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Abstract. We define hyperbolic Heron triangles (hyperbolic triangles with “rational”
side-lengths and area) and parametrize them in two ways via rational points of certain
elliptic curves. We show that there are infinitely many hyperbolic Heron triangles
with one angle α and area A for any (admissible) choice of α and A; in particular,
the congruent number problem has always infinitely many solutions in the hyperbolic
setting. We also explore the question of hyperbolic triangles with a rational median
and a rational area bisector (median splitting the triangle in half).

The problem of finding triangles with rational area and side lengths in the Euclidean
plane goes at least as far back as ∼ 600 A.D with the Indian mathematician Brah-
magupta (see [5]). If the triangle is assumed right, this is the classical congruent
number problem (a number is congruent if it is the area of a right triangle with ra-
tional sides). Remarkably, this problem is equivalent to finding (non-torsion) rational
solutions to the elliptic curve y2 = x3 − n2x. For non-right triangles, it was shown by
Goins and Maddox [5] that Heron triangles are in correspondence with rational points
on the curve y2 = x(x− nτ)(x+ nτ−1), where n denotes the area and τ is the tangent
of half of an angle.

In this paper we investigate the analog problem in the hyperbolic plane1. The first
concept we need to transport is that of rationality. Unlike the Euclidean case where
trigonometric laws are polynomial in the area, side lengths and sine and cosine of the
angles, their hyperbolic counter part involve the hyperbolic sine and cosine of the side
lengths, and the sine and cosine of the area. For instance, in a triangle with side lengths
a, b, c and a right angle opposing side a (see Figure 1), Pythagoras’ Theorem and the
area A are given by:

cosh(a) = cosh(b) cosh(c) and sin(A) =
sinh(b) sinh(c)

cosh(a) + 1

respectively (see [9, §3.5]). It is thus natural to ask that the sine/cosine of the angles
be rational, and similarly for the hyperbolic functions of the sides, instead of directly
asking that these quantities be rational.

This work is supported by the Swiss National Science Foundation, Project number P2BEP2_188144,
by the Natural Sciences and Engineering Research Council of Canada, Discovery Grant 355412-2013,
and by the Fonds de recherche du Québec - Nature et technologies, Projet de recherche en équipe
256442.

1The unique complete, connected, simply connected Riemannian 2-manifold of constant sectional
curvature −1.
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Figure 1. A hyperbolic triangle in the Poincaré disk model of the hy-
perbolic plane.

For the rationality of the hyperbolic functions on the side lengths, at least two con-
ventions have been used in the literature. One such choice was made by Brody and
Schettler [1]. They call a triangle rational if the hyperbolic tangent of its side lengths
are rational, and they use this definition to prove a correspondence between rational
triangles of semi-perimeter tanh−1(σ) and inradius sinh−1(ρ) and rational points on the
curve σ(x2y2 + xy + ρ2(x2 + xy + y2 − 1)) = (1 + ρ2)(x2y + xy2).

A second (stronger) choice is that of Hartshorne and van Luijk [7]. Here they call a
length x rational if ex ∈ Q, and then study Pythagorean triples in this context. This
is the notion we will adopt in this paper.

For the area, the Gauss–Bonnet theorem implies that a triangle with angles α, β, γ
has area

A = π − α− β − γ.
The previous discussion together with the above formula for the area suggest a common
definition of rationality for angles and area: we call an area A and an angle α rational
if the sine and cosine of these quantities are rational (or equivalently if eiA, eiα ∈ Q[i]).
Thus a hyperbolic triangle with area A, angles α, β, γ and side lengths a, b, c is a hy-
perbolic Heron triangle if

ea, eb, ec ∈ Q and eiα, eiβ, eiγ, eiA ∈ Q[i].

Recall that eix ∈ Q[i] if and only if cos(x) = 1−t2
1+t2

and sin(x) = 2t
1+t2

for some t ∈ Q.
Indeed, we have
(1)

eix =
i− t
i+ t

∈ Q[i]⇐⇒ t =
sin(x)

1 + cos(x)
∈ Q⇐⇒ (cos(x), sin(x)) =

(
1− t2

1 + t2
,

2t

1 + t2

)
.

By abuse of terminology we will call t the rational angle (resp. rational area) of a
hyperbolic triangle if its angle (resp. area) is x.

Our main result is the following:
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Theorem 1. There is a one-to-one correspondence between hyperbolic Heron triangles
having rational area m and one rational angle u, and rational points on the curve:

y2 = x(x− n)(x− n(u2 + 1)), where n = m(m2 + 1)(2u−m(u2 − 1))

provided that m,u > 0,mu < 1 and x, y satisfy the following open condition:

(A) 0 <
−y + (m+ u)(1−mu)(x− n)

m(2u−m(u2 − 1))(x− (m+ u)2(m2 + 1))
<

1−mu
m+ u

and (x, y) 6= ((m2 + 1)(m+ u)2, u2(m2 + 1)2(m+ u)(mu− 1)).

The open condition (A) encodes the fact that the angles and area are positive and
< π, and it also excludes one further point on the curve. Computing the rank of the
above curve (and proving it is ≥ 1) we get:

Corollary 2. For almost all m,u ∈ Q with m,u > 0 and mu < 1 there are infinitely
many hyperbolic Heron triangles with rational area m and one rational angle u.

Here “almost” means all values except possibly those lying on finitely many curves
{fi(m,u) = 0} of with deg(fi) ≥ 8. Setting u = 1 (which corresponds to the case of
one right angle), it is easily verified that the fi(m, 1) have no rational solution. Thus
the congruent number problem always has infinitely many solutions in the hyperbolic
setting.

One can also parametrize hyperbolic Heron triangles using side lengths:

Theorem 3. There is a one-to-one correspondence between hyperbolic Heron triangles
having two sides of lengths log(v) and log(w) with v, w ∈ Q, and rational points on the
curve:

y2 = x
(
x− (v − v−1)2

) (
x− (w − w−1)2

)
.

provided that v, w > 1 and x, y satisfy the following open condition:

(B) max
( v
w
,
w

v

)
<
v2w2x+ (v2 − 1)(w2 − 1)

vw
(
x+ (v2 − 1)(w2 − 1)

) < vw and x > 0.

Here the condition (B) describes the fact that the lengths of the sides are positive
and satisfy the triangle inequality. It turns out that (perhaps surprisingly) this curve
has generically rank 0 over Q, suggesting that it is harder to complete two sides to a
rational triangle, than it is to find a triangle with a fixed angle and area.

In the Euclidean world, a further question one can ask is that of the rationality of
the medians. This was first asked (and solved) by Euler in the case of one rational
median [4]. The question for Heron triangles having 3 rational medians is problem D21
in Guy’s book [6]; it is still open as of today. The two-median problem was solved by
Buchholz and Rathbun [2, 3].

In the hyperbolic setting we have again two choices in our translation of median: the
(hyperbolic) line from one vertex meeting the opposite edge in its midpoint, or the line
from one vertex separating the triangle into two triangles of equal area. We will call
the first one the median and the second one the area bisector. These two lines are not
the same in general (one can easily be convinced by considering ideal triangles), but
they coincide in an isosceles triangle (for the lines passing through the apex).
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The first (negative) result along those lines concerns the simple case of equilateral
triangles.

Proposition 4. There are no equilateral hyperbolic Heron triangles. Moreover, equi-
lateral triangles with rational sides or rational angles have no rational medians/area
bisectors.

With similar methods as those used for Theorem 1 and Theorem 3, we can pa-
rametrize hyperbolic triangles with one rational median and Heron triangles with one
rational area bisector using elliptic curves. However, these curves are quite complicated,
so we will present them in Section 5 and 6 respectively. We will only give one corollary
of this parametrization, in the case of medians:

Theorem 5. For almost all values u,w ∈ Q there are infinitely many hyperbolic tri-
angles having rational side lengths, two of which given by a = 2 log(u) and b = log(w),
and one rational median (intersecting side a).

Here almost all means all but those cut out by a curve in u,w.
The paper is organized as follows. Section 1 provides some basic formulas from

hyperbolic trigonometry, including the hyperbolic laws of cosines and the hyperbolic law
of sines. Section 2 and Section 3 are dual to each other, and cover the parametrization
of Heron triangles in terms of angles (Theorem 1) and sides (Theorem 3) respectively.
Section 4 is focused on medians and area bisectors in the simple case of equilateral
triangles. Finally, in Section 5 we give the parametrization of hyperbolic triangles with
rational side lengths and one rational median, while Section 6 is devoted to the dual
computation of the parametrization of Heron triangles with one rational area bisector.

1. Some preliminaries on hyperbolic trigonometry

In this section we recall some basics of trigonometry in the hyperbolic setting. A
basic reference is §3.5 of [9]. Consider a hyperbolic triangle with area A, angles α, β, γ
and side lengths a, b, c, where a (resp. b, c) is opposite to α (resp. β, γ), as in Figure 1.

The hyperbolic law of cosines for the angles says

(2) sin(β) sin(γ) cosh(a) = cos(β) cos(γ) + cos(α)

and similarly for cosh(b), cosh(c).
The hyperbolic law of cosines for the side lengths says

(3) sinh(b) sinh(c) cos(α) = cosh(b) cosh(c)− cosh(a),

and similarly for cos(β), cos(γ).
The hyperbolic law of sines says

(4)
sin(α)

sinh(a)
=

sin(β)

sinh(b)
=

sin(γ)

sinh(c)
.

It may be convenient to clear denominators. There are two ways of doing this. If we
are working with angles and intend to deduce information about the hyperbolic sines
of the sides, we may write

∆1 := sinh(a) sin(β) sin(γ) = sinh(b) sin(α) sin(γ) = sinh(c) sin(α) sin(β).
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If, instead, we are working with sides and intend to deduce information about the
sines of the angles, we may write

∆2 := sin(α) sinh(b) sinh(c) = sin(β) sinh(a) sinh(c) = sin(γ) sinh(a) sinh(b).

As in (1), let

t =
sin(α)

1 + cos(α)
, u =

sin(β)

1 + cos(β)
, s =

sin(γ)

1 + cos(γ)
, m =

sin(A)

1 + cos(A)
.

We can then express the trigonometric functions as follows,

cos(α) = 1−t2
1+t2

, cos(β) = 1−u2
1+u2

, cos(γ) = 1−s2
1+s2

, cos(A) = 1−m2

1+m2 ,

sin(α) = 2t
1+t2

, sin(β) = 2u
1+u2

, sin(γ) = 2s
1+s2

, sin(A) = 2m
1+m2 .

Thus t ∈ Q if and only if cos(α), sin(α) ∈ Q, and similarly for the other parameters
and angles/area. For the hyperbolic trigonometric functions of the sides, using the
hyperbolic laws of cosines and sines, we get:

cosh(a) = 1−(u2+s2)t2+u2s2

2us(1+t2)
, cosh(b) = 1−(t2+s2)u2+t2s2

2ts(1+u2)
, cosh(c) = 1−(t2+u2)s2+t2u2

2tu(1+s2)
,

sinh(a) = δ
2us(1+t2)

, sinh(b) = δ
2ts(1+u2)

, sinh(c) = δ
2tu(1+s2)

,

where

(5) δ =
√

(1− tu+ us+ st)(1 + tu− us+ st)(1 + tu+ us− st)(1− tu− us− st).

Using that A = π − α− β − γ, one can then write

∆1 =
2δ

(1 + t2)(1 + u2)(1 + s2)
, m =

1− tu− us− st
t+ u+ s− tus

.

Thus, if the angles are rational (in the sense defined in the introduction), then the
hyperbolic cosines of the side lengths are also rational (due to the law of cosines (2)),
while the hyperbolic sines of the side lengths are rational if and only if ∆1 is rational.

By contrast, if the sides are rational (again, in the sense defined in the introduction),
the law of cosines (3) implies that, for a non-degenerate triangle, the cosines of the
angles are also rational, while the sines of the angles are rational if and only if ∆2 is
rational. Furthermore, observe that if A denotes the area of the triangle, we have

sin(A) =− sin(α) sin(β) sin(γ) + sin(α) cos(β) cos(γ)

+ sin(β) cos(α) cos(γ) + sin(γ) cos(α) cos(β).

When the side lengths are rational, ∆2

sin(α)
∈ Q, and similarly for β, γ, and we conclude

that sin(A) = r∆2 for some r ∈ Q. Thus a hyperbolic triangle with rational side lengths
has rational area exactly when ∆2 ∈ Q, i.e., when all its angles are rational.
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2. Hyperbolic Heron triangles – Angle parametrization

2.1. Finding the angle parametrization. In this section we give the parametriza-
tion of hyperbolic Heron triangles in terms of angles and area, and prove Theorem 1
and Corollary 2. Note that throughout this paper we only consider the case of non-
degenerate bounded triangles (i.e., with no vertex at infinity), so that its angles and
area are always positive and its side lengths finite.

Let α, β, γ > 0 denote the angles of a hyperbolic triangle. Assume they are rational
(as defined in the introduction) i.e., that eiα, eiβ, eiγ ∈ Q[i]. Since the area A = π−α−
β − γ we get that A is also rational: eiA ∈ Q[i]. As before, we denote by a (resp. b, c)
the side length opposite α (resp. β, γ), see Figure 1.

As seen in Section 1, the hyperbolic law of cosines for the angles (2) and similar
formulas imply that cosh(a), cosh(b), cosh(c) ∈ Q. (Here we use that the triangles
under consideration are non-degenerate and therefore the sines of α, β, γ are non-zero.)
To get a hyperbolic Heron triangle, it thus only remains to find the condition that sinh
of a, b, c are also rational. As explained in Section 1, this happens exactly when ∆1 ∈ Q.
Squaring equation (2), we obtain

(6) ∆2
1 = (cos(α) + cos(β) cos(γ))2 − sin(β)2 sin(γ)2 ∈ Q.

Using trigonometric identities, we can rewrite this as a symmetric expression in α, β, γ:

2∆2
1 = cos(−α + β + γ) + cos(α− β + γ) + cos(α + β − γ)

+ cos(α + β + γ) + cos(2α) + cos(2β) + cos(2γ) + 1.

Substituting γ = π − A − α − β and expanding the cosines, we obtain (writing cA =
cos(A), sA = sin(A), etc...):

(7)

2∆2
1 = (c2

A − s2
A)
[
(cαcβ − sαsβ)2 − (cαsβ + cβsα)2

]
−4cAsA

[
cαsα(c2

β − s2
β) + cβsβ(c2

α − s2
α)
]

−cA
[
(cαcβ − sαsβ)2 − (cαsβ + cβsα)2 + 2c2

α + 2c2
β − 1

]
+4sA(cαsαc

2
β + cβsβc

2
α) + 2c2

α + 2c2
β − 1.

We wish to express this in terms of rational angles. Setting

t =
sin(α)

1 + cos(α)
, u =

sin(β)

1 + cos(β)
, m =

sin(A)

1 + cos(A)
,

as in Section 1, and w = (m2 + 1)(u2 + 1)(t2 + 1)∆1, equation (7) rewrites as:

w2 =4m(mu2 −m− 2u)(mt2 − 2t−m)
[
(mu2 −m− 2u)t2(8)

+ (−4mu− 2u2 + 2)t−mu2 +m+ 2u
]
.
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Condition Translation
m > 0 0 < A < π

t > 0 0 < α < π

u > 0 0 < β < π

(tm+ tu+mu− 1)(tmu− t−m− u) > 0 0 < γ < π

mu < 1 0 < A+ β < π.
Table 1. Conditions for Theorem 1

Finally, setting n = m(m2 + 1)(2u−m(u2 − 1)) and applying the change of variables

y =− (2u−m(u2 − 1))

4

[
2(2u−m(u2 − 1))(mu− 1)(m+ u)m2(3t2 − 1)

+ 2(m2u2 −m2 − 6mu− 2u2 + 2)(2u−m(u2 − 1))m2t+ 2(2u−m(u2 − 1))2m3t3

+ (mu− 1)(m+ u)mw + (2u−m(u2 − 1))m2tw
]

x =
(2u−m(u2 − 1))

4

[
4(mu− 1)(m+ u)mt+ 2(m2u2 +m2 − 2mu+ 2)m

+ 2(2u−m(u2 − 1))m2t2 +mw
]
,

with inverse

t =
−y + (m+ u)(1−mu)(x− n)

m(2u−m(u2 − 1))(x− (m+ u)2(m2 + 1))

w =2(m(2u−m(u2 − 1))(x− (m+ u)2(m2 + 1))2)−1

×
[
x3 − 3(m2 + 1)(u+m)2x2

+m(m2 + 1)2(2u−m(u2 − 1))(m2u4 + 2u4 + 2mu3 + 2m2u2 + 4u2 + 6mu+ 3m2)x

−m2(m2 + 1)3(u+m)2(u2 + 1)(2u−m(u2 − 1))2 − 2(m2 + 1)2u2(u+m)(mu− 1)y
]

we get the equation:

(9) y2 = x
(
x− n

)(
x− n(u2 + 1)

)
.

Its discriminant is 24u4(u2 + 1)2n6 = 24u4m6(u2 + 1)2(m2 + 1)6(2u−m(u2 − 1))6.
We are ready to complete the proof of Theorem 1.

Proof of Theorem 1. It just remains to exhibit the open condition (A), which encodes
the fact that the parameters give rise to an actual hyperbolic triangle. Assume first
that the inverse of the change of variables is defined; this happens everywhere except
when the expression m(2u−m(u2 − 1))(x− (m+ u)2(m2 + 1)) is 0.

We claim that the conditions onm,u, t, along with their meaning are given by Table 1.
Indeed, the conditions follow immediately from inspecting the identities:

m =
sin(A)

1 + cos(A)
, t =

sin(α)

1 + cos(α)
, u =

sin(β)

1 + cos(β)
,

tm+ tu+mu− 1

tmu− t−m− u
=

sin(γ)

1 + cos(γ)
,

1−mu
m+ u

=
s+ t

1− st
= tan

(
A+ β

2

)
,
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where the notation is the same as in Section 1. We now explain why we need the fifth
condition on Table 1. We know that 0 < A,α, β, γ < π, and we must find a condition
encoding A+ α+ β + γ = π. By construction, any solution to (9) gives rise to a set of
parameters satisfying this last equation modulo 2π; thus we have A+α+β+γ ∈ {π, 3π}
and we wish to eliminate the 3π case. For a set of parameters satisfying the first four
conditions of Table 1, the 3π case happens exactly when any two elements in A,α, β, γ
sum up to > π. Hence we can just pick the condition A + β < π, which is equivalent
to mu < 1.

Now if m,u are given parameters with m,u > 0 and mu < 1, the conditions from
Table 1 can be simplified to the following open condition on the variable t:

(10) 0 < t <
1−mu
m+ u

.

Using the above change of variables, we get an open condition in terms of x, y encoding
the desired properties. This is the first part of condition (A) in the statement of
Theorem 1.

It remains to treat the case of points where the expression for t is not defined. First of
all, the conditionsm,u > 0 andmu < 1 imply thatm(2u−m(u2−1)) > m(2u−u+m) >
0. Hence the only points on (9) where the change of variables is not defined are those
for which x = (m+u)2(m2 +1). There are actually two points satisfying this condition:
the point

P =
(
(m2 + 1)(m+ u)2, u2(m2 + 1)2(m+ u)(mu− 1)

)
and −P . On (8) however, there is only one point leading to a point on (9) with
x = (m+ u)2(m2 + 1): the point (t, w) with

t =
−u4m4 + 4u3m3 + u2m4 − 6u2m2 − 4um3 −m4 − u2

2m(m+ u)(1−mu)(2u−m(u2 − 1))
.

To see this, one just applies the change of variable for x to the equation x = (m +
u)2(m2 + 1); one gets an equation that is linear in w, and whose solution gives a single
point on the curve (8). One verifies that its image is the point −P . Hence P is the
only point on (9) that does not correspond to a hyperbolic triangle, and condition (A)
can thus be rewritten as

0 <
−y + (m+ u)(1−mu)(x− n)

m(2u−m(u2 − 1))(x− (m+ u)2(m2 + 1))
<

1−mu
m+ u

and (x, y) 6= P. �

2.2. Rank computations. In this section we investigate the rank of the above curve
and prove Corollary 2. We will write Em,u for the curve given by (9). In this case, we
think of m,u as fixed parameters. We may also think of fixing only one parameter (m
or u) and studying the resulting family of K3-surfaces. When we fix the value of the
parameter m (resp. u) we write Em (resp. Eu), and we may study the points over C(u)
(resp. C(m)). Finally, we refer to the variety E when we keep both u and m free.

Lemma 2.1. The ranks of the K3-surfaces Em(C(u)) and Eu(C(m)) fulfill the inequal-
ities:

1 ≤ rk(Em(C(u))), rk(Eu(C(m))) ≤ 2.
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The torsion groups of both Em and Eu are isomorphic to Z/2Z×Z/2Z, with the points
of order two given by (0, 0), (n, 0), and (n(u2 + 1), 0).

The point

P (m,u) =
(
(m2 + 1)(m+ u)2, u2(m2 + 1)2(m+ u)(mu− 1)

)
is a point of infinite order on E.

Proof. The lower bound follows from the fact that P is on the curve E and of infinite
order, which is easily verified by inspection. There are several ways to prove this.
One can consider `P for ` = 1, . . . , 12 and verify that one obtains 12 points that
are generically different and different from O. Upon specializing values for the two
parameters, Mazur’s theorem on the torsion of elliptic curves over Q guarantees that
torsion points can not have order higher than 12, and we conclude that P can not be
a torsion point. A much more concrete way to prove this is to observe that torsion
injects into specialization, and therefore it suffices to check that P has infinite order
for some specific values for m,u. For example, taking m = −2, u = 1 yields the curve
y2 = x(x + 20)(x + 40) with the point P = (5, 75). Since 2P = (961

36
,−62279

216
) has

non-integral coordinates, one concludes that P can not be torsion due to Nagell-Lutz
theorem. A third way to prove that P is non-torsion is to compute the height pairing
of the Mordell–Weil group on Eu (resp. on Em), which gives h(P ) = 2, and we conclude
that P is non-torsion since the height is non-zero (this last method could be exploited
to show that P is a generator, but we will not pursue this direction).

We know that Eu is a K3-surface because the standard coefficients of the Weierstrass
form satisfy degm(aj) ≤ 2j with at least one coefficient satisfying degm(aj) > j. For
the upper bound, we apply Tate’s algorithm [12, IV.9]. Eu has singularities at m =
0,±i, 2u

u2−1
, which are all of type I∗0 in the Kodaira classification, and so the number

of components of each singular fiber is 5. Now by the Shioda–Tate formula (see [11,
Corollary 1.5], or alternatively [10, Corollary 6.7)]) we have

ρ(Eu) = rk(Eu(C(m))) + 2 + 4 · (5− 1) = rk(Eu(C(m))) + 18

where ρ(Eu) is the Picard number of Eu. Since Eu is a K3-surface, we have ρ(Eu) ≤ 20,
and thus rk(Eu(C(m))) ≤ 2.

We proceed similarly with Em, which is also a K3-surface. The singularities at u = 0
and u = ∞ are of type I4, the ones at u = ±i of type I2 and the ones at the roots of
mu2 − 2u−m of type I∗0 . Applying the Shioda–Tate formula again,

ρ(Em) = rk(Em(C(u)) + 2 + 2 · (4− 1) + 2 · (2− 1) + 2 · (5− 1) = rk(Em(C(u)) + 18.

Thus rk(Em(C(u))) ≤ 2 also in this case.
Finally, it is immediate to see that (0, 0), (n, 0), and (n(u2+1), 0) are points of order 2.

Recall that the Euler characteristic satisfies χ = 2 for K3-surfaces. We combine this
with the bound on the rank and Table (4.5) in [8] to conclude that Eu (resp. Em)
has torsion isomorphic to Z/4Z× Z/2Z or Z/2Z× Z/2Z. Then one can check directly
that the points of order 2 cannot be written as twice a point in Eu(C(m)) (resp. in
Em(C(u))). This can be also achieved by considering an specialization such as m = −2,
u = 1 that yields y2 = x(x+20)(x+40) and verifying that torsion is exactly Z/2Z×Z/2Z
(which can be found by using again the theorem of Nagell—Lutz). �
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If we set u = 1 in the case of Eu, the singularities are at m = 0,±i,∞ and the
previous Lemma still applies. In this particular case, we can identify a second point of
infinite order given by

Q(m) =
(
2m(m+ 1)2, i4m2(m2 − 1)

)
.

Since P (m, 1) is supported in Q(m), while Q(m) is not, we conclude that P (m, 1) and
Q(m) are independent. In fact, by specialization again, we can set m = −2, which gives
the Weierstrass form y2 = x(x+ 20)(x+ 40) and Q = (−4, 48i). Since working on Q[i]
may be challenging, we consider the quadratic twist (x, y) → (−x,−iy), which yields
y2 = x(x − 20)(x − 40) and Q → (4, 48). We see that 2(4, 48) = (2401

36
,−62279

216
), and

therefore (4, 48) is non-torsion. From this we conclude that Q is non-torsion in E1 and
the rank of E1(C(m)) is exactly 2. One can also prove that the height pairing of the
Mordell–Weil group on E1 gives h(Q) = 2, and that 〈P,Q〉 = 0, giving an alternative
way of showing that P (m, 1) and Q(m) are independent.

We move on to the proof of Corollary 2.

Proof of Corollary 2. We need to show that for each fixed m,u > 0 with mu < 1, there
are infinitely many rational points on the curve Em,u satisfying the open condition (A).
By a theorem of Poincaré and Hurwitz (see [13, Satz 11, p. 78]) the rational points
Em,u(Q) of Em,u are dense in Em,u(R) provided Em,u(Q) is infinite and both connected
components of Em,u(R) contain a rational point. Hence the corollary will follow by
density, once these two conditions are proven.

Now by Lemma 2.1, Em,u(Q) has positive rank, so it is infinite. And since the three
non-trivial torsion points are given by(

0, 0
)
,
(
n, 0
)
,
(
n(u2 + 1), 0

)
and are rational, we conclude that both components have rational points. �

3. Hyperbolic Heron triangles – Side length parametrization

3.1. Finding the side lengths parametrization. This section is devoted to the
parametrization of hyperbolic Heron triangles using side lengths. The arguments are
quite similar to those of Section 2, but using the (dual) hyperbolic law of cosines for
the side lengths.

Let a, b, c denote the side lengths of a (non-degenerate bounded) hyperbolic triangle,
and assume that ea, eb, ec are rational. Let α (resp. β, γ) be the angles opposing the
sides of length a (resp. b, c), as in Figure 1. By the law of cosines (for the side lengths)

(11) sinh(b) sinh(c) cos(α) = cosh(b) cosh(c)− cosh(a)

and hence cos(α) is rational (and thus also cos(β) and cos(γ) for similar reasons). Recall
from Section 1 that the hyperbolic law of sines implies

∆2 := sin(α) sinh(b) sinh(c) = sin(β) sinh(a) sinh(c) = sin(γ) sinh(a) sinh(b),

and we have that ∆2 is rational if and only if sin(α), sin(β), sin(γ) are rational.
As in Section 2, we square (11) to get

∆2
2 = sinh(b)2 sinh(c)2 − (cosh(b) cosh(c)− cosh(a))2 ∈ Q.
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Rewriting the equation for ∆2
2 in a symmetric way, we get:

∆2
2 = 1− cosh(a)2 − cosh(b)2 − cosh(c)2 + 2 cosh(a) cosh(b) cosh(c).

Letting u = ea, v = eb and w = ec (so that u, v, w ∈ Q), this equation rewrites as:

4u2v2w2∆2
2 = (uv − w)(uw − v)(vw − u)(uvw − 1).

We introduce the following change of variables

y =
2u(v2 − 1)(w2 − 1)(v2w2 − 1)∆2

vw(u− vw)2
, x =

(v2 − 1)(w2 − 1)(uvw − 1)

vw(vw − u)
,

with inverse

∆2 =
(v2 − 1)(w2 − 1)(v2w2 − 1)y

2
(
x+ (v2 − 1)(w2 − 1)

)(
v2w2x+ (v2 − 1)(w2 − 1)

) ,
u =

v2w2x+ (v2 − 1)(w2 − 1)

vw
(
x+ (v2 − 1)(w2 − 1)

) .
This leads to the desired equation:

(12) y2 = x
(
x− (v − v−1)2

) (
x− (w − w−1)2

)
.

Its discriminant is given by 24(v − v−1)4(w − w−1)4(v−1w − vw−1)2(vw − v−1w−1)2.
We can now proceed towards the proof of Theorem 3.

Proof of Theorem 3. It suffices to exhibit the open condition (B) that ensures the pa-
rameters give rise to a hyperbolic triangle. First, all the side lengths must be positive,
whence u > 1, v > 1 and w > 1. Second, the three triangle inequalities must be
satisfied, i.e., u < vw, v < uw and w < uv. Assuming v, w are fixed and > 1, all these
conditions can be rewritten more compactly as

max
( v
w
,
w

v

)
< u < vw,

which is the first part of condition (B) from the statement of the theorem. Once
this condition is fulfilled, the condition x > 0 follows at once by observing that the
expression for x in the above change of variables is always positive. Finally, one sees
that the change of variable and its inverse is always defined in that case, and thus the
theorem is proven. �

3.2. Rank Computations. This section is similar to 2.2. Let Ev,w denote the curve
given by (12) (where, as before, we think of v, w as fixed parameters), and let Ev (resp.
Ew) denote the corresponding K3-surfaces resulting from fixing v (resp. w), and we
aim to study the points over C(w) (resp. C(v)). We refer to E when we keep both v
and w free. Our goal is to give bounds on the rank of Ev and Ew; since the equation
for Ev,w is symmetric in v and w, it is enough to consider the curve Ev.

Lemma 3.1. The rank of the K3-surface Ev(C(w)) satisfies

1 ≤ rk(Ev(C(w))) ≤ 2.

In addition, the torsion group of Ev is isomorphic to Z/4Z× Z/2Z, generated by

S0(v, w) =
(
(v − v−1)(w − w−1), i(v − v−1)(w − w−1)(v−1 − w−1)(vw + 1)

)
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and
S1(v, w) =

(
(v − v−1)2, 0

)
.

Finally, the point

R(v, w) =
(
− vw(v − v−1)(w − w−1), ivw(v − v−1)(w − w−1)(vw − v−1w−1)

)
has infinite order on E.

Proof. The proof of this result is very similar to that of Lemma 2.1. As before, the
lower bound for the rank follows from the fact that R is on the curve and of infinite
order, which is easily verified by various methods. If we specialize with v = 2, w = 4,
then we get the curve y2 = x(x − 9

4
)(x − 225

16
) and R = (−45, 2835i

8
). To avoid working

on Q[i], we introduce a quadratic twist composed with an isomorphism to make the
coefficients in Z, resulting in the change of coordinates (x, y) → (−16x,−i64y). This
gives y2 = x(x + 36)(x + 225) and R → (720, 22680). One can see immediately that
2(720, 22680) = (2025

16
, 172125

64
) and therefore (720, 22680) is non-torsion. From this we

conclude that the original R is non-torsion. Alternatively one can see that the height
pairing of the Mordell–Weil group on Ev gives h(R) = 1

2
, and R is non-torsion since the

height is non-zero.
We observe that Ev has singularities at w = 0,∞,±1 of type I4 in the Kodaira

classification, while the singularities at w = ±v,±v−1 are of type I2. By the Shioda–
Tate formula, we have

ρ(Ev) = rkEv(C(w)) + 2 + 4 · (4− 1) + 4 · (2− 1) = rkEv(C(w)) + 18.

Since Ev is a K3-surface, we have ρ(Ev) ≤ 20, and thus rk(Ev(C(w))) ≤ 2.
One can directly check that S0 and S1 generate a subgroup isomorphic to Z/4Z ×

Z/2Z. Combining the information about the rank and the Euler characteristic with
Table (4.5) in [8] we conclude that the torsion group is given exactly by Z/4Z×Z/2Z.

�

Even if Lemmas 2.1 and 3.1 are very similar from the point of view of the arithmetic
of the involved K3-surfaces, they contain a fundamental difference for the geometric
problem. In the case of Lemma 2.1, the point P (m,u) is defined over Q(m,u) and
generates a nontrivial solution to the question of the Heron hyperbolic triangle with
given area and angle. In contrast, the point R(v, w) of Lemma 3.1 is certainly not
defined over Q(v, w), and we speculate that there is no point of infinite order over
Q(v, w). This results in the following: we do not know a priori whether there is a
Heron hyperbolic triangle with given sides v and w. This will depend on the choice of
v and w, much like the classical congruent number problem depends on the choice of
the area.

4. Equilateral Triangles

This short section covers the specific case of (non-degenerate bounded) equilateral
triangles.

Proposition 4.1. There are no equilateral hyperbolic Heron triangles.
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Proof. Let α denote the angle of an equilateral hyperbolic triangle. The Heron condition
(6) from Section 2 in this case is:

∆2
1 = 2 cos(α)3 + 3 cos(α)2 − 1 = (2 cos(α)− 1)(cos(α) + 1)2.

Setting u = ∆1

cos(α)+1
, this equation rewrites as u2 = 2 cos(α)− 1. Thus the solutions to

the original equation are parametrized by

(13) cos(α) =
u2 + 1

2
and ∆1 =

u3 + 3u

2
,

for u ∈ Q.
Now squaring the equation for cos(α) in (13), writing 4 cos2(α) = 4− 4 sin2(α), and

setting v = 2 sin(α), we get
v2 = −u4 − 2u2 + 3.

Making the change of variables u = x−1
x+1

, v = 4y
(x+1)2

(with inverse x = 1+u
1−u , y = v

(u−1)2
),

we get the Weierstrass form
y2 = x(x2 + x+ 1).

This has rank 0, and the only nontrivial torsion point is (0, 0) which does not give an
actual triangle since v = 0. �

We proceed to prove the second part of Proposition 4:

Proposition 4.2. If an equilateral hyperbolic triangle has either rational side lengths
or rational angles, then it has no rational median/area bisector.

Proof. First observe that for equilateral triangles, mediators, bisectors, medians, and
area bisectors all coincide, so we are free to use any property of these we want. Consider
an equilateral hyperbolic triangle of side lengths a and angles α. Letm denote the length
of the median, and consider the half triangle defined by one median. This triangle has
angles α, α

2
, π

2
and sides a, a

2
,m.

First, assume the length a is rational, i.e., that ea ∈ Q. By Pythagoras’ theorem,
cosh(m) cosh(a

2
) = cosh(a), so that cosh(m) ∈ Q if and only if p = cosh(a

2
) ∈ Q. Let

t = sinh(m). Squaring Pythagoras’ formula, we get the following equation for t:

(1 + t2)p2 = (2p2 − 1)2 i.e. s2 = 4p4 − 5p2 + 1,

writing s = pt. Changing variables

s =
9− x2

8x
, p =

y

4x
, y = 4p(−4s+ 8p2 − 5), x = −4s+ 8p2 − 5,

we get the following elliptic curve:

y2 = x(x2 + 10x+ 9).

The curve has rank 0, and the torsion is given by

E(Q)tors = 〈(−3, 6), (−1, 0)〉 ∼= Z/4Z× Z/2Z.
Since we are looking for solutions with p 6= 0, we need y 6= 0. The only torsion points
to consider are therefore (−3,±6) and (3,±12). However, we also need t 6= 0, leading
to s 6= 0 and x 6= ±3. Therefore, there are no solutions.
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Now assuming the angle α to be rational (i.e. eiα ∈ Q[i]), the situation is entirely
similar. From the law of cosines (for the angles) we get:

(14) sin
(α

2

)
cosh(m) = cos(α),

whence cosh(m) ∈ Q if and only if p = sin(α
2
) ∈ Q. We set t = sinh(m) and square

equation (14) to get the same equation as before:

(1 + t2)p2 = (2p2 − 1)2.

Thus also in this case, the median cannot be rational. �

5. Rational medians

The goal of this section is to study hyperbolic triangles with one rational median, in
the same spirit as Euler’s problem [4]. Consider a (non-degenerate bounded) hyperbolic
triangle with sides a, b, c having opposite angles α, β, γ (by abuse of notation we will let
a, b, c also denote the length of the sides). Let m denote the median at angle α, cutting
side a into two equal parts. Denote by θ the angle at the intersection of m and a, on
the side of β; the one on the side of γ is π − θ. Applying the law of cosines in the two
triangles, we get:

cosh(b) = cosh(m) cosh(a/2)− sinh(m) sinh(a/2) cos(π − θ),
cosh(c) = cosh(m) cosh(a/2)− sinh(m) sinh(a/2) cos(θ),

and thus

(15) 2 cosh(m) cosh(a/2) = cosh(b) + cosh(c).

Let us now assume that a, b, c are rational side lengths, i.e., that ea, eb, ec ∈ Q. In
order for cosh(m) to be rational, it is thus necessary and sufficient that cosh(a/2) be
rational. Since ea ∈ Q, this is equivalent to ea/2 ∈ Q. For sinh(m) ∈ Q we get the
following condition from squaring equation (15):

(cosh(b) + cosh(c))2 − 4 cosh(a/2)2 = 4 sinh2(m) cosh2(a/2) = square.

Setting u = ea/2, v = eb, w = ec, we need to solve

(v2w + w + vw2 + v)2u2 − 4v2w2(u2 + 1)2 = t2

for t, u, v, w ∈ Q. Now applying the change of variables

x = 2w
[
u2wv2 + u2(w2 + 1)v − 2u4w − 3u2w + ut− 2w

]
y = 2uw

[
2u2w2v3 + 3wu2(w2 + 1)v2 + (−4u4w2 + u2w4 − 4u2w2 + 2uwt+ u2 − 4w2)v

+ u(w2 + 1)(uw + t)
]

with inverse

v = − 1

2xuw

[
4uw2(w2 + 1)(u2 + 1)2 + u(w2 + 1)x− y

]
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t = − 1

4x2uw

[
− x3 + 8w2(u2 + 1)2(2w2(u2 + 1)2 + (w4 + 1)u2)x

− 8uw2(w2 + 1)(u2 + 1)2y + 32u2w4(w2 + 1)2(u2 + 1)4
]
,

we get the equation

y2 =(x+ 4(u2 + 1)2w2)(x2 + (u2w4 + 2(2u4 + 3u2 + 2)w2 + u2)x(16)

+ 4u2(u2 + 1)2w2(w2 + 1)2).

If, similarly as previously, we let Eu,w denote the elliptic curve given by (16) seen
over Q, where u,w ∈ Q are parameters, we get:

Theorem 6. A hyperbolic triangle with rational sides a = 2 log(u), b = log(w) has
a rational median (intersecting side a) if and only if it corresponds (using the above
change of variables) to a rational point on the elliptic curve Eu,w.

Let Eu denote the K3-surface when we fix u and leave w free. We are interested in
the C(w)-points of Eu. We also denote by E the variety where we keep u and w free.
As previously, we have the following lemma, a weaker analogue to Lemmas 2.1 and 3.1.

Lemma 5.1. The rank of the K3-surface Eu satisfies

1 ≤ rk(Eu(C(w))) ≤ 4.

In addition, Eu has a torsion point of order 2 given by (4(u2 + 1)2w2, 0).
Finally, the point

P (u,w) =
(
0, 4u(u2 + 1)2w2(w2 + 1)

)
has infinite order on E.

Proof. The proof is entirely similar to that of Lemmas 2.1 and 3.1. We can specialize
in u = 1, w = 2 and we obtain the Weierstrass form y2 = (x+ 64)(x2 + 73x+ 1600) and
P = (0, 320). But then 2P = (−1024

25
, 10176

125
), implying that P can not be torsion. The

lower bound on the rank now follows from the fact that P (u,w) is of infinite order.
The discriminant of Eu,w is given by:

212u4w8(u2 + 1)4(uw2 + u− 2(u2 + u+ 1)w)(uw2 + u− 2(u2 − u+ 1)w)

×(uw2 + u+ 2(u2 + u+ 1)w)(uw2 + u+ 2(u2 − u+ 1)w).

Looking at the Kodaira classification, we observe that Eu has singularities of type I8

at w = 0,∞, and of type I1 for all the 8 others. Thus the Shioda–Tate formula gives

ρ(Eu) = rk(Eu(C(w))) + 2 + 2 · (8− 1) + 8 · (1− 1) = rk(Eu(C(w))) + 16.

Since Eu is a K3-surface, we have ρ(Eu) ≤ 20, and thus rk(Eu(C(w))) ≤ 4.
Finally, we see that (4(u2 + 1)2w2, 0) is a point of order 2. �

As a final note, we remark that we could include Ew in the statement of Lemma 5.1.
In this case, we can only conclude that 1 ≤ rk(Ew(C(u))) ≤ 6.
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6. Area bisectors

This section is similar to Section 5, but focussing on hyperbolic triangles with rational
area bisectors, instead of medians.

Consider a hyperbolic triangle with sides a, b, c having opposite angles α, β, γ. Let
m denote the area bisector at angle α, cutting α into α1 and α − α1. Denote by θ the
angle at the intersection of m and a, on the side of α1, and (assume) on the side of β.
Thus we have two triangles: one with angles α1, β, θ and one with α− α1, γ, π − θ.

By the law of cosines (for the angles) we have

sin(α1) sin(β) cosh(c) = cos(θ) + cos(α1) cos(β).

Combining this with the definition of area bisector

2(π − α1 − θ − β) = A i.e. θ = π − A

2
− α1 − β,

we get

(17) sin(α1) sin(β) cosh(c) = − cos

(
A

2
+ α1 + β

)
+ cos(α1) cos(β).

Using trigonometric formulas, this rewrites as

sin(α1)−2 = 1 +
1

tan(α1)2

=
2 + sin(β)2 sinh(c)2 − 2 cos

(
A
2

)
+ 2(1− cosh(c)) sin(β) sin

(
A
2

+ β
)(

cos(β)− cos
(
A
2

+ β
))2 .

Now using the law of cosines again:

sin(α) sin(β) cosh(c) = cos(γ) + cos(α) cos(β)

and setting w1 =
(
cos(β)− cos

(
A
2

+ β
))

(sin(α1))−1 sin(α), we get the equation

w2
1 =s2

α + c2
βs

2
α + (cαcβcA − sαsβcA − sαcβsA − cαsβsA − cαcβ)2

− 2cβs
2
α

(
cos

(
A

2

)
cβ − sin

(
A

2

)
sβ

)
− 2sα(−(cαcβcA − sαsβcA − sαcβsA − cαsβsA) + cαcβ)

×
(

sin

(
A

2

)
cβ + cos

(
A

2

)
sβ

)
,

where, as in Section 2, sα = sin(α), etc...
Assume now that our triangle has rational angles as well as rational half-area. We

apply a similar change of variables as in Section 1, namely:

cos(A
2
) = 1−n2

1+n2 , cos(β) = 1−u2
1+u2

, cos(α) = 1−t2
1+t2

,

sin(A
2
) = 2n

1+n2 , sin(β) = 2u
1+u2

, sin(α) = 2t
1+t2

.
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Setting w = w1(n2+1)2(t2+1)(u2+1)
4n

, and clearing squares, we obtain:
w2 =4(n+ u)2(nu− 1)2t4 + 4(n+ u)(nu− 1)(2n3u+ 3n2u2 − 3n2 − 6nu− u2 + 1)t3

+ (n6u4 + 2n6u2 + 8n5u3 + 11n4u4 + n6 − 8n5u− 50n4u2 − 64n3u3

− 13n2u4 + 11n4 + 64n3u+ 86n2u2 + 24nu3 + u4 − 13n2 − 24nu− 6u2 + 1)t2

− 4(n+ u)(nu− 1)(2n3u+ 3n2u2 − 3n2 − 6nu− u2 + 1)t+ 4(n+ u)2(nu− 1)2.

We make the following final change of variables:

y =
4(nu− 1)(n+ u)

t3
[
2(2n3u+ 3n2u2 − 3n2 − 6nu− u2 + 1)(nu− 1)(n+ u)t3

+ (n6u4 + 2n6u2 + 8n5u3 + 11n4u4 + n6 − 8n5u− 50n4u2 − 64n3u3 − 13n2u4

+ 11n4 + 64n3u+ 86n2u2 + 24nu3 + u4 − 13n2 − 24nu− 6u2 + 1)t2

+ 8(nu− 1)2(n+ u)2 − 6(2n3u+ 3n2u2 − 3n2 − 6nu− u2 + 1)(nu− 1)(n+ u)t

+ 4(nu− 1)(n+ u)w − (2n3u+ 3n2u2 − 3n2 − 6nu− u2 + 1)tw
]
,

x =
1

t2
[
8(nu− 1)2(n+ u)2 − 4(2n3u+ 3n2u2 − 3n2 − 6nu− u2 + 1)(nu− 1)(n+ u)t

+ (n6u4 − 2n6u2 − 4n5u3 + 2n4u4 + n6 + 4n5u− 8n4u2 − 24n3u3 − 7n2u4 + 2n4 + 24n3u

+ 38n2u2 + 12nu3 − 7n2 − 12nu− 4u2)t2 + 4(nu− 1)(n+ u)w
]
,

with inverse
t =−

[
4(nu− 1)x(n+ u)

]
·
[
(2n3u+ 3n2u2 − 3n2 − 6nu− u2 + 1)(nu2 − n− 2u)2(n2 + 1)2

− (2n3u+ 3n2u2 − 3n2 − 6nu− u2 + 1)x− y
]−1

,

w =− 2(nu− 1)(n+ u)
[
(2n3u+ 3n2u2 − 3n2 − 6nu− u2 + 1)2(nu2 − n− 2u)4(n2 + 1)4

− 2(2n3u+ 3n2u2 − 3n2 − 6nu− u2 + 1)(nu2 − n− 2u)2(n2 + 1)2y

+ (2n4u4 − 8n4u2 − 20n3u3 − 7n2u4 + 2n4 + 20n3u+ 34n2u2 + 12nu3 − u4 − 7n2

− 12nu− 6u2 − 1)(n2 + 1)x2 − 2x3 + y2
]

×
[
(2n3u+ 3n2u2 − 3n2 − 6nu− u2 + 1)2(nu2 − n− 2u)4(n2 + 1)4

− 2(2n3u+ 3n2u2 − 3n2 − 6nu− u2 + 1)2(nu2 − n− 2u)2(n2 + 1)2x

− 2(2n3u+ 3n2u2 − 3n2 − 6nu− u2 + 1)(nu2 − n− 2u)2(n2 + 1)2y

+ (2n3u+ 3n2u2 − 3n2 − 6nu− u2 + 1)2x2

+ 2(2n3u+ 3n2u2 − 3n2 − 6nu− u2 + 1)yx+ y2
]−1

,

and we get

y2 =(x− (n2 + 1)2(nu2 − 2u− n)2)(x2 − (n2 + 1)(n4u4 − 8n2u4 − u4 − 16n3u3(18)

+ 16nu3 − 6n4u2 + 32n2u2 − 10u2 + 16n3u− 16nu+ n4 − 8n2 − 1)x

− (n2 + 1)2(nu2 − 2u− n)2(3n2u2 − u2 + 2n3u− 6nu− 3n2 + 1)2).

Let En,u denote this elliptic curve (18), where n, u are fixed parameters. The data
it encodes is the following. By assumption, A

2
, α, β, γ are all rational. Moreover, as in

Section 1, it follows easily from the law of cosines that cosh(a), cosh(b) and cosh(c)
are also rational. Now by construction, a rational solution to (18) corresponds to a
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triangle with sin(α1) rational. In addition, (17) implies that cos(α1) ∈ Q, and thus α1

is rational. Since the area of the small triangle with angles α1, β, θ is rational (it is A
2
),

it follows that θ is also a rational angle.
What is not encoded by the curve En,u is the rationality of sinh(m). It is easy to

see that this is actually equivalent to the original triangle being Heron: since all the
angles and areas under consideration are rational, we have sinh(m) ∈ Q if and only if
the small triangle (with angles α1, β, θ) is Heron (as explained in Section 2). Since c is
a side of this triangle, this happens exactly when sinh(c) ∈ Q, which, in turn, is true if
and only if the original triangle is Heron.

Therefore, we have proven:

Theorem 7. A hyperbolic Heron triangle has one rational area bisector if and only if
it corresponds (using the above change of variables) to a rational point of En,u.

This curve is more complicated than the ones of Section 2 and 3. Yet we have the
following lemma, analog to Lemma 5.1. As before, we let En denote the K3-surface
that corresponds to fixing n and letting u free. (Remark that Eu is not a K3-surface,
and we will not discuss its arithmetics.)

Lemma 6.1. The rank of the K3-surface En satisfies

1 ≤ rk(En(C(u))) ≤ 4.

Moreover, En has a torsion point of order 2 given by ((n2 + 1)2(nu2 − 2u− n)2, 0).
The point

Q(n, u) =
(

0, (n2 + 1)2(nu2 − 2u− n)2(3n2u2 − u2 + 2n3u− 6nu− 3n2 + 1)
)

is of infinite order.

Proof. The lower bound follows from the fact that Q(n, u) is of infinite order, which
can be verified by the usual methods that we have previously discussed. For example, if
we take n = 2, u = 1, then we must consider the point Q = (0, 400) in the Weierstrass
form y2 = (x − 100)(x − 20)(x + 80). We can see that 2Q = (521

4
, 6699

8
), and from this

we conclude that Q(n, u) is non-torsion in E.
The discriminant of En is

212(n2 + 1)8(u+ n)4(nu− 1)4(u2 + 1)2((u2 − 1)n− 2u)4

×
(

(n4 + 18n2 + 1)u4 + 16n(n2 − 3)u3

+ 2(n4 − 30n2 + 17)u2 − 16n(n2 − 3)u+ n4 + 18n2 + 1
)

We have singularities at u = −n, 1
n
, and the roots of nu2 − 2u − n of type I4, ±i of

type I2, and the roots of the last factor of type I1. By the Shioda–Tate formula,

ρ(En) = rk(En(C(u))) + 2 + 4 · (4− 1) + 2 · (2− 1) + 4 · (1− 1) = rk(En(C(u))) + 16.

Since En is a K3-surface, the Picard number ρ(En) ≤ 20 and the rank is ≤ 4.
Finally, it is immediate to see that ((n2 + 1)2(nu2 − 2u− n)2, 0) has order 2. �
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