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Abstract. We use the elliptic regulator to recover some identities between

Mahler measures involving certain families of genus 2 curves that were conjec-
tured by Boyd and proven by Bertin and Zudilin by differentiating the Mahler

measures and using hypergeometric identities. Since our proofs involve the

regulator, they yield light into the expected relation of each Mahler measure
to special values of L-functions of certain elliptic curves.

1. Introduction

The (logarithmic) Mahler measure of a non-zero rational function P ∈ C(x1, . . . , xn)
is defined by

m(P ) :=
1

(2πi)n

∫
Tn

log |P (x1, . . . , xn)|dx1

x1
· · · dxn

xn
,

where Tn = {(x1, . . . , xn) ∈ Cn : |x1| = · · · = |xn| = 1}.
This definition often yields special values of functions with number theoretic sig-

nificance, such as the Riemann zeta-function and L-functions associated to arithmetic-
geometric objects such as elliptic curves.

The relationship with L-functions of elliptic curves was predicted by Deninger
[Den97] who connected the Mahler measure to certain regulator expected to be
related to a special value of an L-function by means of Bĕılinson’s conjectures. This
was further investigated in detail by Boyd [Boy98], who conducted a systematic
study of certain families of two-variable polynomials and found many numerical
examples such as

(1) m(Pα)
?
= rαL

′(Eα, 0),

where
Pα(x, y) = (x+ 1)(y + 1)(x+ y)− αxy,

α is an integer, rα is a rational number of small height, and

(2) Eα : Y 2 + (α− 2)XY + αY = X3

is the elliptic curve corresponding to the zero loci of Pα(x, y).
Rodriguez-Villegas [RV99] studied these identities in the context of Bĕılinson’s

conjectures and was able to prove those related to elliptic curves of conductor 36,
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α rα N Proven by

−4 2 36 Rodriguez-Villegas [RV99]
2 1/2 36 Rodriguez-Villegas [RV99]
−8 10 14 Mellit [Mel12]

1 1 14 Mellit [Mel12]
7 6 14 Mellit [Mel12]
−2 3 20 Rogers–Zudilin [RZ12]

4 2 20 Rogers–Zudilin [RZ12]
Table 1. Proven cases of formula (1).

which have complex multiplication. Subsequently, other cases were proven involving
conductors 14 and 20 (see Table 1).

Boyd [Boy98] also investigated some families of higher genus such as

Qα(x, y) = (x2 + x+ 1)y2 + αx(x+ 1)y + x(x2 + x+ 1),

Rα(x, y) = (x2 + x+ 1)y2 + (x4 + αx3 + (2α− 4)x2 + αx+ 1)y + x2(x2 + x+ 1),

and

Sα(x, y) = y2 + (x4 + αx3 + 2αx2 + αx+ 1)y + x4,

which correspond to families (3-3), (3-9), and (3-13) in [Boy98].
The Jacobian associated to the genus 2 curve Sα(x, y) = 0 splits as a product of

two elliptic curves, one of which is Eα given by (2). Boyd found numerical relations
of the type

m(Sα)
?
= sαL

′(Eα, 0).

Similarly, the Jacobians associated to Qα(x, y) = 0 and Rα(x, y) = 0 can also be
written as product of two elliptic curves, with a common factor, and Boyd found
that the Mahler measures are numerically related to the L-function corresponding
to the common factor.

The above findings led Boyd to conjecture relationships between the Mahler
measures of Pα and Sα and between the Mahler measures of Qα and Rα. These
results were eventually proven by Bertin and Zudilin and are summarized as follows.

Theorem 1. [BZ16] For α taking real values, we have

m(Sα) =

 2m(Pα) 0 ≤ α ≤ 4,

m(Pα) α ≤ −1.

Theorem 2. [BZ17] For real α ≥ 4, we have

m(Qα) = m(R2+α).

Both results are achieved by studying the Mahler measures as functions on the
parameter α and by differenting respect to α. The equalities are then established
by using several hypergeometric identities.

The family Sα(x, y) was also studied by Bosman in his thesis [Bos04]. He con-
sidered the relationship with the regulator and proved exact formulas for m(Sα) in
the cases α = 8, corresponding to genus 0, and α = −1, 2 corresponding to genus 1
(α = −1 yields a degenerate case of a Dirichlet L-function, while α = 2 corresponds
to an elliptic curve with complex multiplication). There is another case of genus
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1 corresponding to α = 4, which can be proven by techniques of modular unit
parametrizations [Zud14, BZ16] and the curve has genus 2 for all the other values
of α [Bos04].

Bosman [Bos04] uses the regulator to relate the Mahler measure of the family
Sα(x, y) to a combination of elliptic dilogarithms. A proof of Theorem 1 could be
achieved by relating those elliptic dilogarithms to the ones corresponding to the
Mahler measure of Pα(x, y).

The goal of these notes is to provide further clarification by reproving Theorems
1 and 2 by using the regulator theory. In the case of Theorem 1 this finishes the
work started by Bosman. In the case of Theorem 2, the development is entirely
new. Our proofs show the role of the regulator in these relationships, which is the
key step to an eventual understanding of the conjectural relationship of each of
these Mahler measures to their corresponding L-value.

This paper is organized as follows. Section 2 presents a general exposition of the
relationship between Mahler measure and elliptic regulators. Then sections 3 and
4 treat Theorems 1 and 2 respectively. Each of these sections is separated into a
first part where the relationship between the regulators is considered, and a second
part, where the relationship between the cycles is considered.

2. The regulator theory

Here we recall the definition of the regulator on the second K-group of an elliptic
curve E given by Bloch and Bĕılinson and explain how it can be computed in
terms of the elliptic dilogarithm. We then discuss the relationship between Mahler
measure and the regulator.

Let F be a field. Matsumoto’s theorem implies that the second K-group of F
can be described as

K2(F ) ∼= Λ2F×/{x⊗ (1− x) : x ∈ F, x 6= 0, 1}.
Let E/Q be an elliptic curve given by an equation P (x, y) = 0. Rodriguez-

Villegas [RV99] describes certain conditions on the polynomial P that guarantee
the triviality of tame symbols and that K2(E)⊗Q ⊂ K2(Q(E))⊗Q.

Let x, y ∈ Q(E). We will work with the differential form

(3) η(x, y) := log |x|d arg y − log |y|d arg x,

where d arg x is defined by Im(dx/x).
The Bloch–Wigner dilogarithm is given by

(4) D(x) = Im(Li2(x)) + arg(1− x) log |x|,
where

Li2(x) = −
∫ x

0

log(1− z)
z

dz.

The form η(x, y) is closed in its domain of definition, multiplicative, antisym-
metric, and satisfies

η(x, 1− x) = dD(x).

Definition 3. The regulator map of Bloch [Blo00] and Bĕılinson [Bl80] is given by

rE : K2(E)⊗Q → H1(E,R)

{x, y} →
{

[γ]→
∫
γ

η(x, y)

}
.
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In the above definition, we take [γ] ∈ H1(E,Z) and interpret H1(E,R) as the
dual of H1(E,Z).

Remark 4. Due to the action of complex conjugation on η, the regulator map
is trivial for the classes that remain invariant by complex conjugation, denoted
by H1(E,Z)+. It therefore suffices to consider the regulator as a function on
H1(E,Z)−, a one-dimensional space.

For E/Q an elliptic curve, we have

(5)
E(C)

∼→ C/(Z + τZ)
∼→ C×/qZ

P = (℘(u), ℘′(u)) → u mod Λ → z = e2πiu,

where ℘ is the Weierstrass function, Λ is the lattice Z + τZ, τ ∈ H, and q = e2πiτ .
The next definition is due to Bloch [Blo00].

Definition 5. The elliptic dilogarithm is a function on E(C) given for P ∈ E(C)
corresponding to z ∈ C×/qZ by

(6) DE(P ) :=
∑
n∈Z

D(qnz),

where D is the Bloch–Wigner dilogarithm defined by (4).

Let Z[E(C)] be the group of divisors on E and let

Z[E(C)]− ∼= Z[E(C)]/{(P ) + (−P ) : P ∈ E(C)}.
Let x, y ∈ C(E)×. We define a diamond operation by

� : Λ2C(E)× → Z[E(C)]−

(x) � (y) =
∑
i,j

minj(Si − Tj),

where

(x) =
∑
i

mi(Si) and (y) =
∑
j

nj(Tj).

With these elements, we have the following result.

Theorem 6. (Bloch [Blo00]) The elliptic dilogarithm DE extends by linearity to a
map from Z[E(Q)]− to C. Let x, y ∈ Q(E) and {x, y} ∈ K2(E). Then

rE({x, y})[γ] = DE((x) � (y)),

where [γ] is a generator of H1(E,Z)−.

Deninger [Den97] was the first to write a formula of the form

(7) m(P ) =
1

2π
r({x, y})[γ].

Rodriguez-Villegas combined the above expression with Theorem 6 to prove an
identity between two Mahler measures (originally conjectured in Boyd [Boy98]) in
[RV02]. This was the first of the type of result that we consider in these notes.

Let P (x, y) ∈ C[x, y] be a polynomial of degree 2 on y. We may then write

P (x, y) = P ∗(x)(y − y1(x))(y − y2(x)),

where y1(x), y2(x) are algebraic functions.
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We recall a particular case of Jensen’s formula. Let α ∈ C. Then

1

2πi

∫
T1

log |z − α|dz
z

=

{
log |α| |α| ≥ 1,

0 |α| ≤ 1.

By applying Jensen’s formula in the Mahler measure formula of P (x, y) with
respect to the variable y, we have

m(P )−m(P ∗) =
1

(2πi)2

∫
T2

log |P (x, y)|dx
x

dy

y
−m(P ∗)

=
1

(2πi)2

∫
T2

(log |y − y1(x)|+ log |y − y2(x)|)dx
x

dy

y

=
1

2πi

∫
|x|=1,|y1(x)|≥1

log |y1(x)|dx
x

+
1

2πi

∫
|x|=1,|y2(x)|≥1

log |y2(x)|dx
x
.

Recalling formula (3) for η(x, y), we have,

m(P )−m(P ∗) =− 1

2π

∫
|x|=1,|y1(x)|≥1

η(x, y1)− 1

2π

∫
|x|=1,|y2(x)|≥1

η(x, y2).

Often we will encounter the case that one of the roots y1(x) has always absolute
value greater than or equal to 1 as |x| = 1 and the other root has always absolute
value smaller than or equal to 1 as |x| = 1. This will allow us to write the right-hand
side as a single term, an integral over a closed path.

When P corresponds to an elliptic curve and when the set {|x| = 1, |yi(x)| ≥ 1}
can be seen as a cycle in H1(E,Z)−, then we may be able to recover a formula of
the type (7). This has to be examined on a case by case basis.

3. The families from Theorem 1

3.1. The relationship between the regulators. Recall that the family Pα(x, y)
is given by

Pα(x, y) = (x+ 1)(y + 1)(x+ y)− αxy,
which is birational to the Deuring form

Eα : Y 2 + (α− 2)XY + αY = X3.

The change of variables is given by

X(x, y) = α
x+ y + 1

x+ y − α
, x(X,Y ) =

X − Y
X − α

,

Y (x, y) = α
−αx+ y + 1

x+ y − α
, y(X,Y ) =

Y + (α− 1)X + α

X − α
.

The torsion group of Eα for α ∈ Q has order 6, generated by P = (α, α), with
2P = (0, 0), 3P = (−1,−1), 4P = (0,−α), 5P = (α,−α2).

Our first goal is to compute the diamond operation (x)�(y) in Eα. This will allow
us to understand the differential form η(x, y) that is involved in the computation
of m(Pα). Thus, we proceed to compute the divisors (x) and (y).

(x) = ((P ) + (2P ) + (3P )− 3O)− ((P ) + (5P )− 2O)

= (2P ) + (3P )− (5P )−O
(y) = ((3P ) + (4P ) + (5P )− 3O)− ((P ) + (5P )− 2O)

= −(P ) + (3P ) + (4P )−O
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The diamond operation yields

(x) � (y) = −6(P )− 6(2P ).(8)

Now we proceed to compute the diamond operation (x1) � (y1). Recall that

Sα(x1, y1) = y2
1 + (x4

1 + αx3
1 + 2αx2

1 + αx1 + 1)y1 + x4
1.

Bosman ([Bos04], p. 47) considers the curve

Cα : Y 2
1 = h1(X2

1 ),

where

h1(Z1) = (α2 + α)Z3
1 + (−2α2 + 5α+ 4)Z2

1 + (α2 − 5α+ 8)Z1 − α+ 4.

We have rational maps

Eα
φ→ Cα

ψ→ {Sα = 0}

(Z1, Y1) → (X1, Y1) → (x1, y1)

defined by φ(Z1) = X2
1 , φ(Y1) = Y1, while ψ−1 and ψ are given by

X1(x1, y1) =
x1 + 1

x1 − 1
, x1(X1, Y1) =

X1 + 1

X1 − 1
,

Y1(x1, y1) =
4(y2

1 − x4
1)

y1(x1 − 1)3(x1 + 1)
, y1(X1, Y1) =

2X1Y1 − (2α+ 1)X4
1 + (2α− 6)X2

1 − 1

(X1 − 1)4
,

respectively.
The relationship between the rational functions Z1, Y1 and X,Y in Eα is given

by the following transformations.

Y1(α2 + α) =4(2Y + (α− 2)X + α),

(α2 + α)Z1 − (α2 − 3α) =4X,

so that

Y =
α((α+ 1)Y1 + (−α2 + α+ 2)Z1 + (α2 − 5α+ 2))

8
,

Y1 =
4(2Y + (α− 2)X + α)

α2 + α
,

Z1 =
4X + α2 − 3α

α2 + α
.

Our goal is to compute

rCα({x1(X1, Y1), y1(X1, Y1)})[ψ ◦ γ],

where γ is the path in {Sα = 0} defined by |x1| = 1, |y1| ≥ 1 (for certain choice of
a root y1), that will be made precise later. In order to do this, we will consider the
pushforward by φ to the regulator rEα in Eα.

Bosman does this by finding rational functions a(Z1, Y1), b(Z1, Y1) such that

a(X2
1 , Y1)x1(X1, Y1) + b(X2

1 , Y1)y1(X1, Y1) = 1.

Then, he proves the following result, which we reproduce here for completeness.

Lemma 7. We have

rCα({x1(X1, Y1), y1(X1, Y1)})[ψ ◦ γ] = −rEα({a(Z1, Y1), b(Z1, Y1)})[φ ◦ ψ ◦ γ].
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Proof. It suffices to see the identity at the level of the diamond operator, namely,
to prove that

(x1(X1, Y1)) � (y1(X1, Y1)) ∼ −(a(X2
1 , Y1)) � (b(X2

1 , Y1)).

Because of the triviality of the Steimberg symbol, (f) � (1− f) ∼ 0, and

0 ∼(a(X2
1 , Y1)x1(X1, Y1)) � (b(X2

1 , Y1)y1(X1, Y1))

∼(a(X2
1 , Y1)) � (b(X2

1 , Y1)) + (x1(X1, Y1)) � (b(X2
1 , Y1))

+ (a(X2
1 , Y1)) � (y1(X1, Y1)) + (x1(X1, Y1)) � (y1(X1, Y1)).

Now consider the automorphism of Sα(x1, y1) = 0 given by x1 → 1
x1

, y1 → 1
y1

. We

remark that X1 → −X1 and Y1 → Y1. Then

0 ∼(a(X2
1 , Y1)x1(−X1, Y1)) � (b(X2

1 , Y1)y1(−X1, Y1))

∼(a(X2
1 , Y1)) � (b(X2

1 , Y1))− (x1(X1, Y1)) � (b(X2
1 , Y1))

− (a(X2
1 , Y1)) � (y1(X1, Y1)) + (x1(X1, Y1)) � (y1(X1, Y1)).

Combining the above expressions, we obtain the result. �

Following Bosman, we take

a(Z1, Y1) =
(−Z2

1 − 6Z1 − 1)Y1 + (4α+ 2)Z3
1 + 14Z2

1 + (−4α+ 14)Z1 + 2

(Z1 − 1)((−Z1 − 1)Y1 + (2α+ 1)Z2
1 + (−2α+ 6)Z1 + 1)

=
2X2Y + 4α2XY + (α4 − 2α3 − α2)Y + (−3α− 4)X3 + (−α3 + 2α)X2 + (α3 + 2α2)X − α3

(X − α)((α2 − α)Y + 2XY − (α+ 3)X2 + 2αX)

and

b(Z1, Y1) =
(Z1 − 1)2

(−Z1 − 1)Y1 + (2α+ 1)Z2
1 + (−2α+ 6)Z1 + 1

=− (X − α)2

(α2 − α)Y + 2XY − (α+ 3)X2 + 2αX
.

We proceed to compute the diamond operation for (a(X,Y )) and (b(X,Y )).
Consider the following points on Eα.

P =(α, α),

U± =

(
α(−α±

√
α2 − 16α+ 32)

8
,
α2(α− 8∓

√
α2 − 16α+ 32)

16

)
,

V± =

(
−α2 + 4α− 3± (α+ 1)

√
α2 − 10α+ 9

8
,
α3 − 7α2 − α− 9∓ (α2 − 2α− 3)

√
α2 − 10α+ 9

16

)
,

where we also have that U+ + U− = P and V+ + V− = 2P . Thus we write U for
U+, V for V+, P − U for U−, and 2P − V for V−.

One can check that

(X − α) =(P ) + (5P )− 2O,

((α2 − α)Y + 2XY − (α+ 3)X2 + 2αX) =2(P ) + (2P ) + (V ) + (2P − V )− 5O,
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and

(2X2Y + 4α2XY + (α4 − 2α3 − α2)Y + (−3α− 4)X3 + (−α3 + 2α)X2 + (α3 + 2α2)X − α3)

=5(P ) + (U) + (P − U)− 7O.

In sum, this gives

(a(Z1, Y1)) =2(P ) + (U) + (P − U)− (5P )− (2P )− (V )− (2P − V ),

(b(Z1, Y1)) =2(5P )− (2P )− (V )− (2P − V ) +O.

By applying Lemma 7,

−(x1) � (y1) ∼5(P ) + 3(2P ) + (U) + (P − U) + 3(P + U) + 3(2P − U) + (V − U)

+ (2P − U − V ) + (U + V − P ) + (U − V + P )− (V )− (2P − V )

− 3(V + P ) + 3(V + 3P ).(9)

Now we record other divisors.

(X + α) =(V − P ) + (P − V )− 2O,

(αX + 2Y + α2) =(5P ) + (U) + (P − U)− 3O,

(Y ) =3(2P )− 3O.

The above relations imply(
X + α

Y

)
=(V − P ) + (P − V ) +O − 3(2P ),(

αX + 2Y + α2

Y

)
=(5P ) + (U) + (P − U)− 3(2P ),

and

0 ∼
(
−α(X + α)

2Y

)
�
(
αX + 2Y + α2

2Y

)
=(P ) + 3(2P )− (U)− (P − U)− 3(P + U)− 3(2P − U)− (V − U)

− (2P − U − V )− (U + V − P )− (U − V + P ) + (V ) + (2P − V )

+ 3(V + P )− 3(V + 3P ).

Combining the above equation with (9) we obtain

(x1) � (y1) ∼ −6(P )− 6(2P ).

By comparing with equation (8), we conclude,

(x1) � (y1) ∼ (x) � (y).

3.2. The relationship between the cycles. We consider the integration cycle for
the Mahler measure over Pα first. It is convenient to make the change of variables
x = x2

0 as well as y0 = y/x0. In this case we have

(x0 + x−1
0 )y2

0 + (x2
0 + (2− α) + x−2

0 )y0 + (x0 + x−1
0 ) = 0.
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This gives

y0± =
−(x2

0 + (2− α) + x−2
0 )

2(x0 + x−1
0 )

±

√
(x2

0 − 2x0 + 2− α− 2x−1
0 + x−2

0 )(x2
0 + 2x0 + 2− α+ 2x−1

0 + x−2
0 )

2(x0 + x−1
0 )

.

Now write x0 = eiθ with 0 ≤ θ ≤ π. We have

y0± =
(α− 4 cos2 θ)±

√
(α− 4 cos2 θ)2 − 16 cos2 θ

4 cos θ
.

Further taking t = cos2 θ, we have that the polynomial inside the square root is

16t2 − 8(2 + α)t+ α2 which has roots t = 2+α±2
√
α+1

4 .
When this polynomial takes negative values, both roots are complex conjugate

of each other and both have absolute value 1. We are interested in the cases that
the polynomial takes positive values and one of the roots has absolute value larger
than 1.

When 0 ≤ α ≤ 4 this polynomial takes positive values for 0 ≤ t ≤ 2+α−2
√
α+1

4 .
We can see that in this case |y0+| > 1.

When α ≤ −1, the polynomial inside the square root has no real roots and
therefore it is positive for 0 ≤ t ≤ 1. Both roots are then real. We see that
|y0−| > 1.

In order to characterize the homology class given by the integration set, we
integrate respect to the standard invariant differential ω of the elliptic curves. Recall
that

ω =
dX

2Y + (α− 2)X + α
.

By looking at the transformations, we have

dX = −α(α+ 1)(dx+ dy)

(x+ y − α)2
.

By differentiating Pα, we have,

(2(y + 1)x+ y2 + (2− α)y + 1)dx+ (2(x+ 1)y + x2 + (2− α)x+ 1)dy = 0.

Putting the above together, we obtain,

dX =
α(α+ 1)(y − x)dx

(2(x+ 1)y + x2 + (2− α)x+ 1)(x+ y − α)

=
α(α+ 1)y(y − x)dx

(x+ 1)(y2 − x)(x+ y − α)
.

Therefore

dX

2Y + (α− 2)X + α
=

dx

2(x+ 1)y + x2 + (2− α)x+ 1
=

ydx

(x+ 1)(y2 − x)

=
2dx0

(2(x0 + x−1
0 )y0 + x2

0 + (2− α) + x−2
0 )x0

.

At this point, we either have to specify the choice of the root y0± or leave the
sign in front of the square-root undetermined. Since all the Mahler measures are
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non negative, and the integration sets are connected, we can leave the sign to be
determined later.

ω = ± 2idθ√
(α− 4 cos2 θ)2 − 16 cos2 θ

.

Take t = cos2 θ, then dt√
t(1−t)

= −2dθ and

ω = ± idt√
t(1− t)((α− 4t)2 − 16t)

In sum, we must consider, for 0 ≤ α ≤ 4,∫
ϕ∗(|x|=1)

ω =±
∫ 2+α−2

√
α+1

4

0

2idt√
t(1− t)((α− 4t)2 − 16t)

and for α ≤ −1, ∫
ϕ∗(|x|=1)

ω =±
∫ 1

0

2idt√
t(1− t)((α− 4t)2 − 16t)

In both cases, the extra factor 2 comes from changing 0 ≤ θ ≤ π to 0 ≤ θ ≤ π
2 .

Now we analyze the cycle for Sα. Make the change of variables y0 = y1/x
2
1. This

gives

y2
0 + (x2

1 + αx1 + 2α+ αx−1
1 + x−2

1 )y0 + 1 = 0

and

y0± =
−(x2

1 + αx1 + 2α+ αx−1
1 + x−2)

2

±

√
(x1 + 2 + x−1

1 )(x1 + α− 2 + x−1
1 )(x2

1 + αx1 + 2(α+ 1) + αx−1
1 + x−2

1 )

2
.

By setting x1 = eiθ with 0 ≤ θ ≤ 2π, we have

y0± =− (2 cos2 θ + α cos θ + (α− 1))

±
√

(cos θ + 1)(2 cos θ + α− 2)(2 cos2 θ + α cos θ + α).

Taking t = cos θ, the polynomial inside the square root is (t+ 1)(2t+ α− 2)(2t2 +

αt+α). The roots for the quadratic factor are given by −α±
√
α2−8α
4 . As before, we

are interested in the case when the polynomial inside the square-root takes positive
values.

When 0 ≤ α ≤ 4, the polynomial is positive for 2−α
2 ≤ t ≤ 1.

When α ≤ −1, the polynomial is positive for −α−
√
α2−8α
4 ≤ t ≤ 1.

In both cases, this leads to a root that has absolute value greater or equal to 1
and another that has absolute value less or equal to 1. As observed in the previous
case, we do not have to determine the exact sign of this root as long as each integral
is done over a fixed root.
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On the other hand, we have,

dX =
α(α+ 1)dZ1

4
=
α(α+ 1)X1dX1

2
= −α(α+ 1)(x1 + 1)dx1

(x1 − 1)3
.

We also have

2Y + (α− 2)X + α =
α(α+ 1)Y1

4
=

α(α+ 1)(y2
1 − x4

1)

y1(x1 − 1)3(x1 + 1)
.

Therefore,

dX

2Y + (α− 2)X + α
=− (x1 + 1)2y1dx1

(y2
1 − x4

1)
=

(x1 + 1)2y1dx1

(x4
1 + αx3

1 + 2αx2
1 + αx1 + 1)y1 + 2x4

1

.

Let y0 = y1/x
2
1. Then

dX

2Y + (α− 2)X + α
=

(x1 + 2 + x−1
1 )y0dx1

((x2
1 + αx1 + 2α+ αx−1

1 + x−2
1 )y0 + 2)x1

.

Writing x1 = eiθ with 0 ≤ θ ≤ 2π, this leads to

ω = ± (1 + cos θ)idθ√
(cos θ + 1)(2 cos θ + α− 2)(2 cos2 θ + α cos θ + α)

.

Take t = cos θ. Then − dt√
1−t2 = dθ and

ω = ± idt√
(1− t)(2t+ α− 2)(2t2 + αt+ α)

.

In sum, for 0 ≤ α ≤ 4, we must consider∫
ϕ∗(|x1|=1)

ω = ±
∫ 1

2−α
2

2idt√
(1− t)(2t+ α− 2)(2t2 + αt+ α)

and for α ≤ −1,∫
ϕ∗(|x1|=1)

ω = ±
∫ 1

−α−
√
α2−8α
4

2idt√
(1− t)(2t+ α− 2)(2t2 + αt+ α)

The result is completed with the following statement which covers the necessary
identities, except for the boundary cases, which can be deduced by continuity.

Lemma 8. For 0 < α < 8, we have
(10)

2

∫ 2+α−2
√
α+1

4

0

dt√
t(1− t)((α− 4t)2 − 16t)

=

∫ 1

2−α
2

dt√
(1− t)(2t+ α− 2)(2t2 + αt+ α)

.

For α < −1, we have
(11)∫ 1

0

dt√
t(1− t)((α− 4t)2 − 16t)

=

∫ 1

−α−
√
α2−8α
4

dt√
(1− t)(2t+ α− 2)(2t2 + αt+ α)

.

Proof. First consider the change of variables t = αs−α+2
2 . Then for 0 < α,∫ 1

2−α
2

dt√
(1− t)(2t+ α− 2)(2t2 + αt+ α)

=

∫ 1

0

ds√
s(1− s)(α2s2 + α(4− α)s+ 4)

,
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and for α < −1, ∫ 1

−α−
√
α2−8α
4

dt√
(1− t)(2t+ α− 2)(2t2 + αt+ α)

=−
∫ 1

α−4−
√
α2−8α

2α

ds√
s(1− s)(α2s2 + α(4− α)s+ 4)

.

The right-hand sides of the above equations are related to the formulas found by
Rogers and Zudilin [RZ12] and Bertin and Zudilin [BZ16], and this allows us to
use their changes of variables to manipulate those sides of the equations. However,
the left-hand sides do not appear in those works. As we will eventually see, the
connection between the two sides are given by periods in two isogenous elliptic
curves.

Notice that we can modify the integration limits in the last integral by the
involution s = 1−w

1+αw , which gives for α < −1,

−
∫ 1

α−4−
√
α2−8α

2α

ds√
s(1− s)(α2s2 + α(4− α)s+ 4)

=

∫ α−4+
√
α2−8α

2α

0

dw√
w(1− w)(α2w2 + α(4− α)w + 4)

.

In sum, we have to prove, for 0 < α < 8.
(12)

2

∫ 2+α−2
√
α+1

4

0

dt√
t(1− t)((α− 4t)2 − 16t)

=

∫ 1

0

ds√
s(1− s)(α2s2 + α(4− α)s+ 4)

and for α < −1,
(13)∫ 1

0

dt√
t(1− t)((α− 4t)2 − 16t)

=

∫ α−4+
√
α2−8α

2α

0

dw√
w(1− w)(α2w2 + α(4− α)w + 4)

.

First we concentrate on equation (13). Consider the change t = 1
1+ 4u

α2
. Then the

left-hand side of equation (13) becomes
(14)∫ 1

0

dt√
t(1− t)((α− 4t)2 − 16t)

=
1

2

∫ ∞
0

du√
u
(
u2 + 2

(
α2

4 − α− 2
)
u+ α3

16 (α− 8)
) .

Consider w = 1
1+v . The right-hand side of equation (13) becomes∫ α−4+

√
α2−8α

2α

0

dw√
w(1− w)(α2w2 + α(4− α)w + 4)

=
1

2

∫ ∞
α2−4α−8−α

√
α2−8α

8

dv√
v(v2 −

(
α2

4 − α− 2
)
v + α+ 1)

.(15)

The integrals on the right-hand sides of equations (14) and (15) correspond to
the same periods in isogenous elliptic curves. We can use the standard isogeny of
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degree 2 for the Weierstrass form y2 = x(x2 + ax + b) to describe the change of

variables between them. More precisely, u = v −
(
α2

4 − α− 2
)

+ α+1
v yields∫ ∞

0

du√
u
(
u2 + 2

(
α2

4 − α− 2
)
u+ α3

16 (α− 8)
)

=

∫ ∞
α2−4α−8−α

√
α2−8α

8

dv√
v
(
v2 −

(
α2

4 − α− 2
)
v + α+ 1

) .
This concludes the proof of equation (13) and therefore of equation (11).

For (12), consider the following observation. If we set β = − 8
α , then∫

dt√
t(1− t)((α− 4t)2 − 16t)

=
|β|
4

∫
dt√

t(1− t)(β2t2 + β(4− β)t+ 4)
.

Applying the above transformation to equation (13), we get, for 0 < β < 8,

β

4

∫ 1

0

dt√
t(1− t)(β2t2 + β(4− β)t+ 4)

=
4∣∣∣−8
β

∣∣∣
∫ 2+β−2

√
β+1

4

0

dw√
w(1− w)((β − 4w)2 − 16w)

,

which implies equations (12) and (10).
�

4. The families from Theorem 2

4.1. The relationship between the regulators. In this section we work with
the families

Qα(x2, y2) = (x2
2 + x2 + 1)y2

2 + αx2(x2 + 1)y2 + x2(x2
2 + x2 + 1)

and

Rβ(x3, y3) = (x2
3 +x3 +1)y2

3 +(x4
3 +βx3

3 +(2β−4)x2
3 +βx3 +1)y3 +x2

3(x2
3 +x3 +1).

For Qα(x2, y2), Boyd [Boy98] writes

Y 2
2 = h2(X2

2 ),

where
h2(Z2) = (α2 − 9)Z3

2 − (2α2 − 3)Z2
2 + (α2 + 5)Z2 + 1,

and

X2(x2, y2) =
x2 + 1

x2 − 1
, x2(X2, Y2) =

X2 + 1

X2 − 1
,

Y2(x2, y2) =
4(2(x2

2 + x2 + 1)y2 + αx2(x2 + 1))

(x2 − 1)3
, y2(X2, Y2) =

Y2 − αX2(X2
2 − 1)

(X2 − 1)(3X2
2 + 1)

.

By applying the transformation

Z = (α2 − 9)(Z2 − 1), W = (α2 − 9)Y2,

we obtain
Fα : W 2 = Z3 + (α2 − 24)Z2 − 16(α2 − 9)Z.
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Our goal as before is to compute (x2) � (y2) in Fα. We will do this by applying
Lemma 7. Thus we take

a(Z2, Y2) =
Y2 − α(Z2 − 1)

Y2 + α(Z2 − 1)
=
W − αZ
W + αZ

,

b(Z2, Y2) =− 2(3Z2 + 1)

Y2 + α(Z2 − 1)
= −2(3Z + 4(α2 − 9))

W + αZ
,

and one can easily see that

a(X2
2 , Y2)x2(X2, Y2) + b(X2

2 , Y2)y2(X2, Y2) = 1.

Lemma 7 still applies with the same change x2 → 1
x2

and y2 → 1
y2

that leads to

X2 → −X2 and Y2 → Y2.
We consider the following points of Fα (in Z,W coordinates).

P =(0, 0),

S± =(±4α+ 12, α(±4α+ 12)),

T =

(
−4(α2 − 9)

3
,

4i(α− 3)α(α+ 3)

3
√

3

)
,

where S+ +S− = P . Thus we rename S to be S+ and P −S to be S−. Notice also
that 2P = O

We compute some divisors.

(W − αZ) =(S) + (P − S) + (P )− 3O,

(W + αZ) =(−S) + (P + S) + (P )− 3O,

(3Z + 4(α2 − 9)) =(T ) + (−T )− 2O.

This leads to

(a(Z2, Y2)) =(S) + (P − S)− (−S)− (P + S),

(b(Z2, Y2)) =(T ) + (−T ) +O − (−S)− (P + S)− (P ),

and

(a(Z2, Y2))�(b(Z2, Y2)) = 2(S−T )+2(S+T )−2(P+S+T )−2(P+S−T )+4(S)−4(P+S).

Finally, by Lemma 7, we conclude,

(16) −(x2)�(y2) ∼ 2(S−T )+2(S+T )−2(P+S+T )−2(P+S−T )+4(S)−4(P+S).

We now consider the case of Rβ(x3, y3). We have

Y 2
3 = h3(X2

3 ),

where

h3(Z3) = (β2 − β − 2)Z3
3 + (−2β2 + 11β − 2)Z2

3 + (β2 − 11β + 26)Z3 + β − 6,
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and

X3(x3, y3) =
x3 + 1

x3 − 1
,

Y3(x3, y3) =
4(2(x2

3 + x3 + 1)y3 + x4
3 + βx3

3 + (2β − 4)x2
3 + βx3 + 1)

(x3 − 1)3(x3 + 1)
,

x3(X3, Y3) =
X3 + 1

X3 − 1
,

y3(X3, Y3) =
2X3Y3 − (2β − 1)X4

3 + (2β − 10)X2
3 + 1

(X3 − 1)2(3X2
3 + 1)

.

By applying the transformation

Z = (β2 − β − 2)Z3 − (β2 − 5β − 6), W = (β2 − β − 2)Y3,

we obtain

W 2 = Z3 + (β2 − 4β − 20)Z2 − 16(β2 − 4β − 5)Z.

Notice that this is precisely Fβ−2.
We proceed to compute the diamond operation (x3) � (y3). Using the usual

strategy of Lemma 7, we find

a(Z3,W3) =
(Z3 + 1)Y3 − (2β − 1)Z2

3 + (2β − 10)Z3 + 1

(Z3 − 1)Y3

=
ZW + 2(β2 − 3β − 4)W − (2β − 1)Z2 − 2(β3 − 5β2 − 10β − 4)Z + 16(β3 − 3β2 − 9β − 5)

W (Z − 4(β + 1))

b(Z3,W3) =− 3Z3 + 1

Y3
= −3Z + 4(β2 − 4β − 5)

W

and one can easily see that

a(X2
3 , Y3)x3(X3, Y3) + b(X2

3 , Y3)y3(X3, Y3) = 1.

Lemma 7 still applies with the same change x3 → 1
x3

and y3 → 1
y3

that leads to

X3 → −X3 and Y3 → Y3.
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We consider the following points (in Z,W coordinates),

P =(0, 0),

A =

(
−(β2 − 4β − 20) +

√
β4 − 8β3 + 40β2 − 96β + 80

2
, 0

)
,

A+ P =

(
−(β2 − 4β − 20)−

√
β4 − 8β3 + 40β2 − 96β + 80

2
, 0

)
,

S =(4(β + 1), 4(β − 2)(β + 1)),

2S =(16,−16),

T =

(
−4(β − 5)(β + 1)

3
,

4i(β − 5)(β − 2)(β + 1)

3
√

3

)
,

P − S =(4(5− β),−4(β − 5)(β − 2)),

P − 2S =((5− β)(β + 1), (β − 5)(β + 1)).

Notice that the points P, S, T are the same that were previously considered in Fα.
The formulas are different since they depend on the parameter β.

We then obtain

(W ) =(P ) + (A) + (A+ P )− 3O,

(Z − 4(β + 1)) =(S) + (−S)− 2O,

(3Z + 4(β − 5)(β + 1)) =(T ) + (−T )− 2O,

and

(ZW + 2(β2 − 3β − 4)W − (2β − 1)Z2 − 2(β3 − 5β2 − 10β − 4)Z + 16(β3 − 3β2 − 9β − 5))

= 3(S) + (P − S) + (P − 2S)− 5O.

This implies

(a(Z3, Y3)) =2(S) + (P − S) + (P − 2S)− (P )− (A)− (A+ P )− (−S),

(b(Z3, Y3)) =(T ) + (−T ) +O − (P )− (A)− (A+ P ).

Thus,

−(x3) � (y3) =(a(X2
3 , Y3)) � (b(X2

3 , Y3))

=3(S − T ) + 3(S + T ) + 4(S)− 4(P + S)− (P + S + T )− (P + S − T )

+ (2S)− (P + 2S)− (P + 2S + T ) + (P − 2S + T )− 2(S +A)

+ (2S +A)− 2(S +A+ P ) + (2S +A+ P ).(17)

Now consider

(W − 3Z − 4(β − 5)(β + 1)) =(S) + (P + S) + (P − 2S)− 3O
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and(
W − 3Z − 4(β − 5)(β + 1)

W

)
=(S) + (P + S) + (P − 2S)− (P )− (A)− (A+ P )(

3Z + 4(β − 5)(β + 1)

W

)
=(T ) + (−T ) +O − (P )− (A)− (A+ P ).

Combining the above divisors, we have(
W − 3Z − 4(β − 5)(β + 1)

W

)
�
(

3Z + 4(β − 5)(β + 1)

W

)
= (S − T ) + (S + T )

+ (P + S + T ) + (P + S − T ) + (P − 2S + T ) + (P − 2S − T ) + (2S)− (P + 2S)

− 2(S +A)− 2(S +A+ P ) + (2S +A) + (2S +A+ P ).

By comparing with equations (16) and (17), we get

(x2) � (y2) ∼ (x3) � (y3).

4.2. The relationship between the cycles. We start by considering Qα. It
is convenient to make the change of variables x2 = x2

0 and y2 = y0x0. We then
consider

(x2
0 + 1 + x−2

0 )y2
0 + α(x0 + x−1

0 )y0 + (x2
0 + 1 + x−2

0 ) = 0.

In this case we have

y0± =
−α(x0 + x−1

0 )

2(x2
0 + 1 + x−2

0 )

±

√
−(2x2

0 − αx0 + 2− αx−1
0 + 2x−2

0 )(2x2
0 + αx0 + 2 + αx−1

0 + 2x−2
0 )

2(x2
0 + 1 + x−2

0 )
.

Write x0 = eiθ with 0 ≤ θ ≤ π. We have

y0± =
−α cos θ ±

√
α2 cos2 θ − (4 cos2 θ − 1)2

4 cos2 θ − 1
.

If we take t = cos2 θ, the polynomial inside the square root is −16t2 + (8 +α2)t− 1

and is positive when α ≥ 4 for 8+α2−α
√
α2+16

32 ≤ t ≤ 1. As observed in the previous
section, we do not have to determine which of the roots has absolute value greater
or equal than 1.

We evaluate ω = dZ
2W . First we have

dZ = −4(α2 − 9)
x2 + 1

(x2 − 1)3
dx2.

Therefore,

dZ

2W
=− x2 + 1

2(2(x2
2 + x2 + 1)y2 + αx2(x2 + 1))

dx2

=− x0 + x−1
0

2(x2
0 + 1 + x−2

0 )y0 + α(x0 + x−1
0 )

dx0

x0
.
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Writing x0 = eiθ, this leads to

ω = ± cos θidθ√
α2 cos2 θ − (4 cos2 θ − 1)2

.

Take t = cos2 θ and dθ = − dt

2
√
t(1−t)

.

ω = ± idt

2
√

(1− t)(α2t− (4t− 1)2)

We must consider for α ≥ 4,∫
ϕ∗(|x2|=1)

ω = ±
∫ 1

8+α2−α
√
α2+16

32

idt√
(1− t)(α2t− (4t− 1)2)

,

where the extra factor 2 comes from changing 0 ≤ θ ≤ π to 0 ≤ θ ≤ π
2 .

We consider Rβ . We write y3 = y0x3. Then we have

(x3 + 1 + x−1
3 )y2

0 + (x2
3 + βx3 + (2β − 4) + βx−1

3 + x−2
3 )y0 + (x3 + 1 + x−1

3 ) = 0.

y0± =
−(x2

3 + βx3 + (2β − 4) + βx−1
3 + x−2

3 )

2(x3 + 1 + x−1
3 )

±

√
(x3 + 2 + x−1

3 )(x3 + (β − 4) + x−1
3 )(x2

3 + (β + 2)x3 + 2(β − 1) + (β + 2)x−1
3 + x−2

3 )

2(x3 + 1 + x−1
3 )

.

Write x3 = eiθ with 0 ≤ θ ≤ 2π,

y0± =
−(4 cos2 θ + 2β cos θ + (2β − 6))

2(1 + 2 cos θ)

±
√

2(1 + cos θ)((β − 4) + 2 cos θ)(4 cos2 θ + 2(β + 2) cos θ + 2(β − 2))

2(1 + 2 cos θ)
.

Write t = cos θ, the polynomial inside the square root is

2(1 + t)((β − 4) + 2t)(4t2 + 2(β + 2)t+ 2(β − 2)).

For β ≥ 6, we must consider
−(β+2)+

√
β2−4β+20

4 ≤ t ≤ 1 for the polynomial inside
the square root to be positive.

We evaluate ω = dZ
2W . We have

dZ = −4(β2 − β − 2)
x3 + 1

(x3 − 1)3
dx3.

dZ

2W
= − x3 + 2 + x−1

3

2(2(x3 + 1 + x−1
3 )y0 + x2

3 + βx3 + (2β − 4) + βx−1
3 + x−2

3 )

dx3

x3

ω = ± (1 + cos θ)idθ√
2(1 + cos θ)((β − 4) + 2 cos θ)(4 cos2 θ + 2(β + 2) cos θ + 2(β − 2))

Take t = cos θ, then

ω = ± idt

2
√

(1− t)((β − 4) + 2t)(2t2 + (β + 2)t+ (β − 2))
.
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Therefore, we must consider∫
ϕ∗(|x3|=1)

ω

=±
∫ 1

−(β+2)+
√
β2−4β+20

4

idt√
(1− t)((β − 4) + 2t)(2t2 + (β + 2)t+ (β − 2))

,

where the extra factor 2 comes from changing 0 ≤ θ ≤ 2π to 0 ≤ θ ≤ π.
Since we have α = β − 2, we must prove for α ≥ 4∫ 1

8+α2−α
√
α2+16

32

dt√
(1− t)(α2t− (4t− 1)2)

=

∫ 1

−(α+4)+
√
α2+16

4

ds√
(1− s)(2s+ α− 2)(2s2 + (α+ 4)s+ α)

.

In fact, we can go from one side to the other by setting

t =
(α+ 1)s+ α− 1

2(2s+ α− 2)
.

(This change of variables can be deduced from [BZ17].)

5. Conclusion

We have seen a way to reinterpret the identities between the Mahler measures
of genus 2 curves by using the regulator. The use of the regulator highlights the
expected relationship of each formula with the L-value. As a method of proof, this
is limited by the requirement that the parameter leads to an integral model.

All the polynomials involved in our examples can be seen as reciprocal. A con-
sequence of this is that the product of both roots y± is 1, which allows us to always
pick exactly one root for the integration. The reciprocity of the polynomials is also
closely related to the property that the involution x → 1

x , y → 1
y is equivalent

to X → −X, Y → Y . This condition is key for the application of Lemma 7. A
question remains if the method can be extended to other examples where this is
not satisfied.

It would be interesting to see if this method can be applied to more complicated
identities of higher genus, such as those recently found numerically by Liu and Qin
[LQ].
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