{gathered}
\operatorname{Vol}\left(S^{3} \backslash \mathrm{Fig}-8\right)=12 \frac{3 \sqrt{3}}{4 \pi^{2}} \zeta_{\mathbb{Q}(\sqrt{-3})}(2) \\
=3 D\left(e^{\frac{2 i \pi}{3}}\right)=2 D\left(\mathrm{e}^{\frac{i \pi}{3}}\right) .
\end{gathered}
$$

Zagier:
$[F: \mathbb{Q}]=r_{1}+2$,
Γ group of units of an order in a quaternion algebra B over F that is ramified at all real places such that
$M=\mathbb{H}^{3} / \Gamma$ has volume

$$
\sim_{\mathbb{Q}^{*}} \frac{\sqrt{\left|D_{F}\right|}}{\pi^{2(n-1)}} \zeta_{F}(2) .
$$

$[F: \mathbb{Q}]=r_{1}+2 r_{2}, r_{2}>1$,
Zagier:
discrete subgroup 「 of $\operatorname{PSL}(2, \mathbb{C})^{r_{2}}$ such that
$M=\left(\mathbb{H}^{3}\right)^{r_{2}} / \Gamma$ has volume

$$
\sim_{\mathbb{Q}^{*}} \frac{\sqrt{\left|D_{F}\right|}}{\pi^{2\left(r_{1}+r_{2}\right)}} \zeta_{F}(2) .
$$

$$
M=\bigcup \Delta\left(z_{1}\right) \times \ldots \times \Delta\left(z_{r_{2}}\right)
$$

The Bloch group

$$
\operatorname{Vol}(M)=\sum_{j=1}^{J} D\left(z_{j}\right)
$$

then

$$
\sum_{j=1}^{J} z_{j} \wedge\left(1-z_{j}\right)=0 \in \bigwedge^{2} \mathbb{C}^{*}
$$

$\bigwedge^{2} \mathbb{C}^{*}=\left\{x \wedge y \mid x \wedge x=0, x_{1} x_{2} \wedge y=x_{1} \wedge y+x_{2} \wedge y\right\}$

$$
\begin{aligned}
& \operatorname{Vol}(M)=D\left(\xi_{M}\right), \text { where } \xi_{M} \in \mathcal{A}(\overline{\mathbb{Q}}) \text {, and } \\
& \mathcal{A}(F)=\left\{\sum n_{i}\left[z_{i}\right] \in \mathbb{Z}[F] \mid \sum n_{i} z_{i} \wedge\left(1-z_{i}\right)=0\right\} .
\end{aligned}
$$

Let

$$
\begin{gathered}
\mathcal{C}(F)=\left\{\left.[x]+[1-x y]+[y]+\left[\frac{1-y}{1-x y}\right]+\left[\frac{1-x}{1-x y}\right] \right\rvert\,\right. \\
x, y \in F, x y \neq 1\},
\end{gathered}
$$

Bloch group is

$$
\mathcal{B}(F)=\mathcal{A}(F) / \mathcal{C}(F) .
$$

$D: \mathcal{B}(\mathbb{C}) \rightarrow \mathbb{R}$ well-defined function,
$\operatorname{Vol}(M)=D\left(\xi_{M}\right)$ for some $\xi_{M} \in \mathcal{B}(\overline{\mathbb{Q}})$, independently of the triangulation.

Then
$\zeta_{F}(2)=\sqrt{\left|D_{F}\right|} \pi^{2(n-1)} D\left(\xi_{M}\right)$ for $r_{2}=1$.

The K-theory connection

R ring. $K_{0}(R), K_{1}(R)=R^{*}$, etc

Borel:
$K_{n}(F) \otimes \mathbb{Q}$ free abelian and
$\operatorname{dim}_{\mathbb{Q}}\left(K_{n}(F) \otimes \mathbb{Q}\right)= \begin{cases}0 & n \geq 2 \text { even }, \\ r_{1}+r_{2} & n \equiv 1 \bmod 4, \\ r_{2} & n \equiv 3 \bmod 4 .\end{cases}$

Let $n_{+}=r_{1}+r_{2}$ and $n_{-}=r_{2}$.

The regulator map

$$
\operatorname{reg}_{m}: K_{2 m-1}(\mathbb{C}) \rightarrow \mathbb{R}
$$

is such that
$K_{2 m-1}(F) \rightarrow K_{2 m-1}(\mathbb{R})^{r_{1}} \times K_{2 m-1}(\mathbb{C})^{r_{2}} \rightarrow \mathbb{R}^{n \mp}$.
$K_{2 m-1}(F) /$ torsion goes to a cocompact lattice of $\mathbb{R}^{n_{\mp}}$.

Covolume is a rational multiple of $\sqrt{\left|D_{F}\right|} \zeta_{F}(m) / \pi^{k n_{ \pm}}$.
$m=2$, Bloch and Suslin: $\mathcal{B}(F)$ is "essentially" $K_{3}(F)$, and D is the regulator.

$$
\begin{aligned}
& K_{3}(F) \stackrel{\text { reg }_{2}}{\longrightarrow} \mathbb{R}^{r_{2}} \\
& \phi_{F} \mid \\
& \mathcal{B}(F)
\end{aligned}
$$

Theorem 4 For a number field $[F: \mathbb{Q}]=r_{1}+$
 $2 r_{2}$,

- $\mathcal{B}(F)$ is finitely generated of rank r_{2}.
- $\xi_{1}, \ldots \xi_{r_{2}} \mathbb{Q}$-basis of $\mathcal{B}(F) \otimes \mathbb{Q}$. Then

$$
\zeta_{F}(2) \sim_{\mathbb{Q}^{*}} \sqrt{\left|D_{F}\right|} \pi^{2\left(r_{1}+r_{2}\right)} \operatorname{det}\left\{D\left(\sigma_{i}\left(\xi_{j}\right)\right)\right\}_{1 \leq i, j \leq r_{2}} .
$$

Zagier's conjecture

Generalize to values $\zeta_{F}(m)$.
k-polylogarithm

$$
\mathrm{Li}_{k}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{k}}, \quad|z| \leq 1
$$

It has an analytic continuation to $\mathbb{C} \backslash[1, \infty)$.

$$
\mathcal{L}_{k}(z)=\operatorname{Re}_{k}\left(\sum_{j=0}^{k-1} \frac{2^{j} B_{j}}{j!} \log ^{j}|z| \mathrm{Li}_{k-j}(z)\right),
$$

$\mathrm{Re}_{k}=\mathrm{Re}$ or Im depending on whether k is odd or even, and B_{j} is the j th Bernoulli number.

It is continuous in $\mathbb{P}^{1}(\mathbb{C})$, real analytic in $\mathbb{P}^{1}(\mathbb{C}) \backslash$ $\{0,1, \infty\}$.

$$
\mathcal{L}_{k}(z)=(-1)^{k-1} \mathcal{L}_{k}\left(\frac{1}{z}\right) .
$$

Generalized Bloch groups

$$
\mathcal{B}_{k}(F)=\mathcal{A}_{k}(F) / \mathcal{C}_{k}(F) .
$$

$\mathcal{C}_{k}(F)$ set of functional equations of the k th polylogarithm and $\mathcal{A}_{k}(F)$ is the set of allowed elements.

$$
\mathcal{A}_{k}(F):=\left\{\xi \in \mathbb{Z}[F] \mid \iota_{\phi}(\xi) \in \mathcal{C}_{k-1}(F) \forall \phi \in \operatorname{Hom}\left(F^{*}, \mathbb{Z}\right)\right\}
$$

$$
\text { where } \iota_{\phi}\left(\sum n_{i}\left[x_{i}\right]\right)=\sum n_{i} \phi\left(x_{i}\right)\left[x_{i}\right] .
$$

$$
\mathcal{C}_{k}(F):=\left\{\xi \in \mathcal{A}_{k}(F) \mid \mathcal{L}_{k}(\sigma(\xi))=0 \forall \sigma \in \Sigma_{F}\right\} .
$$

Conjecture 5 Let F be a number field. Let $n_{+}=r_{1}+r_{2}, n_{-}=r_{2}$, and $\mp=(-1)^{k-1}$. Then

- $\mathcal{B}_{k}(F)$ is finitely generated of rank n_{\mp}.
- $\xi_{1}, \ldots \xi_{n_{\mp}} \mathbb{Q}$-basis of $\mathcal{B}_{k}(F) \otimes \mathbb{Q}$. Then
$\zeta_{F}(k) \sim_{\mathbb{Q}^{*}} \sqrt{\left|D_{F}\right|} \pi^{k n_{ \pm}} \operatorname{det}\left\{\mathcal{L}_{k}\left(\sigma_{i}\left(\xi_{j}\right)\right)\right\}_{1 \leq i, j \leq n_{\mp}}$.

Example

$$
\begin{aligned}
& F=\mathbb{Q}(\sqrt{5}), r_{1}=2, r_{2}=0 \\
& \left\{[1],\left[\frac{1+\sqrt{5}}{2}\right]\right\} \in \mathcal{A}_{3}(F), \text { basis for } \mathcal{B}_{3}(F) \\
& \left|\begin{array}{cc}
\mathcal{L}_{3}(1) & \mathcal{L}_{3}(1) \\
\mathcal{L}_{3}\left(\frac{1+\sqrt{5}}{2}\right) & \mathcal{L}_{3}\left(\frac{1-\sqrt{5}}{2}\right)
\end{array}\right| \\
& =\left\lvert\, \begin{array}{c}
\zeta(3) \\
\frac{1}{10} \zeta(3)+\frac{25}{48} \sqrt{5} L\left(3, \chi_{5}\right) \\
\frac{1}{10} \zeta(3)-\frac{25}{48} \sqrt{5} L\left(3, \chi_{5}\right)
\end{array}\right. \\
& =-\frac{25}{24} \sqrt{5} \zeta(3) L\left(3, \chi_{5}\right)=-\frac{25}{24} \sqrt{5} \zeta_{F}(3)
\end{aligned}
$$

More K-theory

Expectation:

- $K_{2 m-1}(F)$ and $\mathcal{B}_{m}(F)$ should be isomorphic.
- The regulator map should be given by \mathcal{L}_{m}. de Jeu, Beilinson-Deligne: there is a map

$$
K_{2 m-1}(F) \rightarrow \mathcal{B}_{m}(F)
$$

Goncharov: map is surjective for $m=3$.

Goncharov

$$
\begin{aligned}
& G_{F}(k): \mathcal{G}_{k}(F) \xrightarrow{\partial} \mathcal{G}_{k-1} \otimes F^{*} \xrightarrow{\partial} \mathcal{G}_{k-2} \otimes \wedge^{2} F^{*} \xrightarrow{\partial} \ldots \\
& \ldots \xrightarrow{\partial} \mathcal{G}_{2} \otimes \wedge^{k-2} F^{*} \xrightarrow{\partial} \wedge^{k} F^{*} \\
& \mathcal{G}_{k}(F)=\mathbb{Z}[F] / \mathcal{C}_{k}(F) \\
& \partial[x] \otimes x_{1} \wedge \ldots \wedge x_{l}=[x] \otimes x \wedge x_{1} \wedge \ldots \wedge x_{l} . \\
& H^{1}\left(G_{F}(k)\right) \simeq \mathcal{B}_{k}(F) .
\end{aligned}
$$

Goncharov conjectures

$$
H^{i}\left(G_{F}(k) \otimes \mathbb{Q}\right) \simeq g r_{k}^{\gamma} K_{2 k-i}(F) \otimes \mathbb{Q} .
$$

Volumes in higher dimensions

Orthoscheme in \mathbb{H}^{n} : simplex bounded by hyperplanes H_{0}, \ldots, H_{n} such that

$$
H_{i} \perp H_{j} \quad|i-j|>1
$$

Theorem 6 (Schläfli's formula) $R \subset \mathbb{H}^{n}$ is an orthoscheme,

$$
\mathrm{dVol}_{n}(R)=\frac{1}{n-1} \sum_{j=1}^{n} \operatorname{Vol}_{n-2}\left(F_{j}\right) \mathrm{d} \alpha_{j} .
$$

where $F_{j}=R \cap H_{j-1} \cap H_{j}, \alpha_{j}$ is the angle attached at F_{j}, and $\operatorname{Vol}_{0}\left(F_{j}\right)=1$.

Vol $2 m$-simplex \rightsquigarrow Vol dimension $2 m-1$ and lower.
dimension 5: sum of trilogarithmic expressions (Böhn, Müller, Kellerhals, and Goncharov).

Goncharov:
$M(2 m-1)$-dimensional hyperbolic manifold of finite volume.

Theorem 7 There is a $\gamma_{M} \in K_{2 m-1}(\overline{\mathbb{Q}}) \otimes \mathbb{Q}$ such that

$$
\operatorname{Vol}(M)=\operatorname{reg}_{m}\left(\gamma_{M}\right)
$$

Conjecture 8 There is a $\xi_{M} \in \mathcal{B}_{m}(\overline{\mathbb{Q}}) \otimes \overline{\mathbb{Q}}^{*}$ such that

$$
\operatorname{Vol}(M)=\mathcal{L}_{m}\left(\xi_{M}\right)
$$

Goncharov: true for dimension 5.

