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Abstract. We exhibit a change of variables that maintains the Mahler measure of a given poly-
nomial. This method leads to the construction of highly non-trivial polynomials with given Mahler
measure and settles some conjectural numerical formulas due to Boyd and Brunault.

1. Introduction

Given a non-zero rational function P ∈ C(x1, . . . , xn), its (logarithmic) Mahler measure is given
by

m(P ) :=
1

(2πi)n

∫
Tn

log |P (x1, . . . , xn)|dx1
x1
· · · dxn

xn
,

where the integration is taken over the unit torus Tn = {(x1, . . . , xn) ∈ Cn : |x1| = · · · = |xn| = 1}
with respect to the Haar measure.

This quantity first appeared (for one variable-polynomials) in considerations by Lehmer [Leh33] in
his work related to the generalization of Mersenne numbers, and was later extended to polynomials
with several variables by Mahler [Mah62] in applications to polynomial heights. About 20 years
later Smyth [Smy81, Boy81] proved the following formulas

m(x+ y + 1) =
3
√

3

4π
L(χ−3, 2),

(1) m(x+ y + z + 1) =
7

2π2
ζ(3),

where L(χ−3, s) is the Dirichlet L-function in the character of conductor 3 and ζ(s) is the Riemann
zeta function.

These formulas opened the door to a wave of research in Mahler measure and special values of
functions with arithmetical significance. Consider, for example, the following formula conjectured
by Deninger [Den97] and Boyd [Boy98] and proven by Rogers and Zudilin [RZ14]:

m

(
x+

1

x
+ y +

1

y
+ 1

)
= L′(E15a8, 0),

where L(E15a8, s) denotes the L-function associated to the elliptic curve 15a8.
The appearance of values of L-functions in certain Mahler measure formulas was explained by

Deninger in terms of Beilinson’s conjectures via relationships with regulators. (See also the works
of Boyd [Boy98] and Rodriguez-Villegas [RV99] for additional insights, and the book of Brunault
and Zudilin [BZ20] for more details.) Likewise, the cases involving the Riemann zeta function
and Dirichlet L-functions have been linked to particular applications of the Borel regulator and
evaluations of polylogarithms in algebraic numbers [BRV02, BRVD03, Lal07, Lal08].
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A particularly interesting formula was proven by Condon [Con04]:

(2) m(x+ 1 + (x− 1)(y + z)) =
28

5π2
ζ(3).

Although this identity seems similar to (1), it is indeed much harder to prove. While the right-
hand side of (1) is the result of evaluating the trilogarithm in 1 and −1, the right-hand side of

(2) is the result of evaluating the trilogarithm in combinations of ϕ = 1+
√
5

2
. This complicates the

computation considerably, independently of whether one uses elementary methods as in [Con04] or
the regulator as in [Lal07].

In [Boy06], Boyd proposed the numerical study of polynomials of the form a(x) + b(x)y+ c(x)z,
where a(x), b(x), c(x) are products of cyclotomic polynomials. The focus on this particular class
of polynomials was motivated by the Cassaigne–Maillot formula for the Mahler measure of a +
by + cz [Mai00], which has an expression that is specially well-suited for numerical integration.
The exploration of such polynomials led to the discovery of several interesting numerical formulas
involving L′(E,−1) for various elliptic curves [Lal15]. For example, Boyd discovered

(3) m(1 + (x− 1)y + (x+ 1)z)
?
=

5

4
L′(E21a1,−1),

where the question mark denotes a numerical identity that has been verified to at least 20 decimal
places, and also

(4) m(x2 + x+ 1 + (x2 − 1)(y + z))
?
=

28

5π2
ζ(3),

which involves, again, the term 28
5π2 ζ(3).

More recently Brunault further pursued these computations (with higher degree cyclotomic poly-
nomials) and discovered various numerical formulas yielding 28

5π2 ζ(3) such as

m(x4 − x3 + x2 − x+ 1 + (x4 − x3 + x− 1)(y + z))
?
=

28

5π2
ζ(3),(5)

m(x5 + x4 + x+ 1 + (x5 − 1)(y + z))
?
=

28

5π2
ζ(3),(6)

and several others.
We started this project by investigating whether the above polynomials having Mahler measure

28
5π2 ζ(3) had anything in common with each other. We discovered that they all could be obtained
from Condon’s polynomial in (2) by certain changes of variables. In fact, such changes of variables
provide a method for generating arbitrarily many rational functions that have the same Mahler
measure, giving rise to highly non-trivial identities. Moreover, we can also obtain families of
conjectures by applying the change of variables on polynomials such as the one in (3).

Before stating our main result, we establish some notation. For a polynomial g(x) ∈ C[x], such

that g(x) =
∑d

j=0 gjx
j with gd 6= 0, denote by

g(x) =
d∑
j=0

gjx
j,

the polynomial resulting from conjugating the coefficients of g(x).
We prove the following result.

Theorem 1. Let P (x, y1, . . . , yn) be a polynomial over C in the variables x, y1, . . . , yn. Let g(x) ∈
C[x] be a polynomial in the variable x with all roots outside the unit disc, and for an integer k greater



AN INVARIANT PROPERTY OF MAHLER MEASURE 3

than the degree of g(x) and a complex number λ of absolute value one, let f(x) = λxkg(x−1). We

denote by P̃ the rational function obtained by replacing x by f(x)/g(x) in P . Then

m(P ) = m(P̃ ).

Using this theorem, equations (4), (5), and (6) follow by taking P (x, y, z) = x+1+(x−1)(y+z),
which is the polynomial from Condon’s result in (2), with g(x) = x+ 2, x2− 2x+ 2, and x4 + x+ 2
along with k = 2, 4, and 5 respectively, and λ = 1. We have a term of m(g) = log 2 in all these

cases, which cancels with the contribution from a factor of 2 occurring in P̃ , leading us to the
desired identities.

As another example we can prove the following formulas

m((x2 + x+ 1)(1 + w)(1 + u)z + (x2 − 1)(1− w)(1 + y)) =
93

π4
ζ(5),(7)

m((x4 − x3 + x2 − x+ 1)(1 + w)(1 + u)z + (x4 − x3 + x− 1)(1− w)(1 + y)) =
93

π4
ζ(5),(8)

m((x5 + x4 + x+ 1)(1 + w)(1 + u)z + (x5 − 1)(1− w)(1 + y)) =
93

π4
ζ(5),(9)

by applying Theorem 1 to a result proven in [Lal03].
In addition, by applying this method to (3), we obtain a family of conjectures involving L′(E21a1,−1),

including

m

(
x+ 2

2
+ (x2 + x+ 1)y + (x2 − 1)z

)
?
=

5

4
L′(E21a1,−1),(10)

m

(
x2 − 2x+ 2

2
+ (x4 − x3 + x2 − x+ 1)y + (x4 − x3 + x− 1)z

)
?
=

5

4
L′(E21a1,−1),(11)

m

(
x4 + x+ 2

2
+ (x5 + x4 + x+ 1)y + (x5 − 1)z

)
?
=

5

4
L′(E21a1,−1).(12)

This article is organized as follows. In Section 2 we consider some results needed in preparation for
the proof of Theorem 1, which is included in Section 3. In Section 4 we discuss some applications of
Theorem 1, mainly to families of rational functions with an arbitrary number of variables. Finally,
Section 5 sketches the relation between Mahler measures and regulators, with the goal of giving
more context to some of the new formulas proven in this article that involve polynomials defining
curves of high genus.
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2. Some intermediate results

Theorem 1 depends on the nature of the change of variables x → f(x)/g(x) and how this
affects the Mahler measure. In this section, we address this question and prove some intermediate
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results regarding the Mahler measure of certain univariate polynomials. These results will play an
important role in the proof of the main result later on.

We first present the following lemma concerning the roots of a polynomial obtained from the
polynomials f(x) and g(x) that appear in the change of variables.

Lemma 2. [Lax44, Lemma 1], [Che95, Theorem 1] Let g(x) ∈ C[x] be such that all the roots
have absolute value greater than or equal to one, let k be an integer such that k ≥ deg (g) and let
f(x) = λxkg(x−1), where λ is a complex number with absolute value one. For any complex number
β, consider

Γβ(x) = f(x) + βg(x) ∈ C[x].

Then we have the following:

(a) If |β| < 1, then all roots of Γβ(x) have absolute value less than one.
(b) If |β| > 1, then all roots of Γβ(x) have absolute value greater than one.
(c) If |β| = 1, then all roots of Γβ(x) have absolute value one.

Remark 3. This result has a rich history, as it was reproven several times. As stated, the original
result is due to Lax [Lax44] (for the case k = deg(g)) and Chen [Che95] (for the general case). Both
consider the case when |β| = 1 in their statements, but their proofs include the three cases stated in
Lemma 2. This result was later rediscovered by Laĺın and Smyth [LS13, Theorem 1] (stated for the
case k > deg(g)). A converse was stated and proven by Cohn [Coh22]. Further results investigate
the interlacing of the roots of Γβ as β varies in the unit circle, see [LS15] and the references therein
for more information.

The above result is true for any k greater than or equal to d, the degree of g(x). However, for
the rest of our results to hold true, we would require k to be strictly greater than d.

The above lemma gives us the following corollary using Jensen’s formula.

Corollary 4. Let f and g be as before with k strictly greater than the degree of g(x). Then for any
β ∈ C, we have

m(Γβ(x)) = log |g0|+ log+ |β|,
where log+ |x| := log max{1, |x|}.

Proof. Note that Γβ(x) = λxkg(x−1) + βg(x), and since k > deg g, the leading coefficient here is
λg0 and the constant term is βg0. By Lemma 2, we know that if αj are the roots of Γβ, then either
|αj| ≥ 1 for all j, or |αj| ≤ 1 for all j. In both cases, this means that by Jensen’s formula,

m(Γβ)− log |λg0| =
∑
j

log+ |αj| = log+
∣∣∣∏

j

αj

∣∣∣
= log+

∣∣∣∣βg0λg0

∣∣∣∣ = log+ |β|,

and since log |λg0| = log |g0|, we get the desired result. �

The next statement is essentially a restatement of Corollary 4 in slightly more general terms. It
will be used to prove Theorem 1 in the next section.

Proposition 5. Let f and g be as before with k strictly greater than the degree of g(x). Then for
any α, β ∈ C, not both zero, we have

m(αf + βg) = m(g) + log max{|α|, |β|}.
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Remark. Note that since g has all its roots outside the unit circle, we have m(g) = log |g0|. Similarly,
since f has all its roots inside the unit circle, its Mahler measure is given by its leading coefficient,
which is λg0. Thus, m(f) = m(g) = log |g0|.
Proof. Consider

Γ(x) = αf(x) + βg(x) = λαxkg(x−1) + βg(x).

Then deg(Γ) = k as before. We first consider the case α 6= 0. Without loss of generality, we can
then assume that α = 1. Using Corollary 4 with Γβ(x) = Γ(x), we have

m(Γ(x)) = log |g0|+ log+ |β|
= m(g) + log max{1, |β|}
= m(g) + log max{|α|, |β|},

as needed. Coming to the second case where α = 0, then

m(αf + βg) = m(βg) = m(g) + log |β|,
and since log max{|α|, |β|} = log |β|, we get the desired result. �

Before moving on to the proof of the main theorem, we will also briefly discuss the existence
of the Mahler measure integral for any polynomial in general. Although a fundamental and well-
known fact, we prove the result here for completion, due to its central role in the proof of Theorem
1.

Let F (y1, y2, . . . , yn+1) be a polynomial in C[y1, . . . , yn+1] in (n + 1) variables. We may write F
as a polynomial in yn+1 with coefficients being n-variable polynomials ci ∈ C[y1, . . . , yn], as

F = c0 + c1yn+1 + · · ·+ cky
k
n+1,

for some non-negative integer k. We may also factorize F as

F = ck

k∏
j=1

(
yn+1 −∆j(y1, y2, . . . , yn)

)
,

where ∆j(y1, y2, . . . , yn) are algebraic functions in y1, . . . , yn with appropriately chosen branch cuts.
Now consider the following lemma:

Lemma 6. [EW99, Lemma 3.7] Let F be a polynomial as above. Then the Mahler measure m(F )
of F exists and we can write

m(F ) = m(ck) +
1

(2πi)n

k∑
j=1

∫
|y1|=1

· · ·
∫
|yn|=1

log+ |∆j(y1, . . . , yn)| dyn
yn
· · · dy1

y1
,

where all integrals involved converge.

Proof. We proceed by induction on the number of variables in the polynomial F . In the base case
where n = 1, the ∆j’s are simply the roots of F , and the result follows by Jensen’s formula. Now
assume the result is true for n variables. Using the factorization of F , we can write

m(F ) =
1

(2πi)n+1

∫
|y1|=1

· · ·
∫
|yn|=1

∫
|yn+1|=1

log |F | dyn+1

yn+1

dyn
yn
· · · dy1

y1

= m(ck) +
1

(2πi)n+1

k∑
j=1

∫
|y1|=1

· · ·
∫
|yn|=1

(∫
|yn+1|=1

log
∣∣∣yn+1 −∆j

∣∣∣ dyn+1

yn+1

)
︸ ︷︷ ︸

I

dyn
yn
· · · dy1

y1
.



6 MATILDE LALÍN AND SIVA SANKAR NAIR

Recall that if β ∈ C, then Jensen’s formula implies that

m(x+ β) =
1

2πi

∫
|x|=1

log |x+ β| = log+ |β|.

Thus, for constant y1, y2, . . . , yn, the inner integral above is given by I = 2πi log+ |∆j(y1, . . . , yn)|,
and we have

m(F ) = m(ck) +
1

(2πi)n

k∑
j=1

∫
|y1|=1

· · ·
∫
|yn|=1

log+ |∆j(y1, . . . , yn)| dyn
yn
· · · dy1

y1
.(13)

The polynomial ck has n variables and by the induction hypothesis, it follows that m(ck) exists. It
remains to show that the integral in (13) also exists. First, we note that the torus Tn+1 defined by
{(y1, y2, . . . , yn+1) ∈ Cn+1 : |yj| = 1} is compact, and hence the polynomial F must be bounded
above on this region, and therefore m(F ) is bounded. Since m(ck) is finite, this means the integral
in (13) is also bounded from above. Secondly, if we write yj = eiθj for a real variable θj, then

dyj
yj

= i dθj,

for each j. Taking into account the factor of (i)n in the denominator outside the summation,
we observe that the integrand is log+ |∆j|, which is totally real and non-negative. In addition,
although the algebraic functions ∆j may not be continuous individually, the multiset of values
{∆j(y1, . . . , yn)} depends continuously on (y1, . . . , yn), away from the poles of the ∆j. Thus, the
integrands are non-negative and continuous, and along with the fact that the integrals are bounded
above, this shows that they all converge. This completes the induction and we conclude that m(F )
exists and that the integral in (13) converges. �

3. Proof of Theorem 1

We are now ready to prove our main result. Recall that we replace the variable x by f(x)/g(x)

in the polynomial P to obtain the rational function P̃ . We will show that the Mahler measure

computation for both P and P̃ is given by the same integral.

Proof of Theorem 1. We first write P as a polynomial in x with coefficients in C[y1, . . . , yn] as

P = P0 + P1x+ · · ·+ P`x
`,

where Pj ∈ C[y1, . . . , yn] for each 1 ≤ j ≤ `. We can now factorize this as

P = P`
∏̀
j=1

(
x−∆j(y1, . . . , yn)

)
,

where the ∆j’s are algebraic functions in y1, . . . , yn with appropriately chosen branch cuts. Then,
using Lemma 6, the Mahler measure of P is given by

m(P ) = m(P`) +
1

(2πi)n

∑̀
j=1

∫
|y1|=1

· · ·
∫
|yn|=1

log+ |∆j(y1, . . . , yn)| dyn
yn
· · · dy1

y1
.(14)
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We now move on to the evaluation of m(P̃ ), the rational function obtained from P by replacing
x by f(x)/g(x), which gives

P̃ = P`
∏̀
j=1

(
f(x)

g(x)
−∆j(y1, . . . , yn)

)

= (g(x))−`P`
∏̀
j=1

(
f(x)− g(x)∆j(y1, . . . , yn)

)
.

Thus, the Mahler measure of P̃ is given by

m(P̃ ) =
1

(2πi)n+1

∫
|y1|=1

· · ·
∫
|yn|=1

∫
|x|=1

log |P̃ | dx

x

dyn
yn
· · · dy1

y1

= m(P`)− ` ·m(g) +
1

(2πi)n+1

∑̀
j=1

∫
|y1|=1

· · ·
∫
|yn|=1

(∫
|x|=1

log
∣∣∣f(x)− g(x)∆j

∣∣∣ dx

x

)
︸ ︷︷ ︸

J

dyn
yn
· · · dy1

y1
.

Keeping the y1, y2, . . . , yn constant and using Proposition 5, we can write the inner integral J as

J =

∫
|x|=1

log
∣∣∣f(x)− g(x)∆j

∣∣∣ dx

x
= 2πim(f − g∆j) = 2πi

(
m(g) + log+ ∆j

)
,

for each 1 ≤ j ≤ `. Noting that∑̀
j=1

∫
|y1|=1

· · ·
∫
|yn|=1

(
2πim(g)

) dyn
yn
· · · dy1

y1
= 2πim(g)

∑̀
j=1

∫
|y1|=1

· · ·
∫
|yn|=1

1
dyn
yn
· · · dy1

y1

= 2πim(g)
∑̀
j=1

(2πi)n = ` ·m(g) · (2πi)n+1,

we can rewrite the Mahler measure of P̃ as

m(P̃ ) = m(P`)− ` ·m(g) + ` ·m(g) +
1

(2πi)n

∑̀
j=1

∫
|y1|=1

· · ·
∫
|yn|=1

log+ |∆j(y1, . . . , yn)| dyn
yn
· · · dy1

y1

= m(P`) +
1

(2πi)n

∑̀
j=1

∫
|y1|=1

· · ·
∫
|yn|=1

log+ |∆j(y1, . . . , yn)| dyn
yn
· · · dy1

y1
.(15)

We observe that equations (14) and (15) evaluate to the same expression and conclude that

m(P ) = m(P̃ ),

which completes the proof. �

4. Applications of Theorem 1

As remarked in the introduction, by taking P (x, y, z) = x+1+(x−1)(y+z), and by considering
its Mahler measure given in (2), we can deduce equations (4), (5), and (6) by setting g(x) =
x+2, x2−2x+2, and x4 +x+2 with k = 2, 4, and 5 respectively, with λ = 1, and after subtracting
log 2 from both sides of the evaluated identity in Theorem 1.
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Theorem 1 can be applied to very general polynomials P and even to rational functions. Indeed,
to work with rational functions, we can apply Theorem 1 to the numerator and the denominator
individually, and then put them back together to recover the rational function with the change of
variables.

Here we examine an interesting application involving rational functions with arbitrarily many
variables whose Mahler measure can be computed explicitly. Considering the fact that calculating
the exact Mahler measure of multivariable polynomials is generally hard, let alone those with
arbitrarily many variables, this is an intriguing and rare result.

Let

Rm(x1, . . . , xm, z) :=z +

(
1− x1
1 + x1

)
· · ·
(

1− xm
1 + xm

)
,

Sm(x1, . . . , xm, x, y, z) :=(1 + x)z +

(
1− x1
1 + x1

)
· · ·
(

1− xm
1 + xm

)
(1 + y),

Tm(x1, . . . , xm, x, y) :=1 +

(
1− x1
1 + x1

)
· · ·
(

1− xm
1 + xm

)
x+

(
1−

(
1− x1
1 + x1

)
· · ·
(

1− xm
1 + xm

))
y.

For a1, . . . am ∈ C, define

s`(a1, . . . , am) =

 1 if ` = 0,∑
i1<···<i` ai1 · · · ai` if 0 < ` ≤ m,

0 if m < `.

Recall that the Bernoulli numbers are given by

x

ex − 1
=
∞∑
n=0

Bnx
n

n!
.

The Mahler measures of the polynomials Rm, Sm, Tm can be computed by the following formulas.

Theorem 7. ([Lal06, LL16]) We have the following identities. For n ≥ 1,

m (R2n) =
n∑
h=1

sn−h(2
2, 42, . . . , (2n− 2)2)

(2n− 1)!

(
2

π

)2h

A(h),

where

A(h) := (2h)!

(
1− 1

22h+1

)
ζ(2h+ 1).

For n ≥ 0,

m (R2n+1) =
n∑
h=0

sn−h(1
2, 32, . . . , (2n− 1)2)

(2n)!

(
2

π

)2h+1

B(h),

where
B(h) := (2h+ 1)!L(χ−4, 2h+ 2).

For n ≥ 1,

m (S2n) =
n∑
h=1

sn−h(2
2, 42, . . . , (2n− 2)2)

(2n− 1)!

(
2

π

)2h+2

C(h),

where

C(h) :=
h∑
`=1

(
2h

2`

)
(−1)h−`

4h
B2(h−`)π

2h−2`(2`+ 2)!

(
1− 1

22`+3

)
ζ(2`+ 3).
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For n ≥ 0,

m (S2n+1) =
n∑
h=0

sn−h(1
2, 32 . . . , (2n− 1)2)

(2n)!

(
2

π

)2h+3

D(h),

where

D(h) :=
h∑
`=0

(
2h+ 1

2`+ 1

)
(−1)h−`

2(2h+ 1)
B2(h−`)π

2h−2`(2`+ 3)!L(χ−4, 2`+ 4).

For n ≥ 1,

m (T2n) =
log 2

2
+

n∑
h=1

sn−h(2
2, 42, . . . , (2n− 2)2)

(2n− 1)!

(
2

π

)2h

E(h),

where

E(h) :=
(2h)!

2

(
1− 1

22h+1

)
ζ(2h+ 1) +

h∑
`=1

(22(h−`)−1 − 1)

(
2h

2`

)
(−1)h−`+1

2h

×B2(h−`)π
2h−2`(2`)!

(
1− 1

22`+1

)
ζ(2`+ 1).

For n ≥ 0,

m (T2n+1) =
log 2

2
+

n∑
h=1

sn−h(2
2, 42, . . . , (2n− 2)2)

(2n+ 1)!

(
2

π

)2h+2

F(h),

where

F(h) :=
(2h+ 2)!

2

(
1− 1

22h+3

)
ζ(2h+ 3) +

π2n2

2
(2h)!

(
1− 1

22h+1

)
ζ(2h+ 1)

+ n(2n+ 1)
h∑
`=1

(22(h−`)−1 − 1)

(
2h

2`

)
(−1)h−`+1

4h
B2(h−`)π

2h+2−2`(2`)!

(
1− 1

22`+1

)
ζ(2`+ 1).

We can apply Theorem 1 to each variable x`, replacing it with f(x`)/g(x`) for any compatible
f(x`), g(x`). This yields infinitely many more formulas satisfying the results of Theorem 7. For
example, g(x) = x+ 2, k = 2 and λ = 1 gives, for m ≥ 1

m

(
z +

(
x21 − 1

x21 + x1 + 1

)(
1− x2
1 + x2

)
· · ·
(

1− xm
1 + xm

))
=m (Rm) ,

m

(
(1 + x)z +

(
x21 − 1

x21 + x1 + 1

)(
1− x2
1 + x2

)
· · ·
(

1− xm
1 + xm

)
(1 + y)

)
=m (Sm) ,

and

m

(
1 +

(
x21 − 1

x21 + x1 + 1

) (
1− x2
1 + x2

)
· · ·
(

1− xm
1 + xm

)
x

+

(
1−

(
x21 − 1

x21 + x1 + 1

)(
1− x2
1 + x2

)
· · ·
(

1− xm
1 + xm

))
y

)
= m(Tm).

In particular, equation (7) follows from considering the identity with S2. We remark that in this

case the formula for the Mahler measure of the rational function S̃2 can be directly written as the
Mahler measure of the polynomial in (7) by multiplying by the denominator, which has Mahler
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measure zero since it is the product of cyclotomic polynomials. Similarly, equations (8) and (9) are
obtained by using g(x) = x2 − 2x+ 2, and x4 + x+ 2 with k = 4, and 5 and λ = 1 with S2.

This application is yet another example emphasising the versatility of Theorem 1 towards expand-
ing existing results to generate new identities, that would otherwise be very difficult to establish.

5. A discussion on the genus of the involved varieties

In this section we briefly discuss the relation of Mahler measure with the regulator in order to
give additional context to the formulas that we have proven. More specifically, we explain how
some of the new polynomials correspond to curves of higher genus, which motivates our interest in
such formulas.

We start by following Deninger [Den97] as well as the treatment by Brunault and Zudilin [BZ20,
Section 8.3]. Let F ∈ C[y1, . . . , yn+1] be an irreducible polynomial in (n + 1) variables. As in
Section 2, we write

F = c0 + c1yn+1 + · · ·+ cky
k
n+1,

where ci ∈ C[y1, . . . , yn]. Applying Jensen’s formula as in the proof of Lemma 6, we can write

m(F ) = m(ck) +
1

(2πi)n

∫
D

log |yn+1|
dy1
y1
∧ · · · ∧ dyn

yn
,

where

D = {(y1, . . . , yn) : |y1| = · · · = |yn| = 1, |yn+1| > 1, F (y1, . . . , yn+1) = 0}

is known as the Deninger cycle attached to F .
The differential form log |yn+1|dy1y1 ∧ · · · ∧

dyn
yn
, defined over the smooth part Zreg

F of the zero locus

of F in (C×)n+1, is not necessarily closed, but there is a closed form η(y1, . . . , yn+1), defined on the
de Rham cohomology of Zreg

F , that satisfies

η(y1, . . . , yn+1)|D = (−1)n log |yn+1|
dy1
y1
∧ · · · ∧ dyn

yn
.

We have the following theorem.

Theorem 8. [Den97, Proposition 3.3], [BZ20, Theorem 8.11] Let F ∈ C[y1, . . . , yn+1] be an irre-
ducible polynomial such that D is a topological n-chain contained in Zreg

F . Then

m(F ) = m(ck) +
(−1)n

(2πi)n

∫
D

η(y1, . . . , yn+1).

The form η represents the Beilinson’s regulator evaluated in the Minor symbol {y1, . . . , yn+1}.
Beilinson’s conjecture, that we will not describe here, together with Theorem 8 suggest that the
Mahler measure m(F ) should be related to an L-function associated to Zreg

F when the boundary of
the Deninger cycle is trivial. There are several technicalities that need to be taken into consideration
(for example, the fact that Zreg

F is not projective), that we will not discuss here.
A special case arises when η(y1, . . . , yn+1) is an exact form and the boundary of the Deninger

cycle ∂D is non-trivial. Writing η(y1, . . . , yn+1) = dω(y1, . . . , yn+1), Stokes’s formula gives

m(F ) = m(ck) +
(−1)n

(2πi)n

∫
∂D

ω(y1, . . . , yn+1),
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where ∂D is the oriented boundary of the Deninger cycle. As proposed by Maillot [Mai03] after an
idea of Darboux [Dar75], ∂D is contained in the algebraic subvariety

WF : F (y1, . . . , yn+1) = F

(
1

y1
, . . . ,

1

yn+1

)
= 0,

and this suggests that m(P ) is related to an L-function associated to WF .
Under these conditions, the computation of the Mahler measure may proceed depending on the

properties of ω(y1, . . . , yn+1). A possibility is that ω is exact, and we can further apply Stokes’s
formula.

For example, in three variables, when the 1-form ω is exact, its primitive can be expressed in terms
of a trilogarithm. This is the case of formulas (1), (2), or the polynomials R2 and T1 (the polynomial
S0 has the same Mahler measure as (1)). The Mahler measure formulas corresponding to these
polynomials result in the evaluation of a trilogarithm in the intersection of {|x| = |y| = |z| = 1}
with a curve WF of genus 0. For example, let us look at (2). Then

WF : (x+ 1)(xy2 − y2 + xy + y − x+ 1) = 0,

the union of a line and a genus 0 curve. What is interesting about applying Theorem 1 is that it
results in evaluations of higher genus curves that still lead to simple Mahler measure formulas. For
example, let us look at (4). Then

WF : (x2 + x+ 1)(x2y2 − y2 + x2y + xy + y − x2 + 1) = 0,

and the main factor is a genus 1 curve. Analogously, if we consider the corresponding curves WF

for formulas (5) and (6), we obtain genus 3 and 4 curves respectively.
In other cases, such as in formula (3), ω is not exact. This poses a challenge to the evaluation of

the integral, which explains why formula (3) is only known numerically, but it has not been proven.
In this case, the integration takes place in a curve WF of genus 1, which corresponds, precisely, to
the elliptic curve 21a1. Here Theorem 1 results in evaluations of higher genus curves. For example,
if we consider the corresponding curves WF for formulas (10), (11), and (12), we obtain genus 3, 7,
and 9 respectively.

In conclusion, Theorem 1 leads to polynomials with substantially more complicated geometry
than the original polynomials but with the same Mahler measure. This process serves to generate
highly non-trivial identities.

References

[Boy81] David W. Boyd, Speculations concerning the range of Mahler’s measure, Canad. Math. Bull. 24 (1981),
no. 4, 453–469. MR 644535

[Boy98] , Mahler’s measure and special values of L-functions, Experiment. Math. 7 (1998), no. 1, 37–82.
MR 1618282

[Boy06] David W. Boyd, Conjectural explicit formulas for the Mahler measure of some three variable polynomials,
Personal communication, 2006.

[BRV02] David W. Boyd and Fernando Rodriguez-Villegas, Mahler’s measure and the dilogarithm. I, Canad. J.
Math. 54 (2002), no. 3, 468–492. MR 1900760

[BRVD03] David W. Boyd, Fernando Rodriguez-Villegas, and Nathan M. Dunfield, Mahler’s measure and the dilog-
arithm II, arXiv:math/0308041 (2003).

[BZ20] François Brunault and Wadim Zudilin, Many variations of Mahler measures—a lasting symphony, Aus-
tralian Mathematical Society Lecture Series, vol. 28, Cambridge University Press, Cambridge, 2020.
MR 4382435

[Che95] Weiyu Chen, On the polynomials with all their zeros on the unit circle, J. Math. Anal. Appl. 190 (1995),
no. 3, 714–724. MR 1318593
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[LL16] Matilde N. Laĺın and Jean-Sébastien Lechasseur, Higher Mahler measure of an n-variable family, Acta
Arith. 174 (2016), no. 1, 1–30. MR 3517530
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