MULTIPLE ZETA FUNCTIONS AND POLYLOGARITHMS OVER GLOBAL
FUNCTION FIELDS

DEBMALYA BASAK, NICOLAS DEGRE-PELLETIER, AND MATILDE N. LALIN

ABSTRACT. In [Tha0O4] Thakur defines function field analogs of the classical multiple zeta function, namely,
Ca(Fq[T]; 81, ..., 8q4) and C4(K;s1,...,84), where K is a global function field. Star versions of these functions
were further studied by Masri [Mas06]. We prove reduction formulas for these star functions, extend the
construction to function field analogs of multiple polylogarithms, and exhibit some formulas for multiple
zeta values.

1. INTRODUCTION

The multiple zeta function is defined by the infinite series

((s15eeevsa) = ) S

ny
0<ni<---<ng

and is absolutely convergent and analytic in the region
(1) Re(sg+---+sq4) >d—k+1, k=1,...,d

In the above formula, we say that d is the depth and that sy + - - - + s4 is the weight.

Multiple zeta values are given by ((a1,...,aq), with ay € Z>1, aq > 1. The formal definition is given by
Zagier [Zag94], but they already appear as early as Euler [Eul75].

These numbers appear extensively in Number Theory, Geometry, and Physics. See for example, the works
of Brown [Broll, Brol2], Deligne [Del89], Drinfeld [Dri90], Hoffman [Hof92, Hof97], Goncharov and Manin
[GMO04], Kontsevich [Kon93, Kon99], Manin [Man06], Zagier [Zagl12]. The survey [KZ01] by Kontsevich and
Zagier discusses multiple zeta values in the context of periods and special values of L-functions.

A variant of the multiple zeta function is considered by Hoffman [Hof92]

. 1
C(Sl,...,Sd): Z ﬁ

n n
1<n;<--<ng 1 d

Here the notation * indicates that the indexes are ordered with non-strict inequalities. Multiple zeta (star)
values have been largely studied, see for example, [OW06, 0007, AKO08, Mun08, OZ08, KO10, Yam10,
IKOO11, AOW11, KST12, TY13, Yaml3, LZ15, HPHP15, Zhal6, HPHPZ16, CC17, HPHPT17, LQ18,
Macl9]. They generally yield simpler identities than multiple zeta values.

In this work, we consider a function field version of the multiple zeta function. Let F, be the finite field
with ¢ elements, where ¢ is a prime power. For f € F,[T], denote by deg(f) its degree and by |f| = qdesl))
its norm. The zeta function of F,[T] is defined by
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and further verifies 1

C(Fy[T);s) = T
The multiple zeta function of depth d over F,[T] is defined by Thakur ([Tha04], Section 5.10) and further
developed by Masri [Mas06]. It is given by

1
Gi(Fy[T]s 51, 50) = > T Tf
(f1,-rfa)EF [T
Tyenes fa monic
0<deg(f1)<---<deg(fa)

Thakur considers the definition where the indexes are ordered with strict inequalities. Masri studies the
version with non-strict inequalities given above and denotes it by Z4(F,[T7]; s1,...,5q4). We have chosen a
notation that better reflects the analogy with (*(s1,...,s4). For uniformity of notation we will also write
¢*(F,[TY; s) in place of ((Fy[T]; s).

We remark that this complex function is different from the multizeta version of the Carlitz zeta function
introduced by Thakur in [Tha04] (see also [AT09, Tha09, Thal0, Thal7, CM17, CM19)).

Masri proves that (5(Fy[T]; s1,...,8q4) is absolutely convergent and analytic in the region given by (1).
He further proves the existence of a rational meromorphic continuation, an Euler product, and a functional
equation, and he proves that

d
(2) C;(FQ[T};SM . '73d) - H C*(Fq[T];Sk + -+ 8q— (di k))7
k=1

which provides an exact formula for the function.
Masri further considers an extension to a global function field K,

1
S(K;81,...,84) = _
Cd( 1 ) d) Z |D1|Sl""Dd|Sd7
(D1,...,Da)€(DF)*
0<deg(D1)<:--<deg(Da)
where D} is the semigroup of effective divisors (see Section 2.)
Masri proves the following result.
Theorem 1 ([Mas06], Main Theorem). The multiple zeta function (5(K;s1,...,5q) has a meromorphic
continuation to all s in C* and is a rational function in each ¢~*',... ¢, with a specified denominator.
Further, (5(K;s1,...,sq4) has possible simple poles on the linear subvarieties

skt Hsa=01,....d—k+1, k=1, d

A central question in the theory of multiple zeta functions has to do with reduction, that is, the property
that a multiple zeta value can be written as a rational linear combination of products of lower depth multiple
zeta values.

Masri proves the following.

Theorem 2 ([Mas06], Corollary 1.5). (5(Fq(T);s1,...,54) is a rational linear combination of products of
zeta functions from the set

{CF T8+ +sa+¥):k=1,...,d, ¢{=-1,0,1}.

A goal of this note is to give a precise formula for (K s1,...,sq) when the genus of K satisfies g > 1,
which implies an analogous result to Theorem 2. More precisely, we prove the following.

Theorem 3. We have

drogn N\
C(Kss1,...,84) =Ra(K;s1,...,8q4) + Z (Z_Ii) Rao(K;s1,...,8q-¢)q" 97 Dloaraettoa)
=1
-1
x 3 () et e TT ([T 0y + eaj + o+ sa+ ea — ).
eqt1—¢,..-,4€{0,1} J=0

where Ry, (K 81,...,8m) 18 a certain polynomial on q¢~%,...,q~*™ given more precisely by equation (9).
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The multiple polylogarithm is defined by

znl e an
Likl,wkd(zl,...,zd) = Z H,
0<ny <~ <ng nyte .nd
which is absolutely convergent for |z;| < 1 fori=1,...,d — 1 and |z4| < 1 (respectively |zq] < 1) if kg > 1
(resp. kg = 1). We then extend the construction of multiple zeta functions over global function fields to
multiple polylogarithms:
Zdeg(fl) . deg(fd)
Lizl,...,kd(Fq[T];Zlv"'7Zd) = Z 1|fl‘k1 : |fd|kd
(f1,0sfa) €(Fg[T])?

f1,-..,fa monic
0<deg(f1)< -<deg(fa)

and deg(D deg(D
Zleg( 1)___Zdeg( )

ok . _
Lig, ok (K215 2a0) = > |Dy[kr - - [ Dglka

(D1,...,Da)€(Dy)?
0<deg(D1)<-<deg(Da)

We prove the following.

Theorem 4. Li} ;. (K;z1,...,24) is absolutely convergent and analytic in the complex region determined

by
|Z]"“Zd| < qkj+m+kd_d+j_17 ] = ]-7 d7
and has an analytic continuation to the complex region determined by

eyt kjtetha—d4i—1 L
cza # 4V g a=dri—l j=1,....d.

We prove a reduction formula that is analogous to Theorem 3 for g > 1.

Theorem 5. We have

d ¢
. ¢'hk
lel,...,kd(KQ 21,y 2d) =Ry kg (B 21,00, 24) + Z <q — 1> Ry bu o (K521, .0, Za—e)
=1
d 2g—1
% q—(29 ) (kar1—e+-+ka) ( H Zz)
i=d+1—4¢
-1 d
x Z (_qg)_(ed+1*4+"‘+ed) H Lizd—,7+ed—g+"~+kd+ed*j ]FQ[T]? H Zi |
edt1—e5---,a€{0,1} j=0 i=d—j
where R, .k, (K;z1,...,2m) s a certain polynomial on ¢~* ... g % given more precisely by equation
(20).

It is also natural to consider multiple zeta values. Formula (2) implies that special values of (5 (F,[T]; s1, - - -, Sq)
are very easy to compute, and we exhibit several examples that are counterparts of results for (*(s1,. .., 84)-
Special values of (% (Fq(T'); s1,. .., Sq) are harder to compute, and we focus on the case where s1 = -+ = s4.
For example, we prove the following.

Theorem 6. }(F,(T);m,...,m) satisﬁes the recurrence

(R (T);m,...,m dzgd 1 qfl Z () (Fy(T); (G +1)(m —1) + £+ 1)g7 "

£=0

The proofs of our results follow manipulations at the level of the series. It would be interesting to see if
the special values considered here can be expressed in terms of integrals as in the case of ((ki,...,kq), as
this would open the door for even more relationships among these values. As Masri [Mas06] mentions, it
would be also interesting to see if there is a particular interpretation for the numerators of (*(K; s1,. .., S4)
in the same vein as the numerator of ((K;s) is the characteristic polynomial of the action of the Frobenius
automorphism on the Tate module ([Ros02], pg. 275).
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This article is structured as follows. In Section 2 we review some background on arithmetic of global func-
tion fields. In Section 3 we prove several results reducing the depth of (}(F,(T); 51, - - -, sq) and (5 (K; s1, ..., Sq)
including Theorem 3. The construction of multiple zeta functions is extended to multiple polylogarithms in
Sections 4 and 5, where Theorems 4 and 5 are proven. Finally, we focus on multiple zeta values in Section 6.

2. BACKGROUND ON FUNCTION FIELDS

We follow the definitions of [Ros02] and [Mas06].

Let F be a field. A function field in one variable over F' is a field K containing F' and at least one element
x transcendental over F' such that K/F(x) is a finite algebraic extension. We will work with a global function
field, which is a function field in one variable with finite constant field F' =F,.

A prime in K is a discrete valuation ring R with maximal ideal P such that F C R and the quotient field
of R equals K. Such prime is typically denoted by P. We define deg P := [R/P : F.

The group of divisors of K, denoted D, is the free abelian group generated by the primes. A typical
divisor is written as D = ), a(P)P, where a(P) = ordp(D) is uniquely determined by D. The degree of D
is given by deg(D) = > p a(P)deg P. For a € K*, the divisor of a is defined by (a) = Y pordp(a)P. The
map a — (a) is a homomorphism K* — Dg whose image is the group of principal divisors Px. Two divisors
Dy and D are said to be equivalent, written Dy ~ Do, if their difference is principal, that is, D1 — Dy = (a)
for some a € K*. The divisor class group is defined by Clyx = Dk /Pk. Since the degree of principal divisors
is zero (see [Ros02], Proposition 5.1), the degree map deg : Clx — Z is a homomorphism. Its kernel is the
group of divisor classes of degree zero, denoted by C1%. The number of divisor classes of degree zero is finite
([Ros02], Lemma 5.6) and is denoted by hx. Schmidt [Sch31] proved that a function field over a finite field
always has divisors of degree 1. This gives an exact sequence

0—Cl% = Clxy -7 — 0.

A divisor D is effective if a(P) > 0 for all P. We write D > 0 in this case. For any integer n > 0, the
number of effective divisors of degree n is finite ([Ros02], Lemma 5.5).
Let D} be the semi-group of effective divisors. Given a divisor, consider

L(D) = {z € K* | (z) + D > 0} U {0}

It can be seen that L(D) is a finite dimensional vector space over F,. Its dimension is denoted by /(D). For

any divisor D, the number of effective divisors in its class [D] is quD)f L ([Ros02], Lemma 5.7).

Theorem 7 (Riemann—Roch). There is an integer g = g(K) > 0 and a divisor class C such that for C € C
and D € Dy we have

(D) =deg(D) —g+1+1(C — D).
The integer g is called the genus.

Corollary 8. Ifdeg(D) > 2g—2, then (D) = deg(D)—g+1, unless D ~ C and in that case deg(D) = 2g—2
and (D) = g.

Let b,, denote the number of effective divisors of degree n.

Lemma 9 ([Ros02], Lemma 5.8). For every integer n there are hy divisor classes of degree n. Suppose

n >0 and that {[D1],...,[Dny]} are the divisor classes of degree n. Then
i U(D;)
¢ =1
b, = .

Combining the above statements, one gets

Lemma 10 ([Ros02], p.52, [Mas06] Proposition 3.1). For all non-negative integers n > 2g — 2,
n—g+1 __ 1
by = thi.

qg—1

Similarly,



Lemma 11.

(3) bo =1,
and
o1, hr(@9T - 1)
(4) bag—2=q""" + g1
Proof. The first statement is a consequence that the only effective divisor of degree 0 is 0 itself.
We use Lemma 9. Let {[D1],...,[Dh.—1], [C]} be the divisor classes of degree 2g — 2. Then
¢C —1 Ml oy g
brg2= "t 2 1
=1
By Corollary 8, the above equals
¢ —1 ¢ -1
hg —1)——
—1 + (hx ) g—1
and this simplifies to the formula in the statement. O

For a divisor D, let |D| = ¢4°8(P) be its norm, which is a positive integer and satisfies that |D; 4 Dy| =
|D1| - |D2|. Recall that the zeta function of K is defined by

C(K;s) = Z = Re(s) > 1.

DI+’
DeD};

It is immediate to see that

%S bn
K;s) = —.
(K5 s) e

n=0

Masri [Mas06] extends this to define the multiple zeta function of depth d over K as

1
S(K;81,...,8q) = —_—
Ga( 1 ) Z .. |Difsr Dyl
(D1,...,Da)€(Dg)
0<deg(D1)<--<deg(Da)

which can also be expressed as
[
* . _ ni nd
(K s1,...,8q) = Z TS
0<ni1<--<ngqg
3. SOME REDUCTION RESULTS FOR MULTIPLE ZETA FUNCTIONS
We start this section by considering the case K = F (T).

Theorem 12. We have
d

* . — q ei+---+eq —(e1+--+eq
gd(]Fq(T),Sl,...,Sd> —W Z (71) 1 dq ( 1 d)
e1,...,eq€{0,1}
d—1
(5) X HC*(]Fq[T];Sdfj+€d—j+"‘+5d+€d—j)
§=0
S1+-+8d

q e14-+e
= _1 1 d
(g—1)7 2 ()
61,“.,6{16{0,1}
d—1
(6) x [ ¢ F[T); a5 + €aj + -+ + 54 + €a — ).
j=0
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Proof. When d =1 we have

* B 1 qn+1 -1
C (FQ(T), 8) _q -1 o qns
_q i 1 (QC*(Fq[TL S) - C*(FQ[T}; s+ ]_))
:qq_s 1 (C(Fy[T];8) — C*(Fg[T];5 + 1)),

which satisfies both equations (5) and (6).
By extracting the last term in the sum and using the geometric summation, we have

1 (qn1+1 _ 1) . (qnd71+1 _ 1) qnd+1 ~1
a(Fq(T);s1,-- ., 8a) e > B

—1)d ni181+-+ng—184—1 ndSd
q ) 0<n1<---<ng—1 q ng>ng—1 q

_ 1 Z (q"l‘H — 1) ... (q"d—l"!‘l _ 1) (qnd1(1—sd)+1 q—ndlsd)

(q — 1)d qn151+”'+nd—15d—1 1— qlfsd - 1—qg s

_ q Z (qn1+1 _ 1) - (qnd—1+1 _ 1)

(q _ 1)(1(1 _ ql—sd) n1s1+-+ng_284-2+nd—1(sa—1+s4—1)

0<n1<--<ng—1

0<n1 < <ng—1 4

1 ni+l 1) ... (gda—1tl 1
B 3 (¢ )+ (g )

(g — 1)4(1 — g=sa) grisittna—2sa—2tna—1(sa-1+sa)

0<n1<-<ng—1

q

q—1

@ — BTl sa DG (Fa(T)isn, 52,51+ 50)

C(Fg[T]; 8a)CG—1(Fg(T); 51, -+, Sd—2, Sd—1 + 5q — 1)

which gives a recurrence relation reducing the depth.

Proceeding by induction, we replace formula (5) for d — 1 in (7) and make the change h = j + 1 in order
to obtain

qg—1 Thisatg . a1 Y (mpmtrteangmletotea)
€1 4enny Ed_le{o,l}

o T e
e1,...,ea—1€{0,1}

d-1
X H C(Fg[T); 84— + €4—n + -+ 84—1 +€4—1+ 54+ 1—h)
h=1

and this proves formula (5) by induction.



Similarly, we can replace formula (6) for d — 1 in (7) and make the change h = j 4+ 1 in order to obtain

q gorsanl o
G (Fq(T); 515, 5q) ZEC*(Fq[Tde)W Z (—Dertrrean
€1,euny ed,le{O,l}
-1
X || C*(Fq[T); 84— + €4—n + -+ - + 84—1 + €q—1 + 54 — h)
h=1
1 q81+-~+8d
_ *(F [T 1 _1)erttea—
q_l (q[ ]’Sd+ )(q—l)d_l Z ( )
e1,...,ea—1€{0,1}
d—1
X H C*(Fg[T);80-n +€a—n+ - +5a-1+es-1+8a+1—h)
h=1

and this proves formula (6) by induction.

Corollary 13. We have

d
() GETysnsa) =Ty D0 ()T OGE Ty e, sa+ea)
e1,...,eq€{0,1}
q51+m+5d 44
EN Do (FD)ETEAGR [T s+ ers 5+ €a)
61,...,€d€{071}

Proof. This is a consequence of equation (2).

We continue with the general case of g > 1.

Lemma 14. Assume that g > 1 and let

(¢t —1)-- (¢ —1)

qmisit Tt nmsm

S (51, Sm) = >

2g—2<n1 < <nyy,

Then we have

S (81, .-+ 8m) =qom 29— D (s1HFsm) Z (—q9)~(erttem)
e1,...,e;m, €{0,1}

m—1
< ] CFolTTs smj + €m—j + -+ S+ €m — ).
§j=0

Proof. First notice that the case m = 1 is given by
q7l—g+1 -1 B e
Sis)= > T =P (BT s) — (B [T+ 1)),

ns
2g—2<n q

which satisfies the claim.



By extracting the last term in the sum, and using the geometric summation, we obtain,

g9t — 7). (g"mrmetl ] g It -1
Sulstrevsm) = Y ( ). ( S et

n1S1+ T 185m ms
qll m—15m—1 qmm

T, > M — 1

Z (qnl_g+1 — 1) AN (qn'mfl_.(]"!‘l _ 1) (g’ﬂvnl(l_57n)_g+1 q_nmls'm)

grisitetnm—18m -1 1—qgl—sm 1 q—sm
29—2<nm1 < Snpm

= Z (qnl_g+1 — 1) e (anvl—l—g+1 _ 1)

qm81+--~+nm71(sm71+sm71)

2g—2<n1 < <nyp—1

1 Z (qm—9tL —1)... (gnm—1—9+1 _ 1)

1—qgsm grisitFm—1(sm-1+sm)

29—2<n1 < <Ny -1
:q_g+1c*(Fq[T]; Sm)smfl(sla sy Sm—2,5m—1 + Sm — 1)
- C*(]Fq[T]v Sm + 1)Sm—1(317 sy Sm—2,8m—1 + Sm)a

which gives a recurrence relation that reduces the depth.

Proceeding by induction, we replace the formula for m — 1 and make the change h = j + 1 in order to
obtain

Son(s1,- ) =g TG [Ty sy )20 DE o) SR gy lentetensy

e1,..,em—1€{0,1}
m—1

X H C*(FQ[T]v Sm—h t €m—h+ -+ Sm-1+tEm_1+Sm — h)
h=1

_ C*(Fq[T]; S + 1)qg(m—1)—(29—1)(81+-~.+sm) Z (_qg)_(el+"'+€m71)

e1,...,em—1€{0,1}

m—1
X H C*(FQ[T]v Sm—htem-pt+Sm-1+E€m-1+Sm— h+ 1)’
h=1

and this simplifies to the formula for m.

Theorem 15. Assume that g > 1 and let

bn1 ... b .
9) R (K81, ..., $m) = 3 R

qn151+-~+nmsm :
0<n; < <nyp, <292

Also set Ry = 1.
We have

d 9p, 4
K sty 80) =Ra(Ks1,...o50) + Y <q K) Raco(K 51, sq—g)g” 97 Danictotsd)

=1 N1~ 1
-1
x > (—q?)~Canetoted) TT CH(Fy[T); 50— + €a—j + -+ + 54 + €4 — J)-
eqt1—¢,..-,4€{0,1} Jj=0

This is Theorem 3 from the introduction.



Proof. By direct application of the definition and by replacing the value of S, (s1, ..., $mx) given in Lemma
14, we have

by -~ by
C(K;81,...,84) = Z — 1 d

qn151+“'+nd8d
0<n1<---<ngq

d
he
=R4(K;81,...,84) + Z rKl)ZRd_g(K; S1y--eySd—t)Se(Sdt1—0s- -+ 5d)-
=1
d hg
ZRd(K; S1yenny Sd) =+ Z (_7K1)£Rd_g([(; S1,..., Sd_e)qgl—(29—1)(Sd+1fe+---+5d)
= Y
-1
X > (—q?)~(earimetbedd TT C*(Fg [T $a—j + €a—j + -+ + sa. + €4 — ).
edqt1—¢,..-,4€{0,1} Jj=0
O
Corollary 16. We have
d Whx ¢
Ci(Kis1,... 80) =Ra(Kis1,....s0) + Y ( — 1> Rao(K;s1,...,8q-¢)q~ P97 Dlsarietotod)
= N4
(10) x ) (—g?)Cari T DGR [T sasr—e + €arres -, 50+ €a).
eqt1—¢,..-,4€{0,1}
Proof. This is a consequence of equation (2). O
For the case g = 1, we have the following.
Theorem 17. Let g =1, then
d
CG(K;s1,...,80) =1 + Z heq=(arr—et b0 (X (B (T); Sat1—0s - - - Sa).
=1
Proof. Recall from equation (3) that by = 1. We then conclude that
R(K;81,...y8m) =1 for all m.
Now apply equation (10) together with (8).
|
In the case where we have the function field of an elliptic curve E, we obtain that hx = |E(F,)|.
Corollary 18. Let g =1, then
C;(K7 S1y+-+, Sd) :C;—l(K, 82,4, Sd) + h}d(qi(erMJrSd)C;(]Fq(T); Slyvny Sd)‘
Proof. Consider the case d =1 in Theorem 17.
C(K58) =14 hxq ¢ (Fy(T); 5).
Similarly, with d = 2,
G5 (K s1,82) =1+ hueq "2 (Fg(T); 82) + hieq™ 12 G (Fy (T); 51, 52)
=" (K 52) + hieq™ T2 G (B (T); 81, 52).
The rest of the proof proceeds by induction. O



4. A GENERALIZATION TO POLYLOGARITHMS

In this section we extend the previous construction of multiple zeta functions to multiple polylogarithms.
In this section, all subindexes k denote positive integers.
We start by considering the depth-one case,

N Zdegf

Lij (Fq[T); 2) = Z Wa
SeR(T]
0<deg(f)

which is absolutely converging and analytic for |z| < ¢*~! (here we take the convention 0° = 1 so that
Lif (F, [T} 0) = 1).

Then
. 2. 2"#{F monic|deg F = n}
le(Fq[T}Q z) = Z nk
n=0 q
DI
- n(k—1
—q (k-1)

P —1
= 1 _—
( qk‘l)

provides an analytic continuation to the complex plane with z # ¢*~ 1.
We define multiple polylogarithms in a similar way.

Zdeg(ﬁ) o Zdeg(fd)

1 d
|f1|k1 ...|fd‘kd ’

Lizl,...,k‘d(Fq[T];Zl’"'7zd) = Z
(f1,-:fa) EFg[T])?

...,fa monic

0<deg(f1)< - <des(fa)

which is absolutely convergent and analytic in the complex region

(11) |2+ 24| < Mt TRadtI— j=1,...,d.

)

As before, we can write

i 21t -z fi monic| deg f; = n;}
lel"‘”kd(FQ[T];Zl“"7zd) = Z qn1k1 ..~qndk7d

0<n1<---<ng

ny nd
- ¥ 2tz
- ni(ki—1) ... gna(ka—1)"
0<ny < <ng 4 1

Writing ¢1 = ny and ¢; = n; — n;_1, we have,

Lizl,.“,kd(Fq[T];le-~,Zd): Z
0<ty,....0q

-1 -1 -1
21 2d 2924 Zd

(12) _<1qk++k—d> (1qk++k—(d—1>> <1qk—1> )

and this provides an analytic continuation to the complex region

(13) ZjAd #qkj—‘rm—‘rkd_d—‘rj_l) .7 = 17"'ad'

We can prove a result that is analogous to equation (2) in the case of polylogarithms.

Theorem 19. We have

Zfl Z§1+€2 . Zﬁl1+~--+én
g ei=1) gl +6) (k2 —1) ... g(Cr+ba+-+La) (ka—1)

d d
(14) Lif, e FalTli 21, za) = [[ Lk o kayy | FalTh [ 20
j=1 h=j
10



Proof. The proof follows directly from equation (12). O

For a global function field K, consider
Z;ieg(Dl) . deg(Dd)

% . _
lel ’’’’ kd(K’Zh""Zd)_ Z |D1|k1...|Dd|kd )

(D1,...,Da)€(D)?
0<deg(D1)<---<deg(Dg)

where DIJQ is the semigroup of effective divisors.

Remark 20. Observe that

Ca(K ki, ka) = Lig, 5, (K;1,...,1)
and we will use the notation k; to indicate z; = —1. For ezample,
Ca(K k1, ... ka) = Lig, 5, (K;—1,...,—-1).
The same notation will apply for Fy[T] in place of K.
It can be seen that
Theorem 21. Lij, ;. (K;z1,...,2q) is absolutely convergent and analytic in the complex region determined
by (11) and has an analytic continuation to the complex region determined by
(15) Zj - 24 £ ghitotka o gRitetka—ddi—1 j=1,....,d.

This is Theorem 4 from the introduction.

Proof. Define the non-negative integers
Qny,oong = #{(D1,...,Dg) € Df x -+ x D} |deg(D;) =n;,j =1,...,d}
and recall that
bn, = #{D; € D} | deg(D;) = n;}.

Then we have

d
Anq,...,;ng = H bn

j=1

Hence, we can write

ni

z

ok . _ 2 : 1

lel,‘..,kd (Ka Rl Zd) - Any,...ing qn1k1 . qndkd
0<n1<--<ng

.. nd
Zd

nj

= > H

0<n1<---<ng j=1
Z1+ L

_Z ZHbfﬁ G (Gt E5) ¢ el+ T

£,=0 Lq=07=1
By Lemma 10,
Oyttt
|b€1+'“+éj‘ < qu vt

for some constants C; > 0, j = 1,...,d. This yields the estimate

d z£1+"'+ej d
J byl —ki\l1+---+l;
H b, +.. vy 7(21_‘_ ) <Hqu1 J(zjq i)t 3
Jj=1 Jj=
d

1
H Cj(z - zd)éf (qd—j+1—(kj+"'+kd))€j

=1



Thus, by using the geometric summation, we have in the complex region determined by (11),

ﬁ i d GH1—(kj+-- +kd))

oo oo d 21+ L

Z Z H bey ot /1+ gk (Erttey)

0=0  £q=0j=1 J=1 4
d _1
H ( (k+ +kd) d+] 1> ‘
This proves that for any global function field, Li;, ;. (K;z21,...,2a4) is absolutely convergent and analytic

in the complex region determined by (11).
The region for analytic continuation will be a consequence of Corollary 26.
O

5. SOME REDUCTION RESULTS FOR MULTIPLE POLYLOGARITHMS

In this section we collect analogous results to those of Section 3 for the case of multiple polylogarithms.
The proofs are very similar, and therefore we omit some of them, while repeating others for the sake of
clarity.

We start by considering the case K = F,(T).

Theorem 22. We have
d

. q _
Lify o Fa(T)iz2) =gy DS (Fatbesgmated
q el,...,edE{O,l}
d—1 d
(16) x HLizd—j+ed—_1+~~+kd+ed*j F‘Z[T]; H “h
j=0 h=d—j
qk1+--'+kd

:# (_1)el+~-+6d
(q— 1)Ly 2e e1,...,eq€{0,1}

d—1 d
(17) X H Li2d7j+€d—j+"'+kd+ed7j Fq[T]; H “h
j=0 h=d—j
Proof. The proof of this result is analogous to that of Theorem 12. O

By combining the above result with equation (14), we obtain the following.
Corollary 23. We have
(18)

d

o q ey (g . _
Lig, ok, (Fo(T); 21,0 2a) :4((171)61 Z (—1)ertteag (e1+ +ed)L121+e1,‘..,kd+ed(]FQ[T]vzla'"7zd)

= —1)eatFeayyx F,[T];21,...,24)-
(Q*l)dHLl Zloey,..., edE{O,l}( : kl“lw’kdﬂd( q[ | )

We continue with the general case of g > 1.

Lemma 24. Assume that g > 1 and let

(@9t — 1) (g9t — )], )
,Zm) _ Z l=1"~0

- qn1k1+“'+nmkm

Sklv-":km, (Z17 R
29—2<n1 < <ngy
12



Then we have

m 2g—1
Sy (21 2m) =g (D a ) (H ZL,) T () Certten)
(=1 1

e1s..em€{0,1}

m—1 m
(19) X H BT — 1 H Zh
j=0 h=m—j

Proof. The proof of this result follows very closely the proof of Lemma 14. First notice that the case m =1
is given by
(qningl B 1)Zn - = — ok ok
S@) = Y e — e (LT ) — Lija (FT):2)).
2g—2<n

which satisfies the claim.
By applying the geometric summation on the last term in the sum, we obtain,

_ _ -1 _
s (z B ) _ Z (qm g+1 _ 1) - (qnmq g+l _ 1) 7:1 de Z (qnm g+1 _ 1)Z%m
kiyekm \FLs e o5 2m ) = qn1k1+"'+nmflkmfl

29—2<n1 < <N T, >N — 1

- ¥

29—2<n1 < <nim—1

<qnm1(1km)g+1zglm1 q7n7rL—1k77L P )
X

qnmkm

(=9t — 1) ... (gnm-1—9+L 1) Z":f 2

qn1k1+'“+nm—1km—1

1 g Fnzy, L—q iz

quJrl Z <qn1—g+1 _ 1) . (qnmq—g-&-l _ 1) Zn 12 z[ (szlzm)nmA

T 1= glkmy nikitAnm o1 (km—1+km—1)
q m 29—2<n1 < <nyp—1 q

1 Z (=9t — 1) ... (gnm—1~ g+1_1)H€ 20 (21 2m )

- 1—qgFkmy niki+-+nm—1(km—1+km)
q m 29—2<n1 < <Ny —1 q
+1 .
q -9 le?n(]F [T]7Zm)Skl7~~)k7n72;k77n—1+k77n_1(z17' b 7Zd—27zm—12m)
- lem+1(Fq [T]’ Zm)skly--wk‘mnykm,fl +km (le ceey 2d—2, Zm—lzm)v

which gives a recurrence relation that reduces the depth.

Proceeding by induction, we replace the formula for m — 1 and make the change h = j + 1 in order to
obtain

m 2g—1
Stetroodom (215 o 2m) =q ITILE, (Fg[TT; 2n) g™~ D~ (o= D (Rabhn =) <H Ze) > (—g?)~lerttem-n)
= 1

er,...,em—1€{0,1}
m—1 m
X H L tem ntothm—h H &4
Z

h=1 =m—h

m 2g—1
R — (M S o
1

(= e1,...em—1€{0,1}

[

m—1 m
X H L, etk 1=k H Ze
e

h=1 =m—h

and this simplifies to (19). O
13



Theorem 25. Assume that g > 1 and let

(b2l
(20) Ryt (K21, 2m) = ¥ T2 (bni2™)

qn1k1+'“+nmkm
0<n1 < <n,pp <292
Also set Rg = 1.

We have
d Wi ¢
Liy, o, (K21, 2a) =Ry (K 21, +Z<q_1> Rieyokg s (K521, 2a1)
=1
d 2g—1
*(29 1)(kay1—e+- +kd)< H Zz)
i=d+1—¢
-1 d
(21) « Z (_qg)_(€d+1—é+~..+€d) HLi;dfjJrediﬁdeJrerj F,[T7; H %
€d+1_g,“.,8d€{0,1} 7=0 i=d—j

This is Theorem 5 from the introduction.

Proof. By direct application of the definition and by replacing the value of S, . k.. (%1,...,2m) given in
Lemma 24, we have

d n;
: = bmzi )
lel,...,kd(K;Zla"'7zd) = Z M

qn1k1+~--+ndkd
0<n1<--<ng

d
R
=Ry ooka (K521, 20) + - K Rkl, g (K521, 2a—0)Shaya o, kg (Zas1—e, - -
=1
d
¢“hk
=Ry, ka (K 21, - )+ < ) Riyeoka o (K5 2105 2d—1)
= N1
% q*(29*1)(/€d+14+~~+kd) ( >
i=d+1—/¢
-1 d
X > (—q?) (o=t T Ligy_yeu s +othateas | FalTl I 20
eqt1—¢,.--,4€{0,1} Jj=0 h=d—j
]
Corollary 26. We have
d hi\"
Lizl,‘..,k‘d(K; Zlyenny Zd) :Rkl,“.,kd(K; Zlyeeey Zd) + Z (q — 1) ,R’kl,m,kd_/,(K; ARRERE) Zd,g)
=1
d 2g—1
g~ 297D kar1—etotha) H zl>
i=d41—£
(22) X Z (—qg)_(ed“*”'”*ed)Lizd+1_[+ed+1_[,...,kﬁed (FQ[T]; Zd41—0y - - - Zd).
Cdt1—£5---,d€{0,1}
Proof. This is a consequence of equations (14) and (21). O
Corollary 26 shows that Lij, . (K;21,...,24) is a rational function with analytic continuation in the
region (15) given by
g #qRittka gkt tRa=d =1 j=1,....d.

This concludes the proof of Theorem 21.
14
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For the case g = 1, we have the following.

Theorem 27. Let g =1, then

d d
Lif, (B2, 2a) =14 ) b ( 11 z) g an-etorkan o Fo(T) a1t - Za).
=1 i=d4+1—¢

Proof. Since by = 1 we conclude that
Riy,ka(K;21,...,24) =1 for all d.

To conclude we combine equations (22) and (18).

O
As before, we obtain a nice recurrence for the case of g = 1.
Corollary 28. Let g =1, then
d
le1 ----- ka (K’ Zlyeees Zd) :Lizzy---ykd (K’ 25 Zd) * h?( (H Ze) qi(hlJr.“Jrkd)Lizh. kq (]Fq (T)v 21, 7Zd)
=1
Proof. The proof proceeds in a similar fashion to that of Corollary 18. O

6. IDENTITIES FOR SPECIAL VALUES

In this session we explore multiple zeta values and compare them to analogous results in the classical
case. All the multiple zeta functions over function fields are rational functions on ¢~° so these formulas are
expected a priori and are not as surprising as the results in the number field case. Nevertheless, they yield
interesting comparisons.

6.1. The F,[T] case. Special values of (5(F4[T]; s1,...,8q4) are easy to find, thanks to equation (2), which

we recall here:
d

Ci(Fg[T)i 51, 5a) = [T ¢ (FglThi s+ + 50— (d — k).
k=1
We start with one of the most elegant identities due to Hoffman [Hof92] for the classical case and to Aoki,
Kombu, and Ohno [AKOO8] for the star case. For d > 0, we have that
2d B 2d
(2,...,2) = o0 C2,...,2) = 2(1 - 2720)¢(2d) = (—1)P (22t - 1) 22T

—— (2d + 1)V ———— (2d)! °
d d

Remark that the right hand side of each of the above equations can be interpreted as a rational multiple of
¢(2)"
We start by considering (5 (Fy[T];2,...,2). Following Zagier [Zagl2], we set
Hy = (F,[T];2,...,2).

In particular

Hy = ¢ (Fo[T]; 2).
Proposition 29. We have for n > 2,
H{L—l

(23) C(Fq[T]sn) = 1 _ (H, — l)n—l'

Proof. Tt suffices to observe that

1 1 1 H’I’L*l
*(F,[T];n) = = = = ; '
C(Fq[TTsn) 1-¢— 1-(1—(1—¢g )t 1_(1_1%)”*1 H' b — (Hy —1)n-1
1

15



Corollary 30.
Fd+1)/2
(24) (R [T);2,...,2) = Hy = L .
[T (Hy = (Hy = 1))

Proof. Recall from (2) that we have

d+1

G(Fg[T;2,...,2) = [[ ¢ (F [T m).

Then apply equation (23). |

The right hand side of equation (24) has total degree d, and we can interpret (j(Fq[T];2,...,2) as the
d power of (*(F,[T];2) (with some correction factor). This result is consistent with the number field case,
even if the final formula is not as simple.

The above result can be easily generalized.

Corollary 31. We have for m > 2,
Hl(m71)d(d+1)/2

14 (H™ D™ — (Hy — 1)(m=1n)

n=1

(25) G (Eq[T];m,...,m) =

Proof. By (2) we have
d
S (Thsm, ..., m) = [ ¢ (FlT); (m — D +1).
n=1

Then apply equation (23). |

Muneta [Mun08] proves
¢r(2¢0,...,20) = Cd,gﬂ'%d,
——
d

where Cy ¢ is certain given rational number. By setting m = 2¢ in (25) we see that the total degree on the
right-hand side is d, which would correspond to 72¢, and therefore our formula is different from the one in
the classical case.

Ohno and Zudilin [OZ08] consider values of the form ¢*(1,2,...,2,1,2,...,2,1,--+,2,...,2,1,2,...,2),

——— N—— ———  N——
bl bg b[—l bn

where b1,...,by > 0 and formulate the Two-one Formula to reduce them in terms of classical values of
smaller depth. They prove several special cases, while Zhao [Zhal6] proves the most general statement.

We consider

Glat, . ya0) = Cpoiapro1 FlT152,000,2,1,2,000,2,1, -+ ,2,...,2,1,2,...,2).
—— = —— =

ai az Ap—1 ap
(The case of Ohno and Zudilin is included in the above when a; = 0.)

Theorem 32. We have

a-lﬁ-l Hb+(a+b)(a+b+1)/2
G(a,b) = C*(Fy[T);0+ 1) ¢ (Fy[T];m) = EvER=Ta ;
n=2 (HY — (Hy = D)) [T (HY — (Hy = 1))
and more generally,
4 ar+--+ag+1
Glar,...,a0)) = [[ CFglThiam+-+ac+1) [ ¢ EJT]in).
m=2 n=2
Proof. These formulas are a direct consequence of equation (2). O

16



In particular, we obtain,

a+1
G (Fg[T);1,2,...,2) = G(0,a) = C*(Fy[T);a + 1>£[2<*<1Fq[T];n>,
a+b+1
C(F,[T);1,2,...,2,1,2,...,2) = G(0,a,b) = C*(Fy[T];a + b+ 1)*(Fy[T); 0+ 1) H C(Fy[T];n),
— T =

and
Gp1(Fg[T)i 1, 1,2) = G(0,....,0,1) = ¢ (Fy[T];2)" .
——
b b
From the cyclic sum formula due to Ohno and Wakabayashi [OW06] one can deduce ([OZ08] formula
(3a)):

¢*(1,2,...,2) = 2¢(2a + 1).
—

a

Ohno and Zudilin prove ([OZ08], Theorems 1 and 2):
C*(1,2,...,2,1,2,...,2) = 4¢C*(2a + 1,2b + 1) — 2¢(2(a + b) + 2),
—_—— =

a b
b—1
C(L..,1,2)=>"2"7 3" ((I+epj,....1+ex3+e).
b j=0 e1+-+ey_j=j

e; >0
The comparison between the above formulas for ¢* and those for (*(F,[T]) is not so clear, due to the
relative simplicity of ¢*(IF,[T7).
Zagier [Zagl2] considers the multiple zeta values ((2,...,2,3,2,...,2) and relates them to a convolution
of ((2,...,2) and {(2n — 1). We now explore analogous results for (*(F,[T];2,...,2,3,2,...,2).
Again following Zagier we define for a,b € Z>,

H(a,b) = Cpyrq (F[T]:2,...,2,3,2,...,2),
(a,b) +o41(Fo[T] )

——
a b
and more generally
H(at, . oya0) = Crpovapror FolT152,.00,2,3,2,...,2,3,-+,2,...,2,32,...,2),
- —— = —— —
ay az apg—1 ag
where we take ay,...,ay > 0.
Theorem 33. We have
H(a,b) L § O I A < [ VA i
ab)= ——-—— in) = - )
C(Fy[T];b+2) 14 ! HOH e (Hy — (H, — 1))

and more generally,

H(al N az) _ HZ;E..~+M+2€—1 C*(Fq[T]; n) .
N T L G B Than -+ ar 200+ 1))

Proof. These formulas are a direct consequence of equation (2). O
As before, the comparison to Zagier’s formulas is not so clear, as our formulas are much simpler.

Theorem 34. We also have

C;d(Fq[T]a 1737 17 3a ey 1a 3)

Il
o~
Py

=
i
=
I

N]
+

—
S



Muneta [Mun08] proves

¢*(1,3,1,3,...,1,3) = Cyn?,
~—_———
2d

where Cy is certain rational number. Our formula has degree 2d, corresponding to 7*?, and therefore, the
degrees coincide.

We close this section by considering some special values of polylogarithms. Recall the notation from
Remark 20.

Theorem 35. We have

* - 1
(26) G (BT, 1LT) = oy
and
1 d+1
C;JFQ(FQ[T]’LL 7112) = 1+q_1<* (Fq[T]ﬂ) .

Proof. By (14), we have

[RREE}

and

=

<;+2(FQ[T]§ y1,.00,1, 2) :Li; ..... 1,2(Fq[T]§ -L,1,...,1, 1) = Lig(Fq[Tk _1)Li§ (Fq[T]; 1)d+1
~——

=Lij (F,[T): ~1)¢* (F,[T]:2)"*"
Xu ([Xul8], equation (2.9)) proves

—— 2
d

¢*(1,...,1,T) = —Ligns (1) -

It is interesting to compare Xu’s formula and (26).
Xu also proves a result ([Xul8], Theorem 2.6) that gives a recursive formula for ¢*(1,1,...,1,2) involving
powers of log(2) and terms of the form Li; (1).

6.2. The Fy(T) case. In this section we consider special values of (}(Fy(T);s1,...,5q). It is harder to
find elegant formulas in this case because, unlike the case of ((Fq[T1]; s1,. .., Sq), we do not count with the
reduction (2).

‘We will concentrate in the cases in which s; = - .- = s4 which are much easier to handle than other cases.
Set

Thus,

We also set Ho(m) := 1.

Theorem 36. We have the following reduction formula

d—1 7 .
Halm) = 33 B ! ()¢ BT G4m0

This is Theorem 6 from the introduction.
18



Proof. We consider the following stuffle! product.
C(Fg(T);m, ..., m)C*(Fy(T); k)

1 1
S X B X T

(D1,...,Dd)€(Dufq(T)) EecDF

Fq (T)
0<deg(D1)<---<deg(Dq) 0<deg(E)
-5 x 1
j=1 (E,Dl,...,Dd)E(D+ )d,+1 | 1| | J 1| | | | .7| ‘ d|

Fq(T)
0<deg(D1)< - <deg(D;—1)<deg(E)<deg(D;)<-<deg(Da)

d 1
_Z Z Di|lm .. |D,_{|m|D,|k+m ... |D,|m
=1 (B.\Di,., Da)E(D, (7)) = Dja™1D4] Dl

0<deg(D1)<---<deg(D;—1)<deg(E)=deg(D;)<---<deg(Da)

1
Jj=1 (E,Dl,...,Dd)e(ng(T))d+1 1D D[ BI*ID;] Dl
0<deg(D1)<-<deg(D;_1)<deg(E)<deg(D;)<-<deg(Dq)
d
1 Z q|Dj| -1
¢— 1z b [ D[« |Dj_q|™[ Dy |FFm - | Dg|™’
j=1 (E,Dl,...,Dd)E(DWq(T))

0<deg(D1)<--<deg(D;—1)<deg(D;)<--<deg(Da)

where we have used that byeg(p;) = % to count the number of possible E’s with that degree.
Thus,
(27)

d+1

d
GE(T)m, ..., m)C(Fy(T)ik) =Y oy (Fy(T)im, ... k. im) — (Fil N GE(T)imy ok m -1,
=1 j=1

(28) +m;(g(Fq(T);m,...,k—|—m,...,m).

Let
d

N(damvk) :ZCQ(FQ(T)vmavkaam)
j=1

in the above notation. Then equation (27) implies

N(d,m,k) = Ha—1(m)C*(F (T); k) + %N(d —1,mk+m-—1)— q_%N(d —1,m,k+m).
Notice also that
d
(29) N(d,m,m) = Z GEL(T);m,...,m,...,m) =dHa(m).
j=1
We claim that
= Ha1j(m) & J
_ —1— L * s j—4
(30) N )= 3 S S (§)¢* @utysstm = 1)+ 0+ 0y~

We proceed by induction on d. When d = 1, we get
N(17m7 k) = C*(Fq(T); k)v

1See ([LQ18], Corollary 1.5) for the stuffle product of the zeta star values in the classical case.
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and formula (30) is true in this case. Now assume that the formula is true for d — 1. Then

N(d,m, k) =Ha (m)C*(Fy(T); k) + q%z\r(d —1,mk+m—1)— qu(d —1,m, k+m)

) By (T)e) 3 Hamam) (1) ED: G+ 1 = 1)+ 4 R

q—1 (q—1)

Jj=0 =0
1 X Ha—2—;(m) ! TEAYS Y e
qg—1 JZ:% (q—1)7 ;(_1) (€>< (Fog(T);(j+1)(m—1)+L+Ek+1)q
d— 7 .
s )G (T R) 3 ) S () T G+ om = 1)+ £+ R
Jj=0 =0

3 i) g gy (]) CH(Fo(T); (G4 1)(m = 1) + €+ k4 1)g’™*

— +1
j=0 (=1 =

Sending j + 1 — j above and ¢ + 1 — £ in the last line, we have,

Hd 7 -1 . y N

N(d,m,k) =Hq_1(m ) +]§1 qil ; < Y, ) (FQ(T)J(m_l)‘i‘f-i-k)q V4
: :Hd 1— _7 J 1 ]—1 « » i
= ;QGJV (g_l)CU%ﬂUJOn—1)+€+kM ¢

and claim (30) follows from Pascal’s formula.

The statement of Theorem 36 then follows from setting k = m in (30) and applying (29). O

We will now proceed to find a formula for ((F,(T);m,...,m). We set
Ha(m) = G (F(T);m, ..., m) = Lip, m(=1,...,—1).
—_———

Thus,

Hi(m) = (" (Fy(T);m).
We also set Ho(m) := 1.
Theorem 37. We have the following reduction formula

) = 5 3 Pt S () e, o 15 0

§=0 (¢—1) £=0

Proof. As in the case of the proof of Theorem 36, we have
d+1

d
(D), ) (FQ(T)i k) = Gy (BTN, .. K, .. T70) — q_il S GE(T)ym,. . Erm 1,
=1

d

1
+ qjZCQ(Fq(T);m,-..,k+m,...,m),
j=1

as well as
d+1 B q d
C;(Fq(T),m7,m) ZC;Jrl(Fq >ka 77>_HZC§(FQ(T)7 k+m_1a
j=1
1 d
+q_1Z<;<Fq<T),m e+m, ... )
j=1



Let

and

d
= GF(T);m, ... k..., m).

j=1
Then we have that
N(d, 71, k) = Ha_r (1) (Fy(T): ) + q%lzv(d LmErmoT) - q%lmd 1m, o+ m),
N(d, 7, k) = Ha_1(M)C*(F,(T); k) + %N(d —1,m,k+m—1)— ﬁN(d —1,m, k +m).
Notice also that
d
(31) N(d,m,m) = > G(Fg(T);m, ..., m, ..., m) = dHa(m).
j=1
We claim that
= Ha_15() & j
— —1—= L * o j— £
(32) Nam ) =3 S S (§)¢ @utrsstm = 1)+ ¢+ g
d—1 H ) m) J .
(33) N(d,m,k) = bt NI > (=1)f (‘2) C(F (T);5(m — 1) + L+ k)g?—*

We prove both equations (32) and (33) together by induction on d. When d = 1, we get
N(L,m,k) = ¢*(Fy(T); k),  N(Lm,k) = *(Fy(T): k),
and formulas (32) and (33) are true in this case. Now assume the formulas are true for d — 1. Then for (32)

we have
1 .

N(d,m, k) =Hq_1(m)*(F (T )E)—I—ilN(d—l m, k—&—m—l)—jN(d 1,7,k +m)

=Hd,1<m><*<wq<T>;E>+q31 qu:’_iiZ ¥ (§)¢ @@ T DT Ry
j=0 £=0

d—2

X P S () @D m = 1+ 05 R i

(g =0

We obtain (32) by proceeding similarly to the proof of (30).
For (33) we have
— 1
N(d, 7, &) =Ha_1 () C* (Fy(T); k) + LN(d — LTk +m—1) = —=N(d = 1,7,k +m)
q— q—

J

.\ . q H 2 17 / (i J—
=Hq_1(m)*(Fy(T); k) + 1 2 dq_ 1) ; ( ) F (T);(j+1)(m—1)+L+k)q ¢

1 Z 'dezfj(‘m) i(_l)é (]) CEFJT);G+D)(m—1)+Ll+k+ l)qj—e

As before, we obtain (33) by proceeding similarly to the proof of (30).
After setting k = m in (33) and applying (31), we obtain the desired result. O
We now show how the recurrence relations of Theorems 36 and 37 lead to closed formulas for Hq(m) and

Ha(m).
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Theorem 38. Let Hy be defined recursively by Ho =1 and

1d—l
7‘[,1 = 8;7‘[{1_1_]'(%‘4,_1.

Then we have
£y Lq

o al .. a/d
Ha= Z AT 2
l14+20o+--+dlyg=d
where the sum is taken over all the possible non-negative integers €; such that €1 + 2o+ --- + dly = d.

Proof. We proceed by induction. If d = 1, we have
Hl = Hoal =aa,

and the statement is true. Assume it is true for up to d — 1. Then

=
Ha =2 Zo Ha-1-jaj41
=

Qaq 1 ity aél N a/gd
:FJFEZ Z Ol gl | Y
J=1 \L1+2la+--+dlg=d—j
_d + = ] Z (fj + l)afl aﬁﬂ_l -aﬁd
T d d gly...(gj+1)1...gd!161...jfj+1...d€d'

J=1 7 042004 +j (0 +1) ++dlg=d

Now we do the change ¢; + 1 — ¢; and the above becomes

d—1 .
ad +ZJ Z éjaliil"'af;d
d ““~d AL RREY 1N eI, (2
J=1 "t +2+ -+ dlg=d
£;>1
d—1 .
_ G4 +ZJ Z gjalil"'“fzd
d “4“~d Ol g1 .. gl
Jj=1  l1+2La+-+dlg=d
¢ ¢ d—1 .
BN M S L
B l... 0016 ... dla ’
d G 4200t tdly=d bl by d j=1 d

Notice that /3 = 1 only when all the other ¢; are equal to 0 and in that case the quotient inside the first
sum is just equal to ag/d. Thus we have

01 lq d .
Ha= Z glg...gduel...dédz d
L4202+ +dlg=d Jj=1
o a{]‘ “ e af;d
- Z 0l fg118 . dla
Ly +202+-+dlg=d
and the result follows. O

Theorem 38 can be combined with Theorems 36 and 37 by taking

AP _1 1)i > (1) @) C(Fg(T); (5 + 1) (m — 1) + £+ 1)~

=0
and
1< 7\ : -
AR PIEYY Z(Ue@C (Fg(T); G+ D)(m—1) + £+ 1)g" "
£=0
respectively.
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Remark 39. By using (5) and (16) one can see that the above expressions for aji1 are equivalent to

Jj+1

+1 ) g
osis = g V(1) )G 00 g
and
j+1 i+ '
UL = Ty Z ( )C (Fg[T); (j + 1)(m = 1) + £+ 1)g? "
respectively

6.3. The g = 1 case. We close our discussion by briefly considering the case of K with ¢ = 1. By Theorems
17 and 27, we have

C;(Kvm’ _1+Zh 7Zm<€ (T)7m77m)7
and
d
GG, .. m) =1+ > hie (=1) g G (Fy(T);m, ..., ).
These formulas can be combined with Theorems 36, 37, and 38 to give closed formulas for (j(K;m,...,m)

and ¢ (K;m,...,m).
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