Introduction to modular forms
Presentation at the Graduate Geometric Topology class at Louisiana State University (Prof. Oliver Dasbach)

November 7th, 2006
Matilde N. Lalín- University of British Columbia and Pacific Institute for the Mathematical Sciences ${ }^{1}$

Motivation

We borrow freely from the bibliography in these notes. This first part is mainly from Milne's notes [2].

Let X a connected Hausdorff topological space. A coordinate neighborhood of a point $P \in X$ is a pair (U, z) where $P \in U$ open, and z is a homeomorphism of U onto an open subset of \mathbb{C}. A complex structure on X is a compatible family of coordinate neighborhoods that cover X. A Riemann surface is a topological space together with its complex structure. Examples: any open subset of \mathbb{C}, the unit sphere.

Let $V \subset X$ open subset of a Riemann sphere. A function $f: V \rightarrow \mathbb{C}$ is holomorphic if for all $(U, z), f \circ z^{-1}$ is holomorphic in $z(U)$. Similarly for meromorphic functions.

Problem: study the holomorphic functions on all Riemann surfaces.
From topology there is the universal covering space $\tilde{X}, p: \tilde{X} \rightarrow X$ local homeomorphism. \tilde{X} admits a unique complex structure for which p is a local isomorphism of Riemann surfaces. If Γ is the group of covering transformations, the $X=\Gamma \backslash \tilde{X}$.

By the Riemann mapping Theorem, \tilde{X} is isomorphic to $\mathbb{C}, D=\{z \in \mathbb{C}| | z \mid<1\}$, or the Riemann sphere.

Instead of looking at D, we look at the complex upper half plane $\mathbb{H}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>$ $0\}$, which is conformally equivalent because of the transformation $z \rightarrow \frac{z-\mathrm{i}}{z+\mathrm{i}}$.

Then we study Riemann surfaces of the form $\Gamma \backslash \mathbb{H}$, with Γ discrete group acting on \mathbb{H}. We need to find Γ. An obvious choice is the special linear group $S L_{2}(\mathbb{R})$, the action given by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=\frac{a z+b}{c z+d}
$$

Indeed,

$$
\operatorname{Im}\left(\frac{a z+b}{c z+d}\right)=\operatorname{Im}\left(\frac{(a z+b)(c \bar{z}+d)}{|c z+d|^{2}}\right)=\frac{\operatorname{Im}(a d z+b c \bar{z})}{|c z+d|^{2}}=\frac{\operatorname{Im}(z)}{|c z+d|^{2}}
$$

Actually there is an isomorphism

$$
S L_{2}(\mathbb{R}) /\{ \pm I\} \rightarrow \operatorname{Aut}(\mathbb{H})
$$

(bi-holomorphic automorphisms of \mathbb{H}). An obvious discrete subgroup of $S L_{2}(\mathbb{R})$ is the full modular group $\Gamma=S L_{2}(\mathbb{Z})$. For $N \geq 0$, we have:

$$
\Gamma(N)=\left\{\left.\left(\begin{array}{ll}
a & b \tag{1}\\
c & d
\end{array}\right) \right\rvert\, a \equiv d \equiv 1(\bmod N), b \equiv c \equiv 0(\bmod N)\right\}
$$

[^0]Note that the $\Gamma(N)$ are normal. In Number Theory we are interested in discrete subgroups of $S L_{2}(\mathbb{R})$ that contain some $\Gamma(N)$ as a finite index subgroup (congruence subgroups of level $N)$. For example, $\Gamma_{0}(N)(c \equiv 0(\bmod N)), \Gamma_{1}(N)(c \equiv 0(\bmod N), a \equiv 1(\bmod N))$.

Now we take $Y(N)=\Gamma(N) \backslash \mathbb{H}$ with the quotient topology. We can endow it with a (unique) structure of Riemann surface. Its compactification is denoted by $X(N)$.

The fundamental domain by the action of $S L_{2}(\mathbb{Z})$
Here we follow Koblitz [1]. How does $X(N)$ look like? Let us look at the case of the full modular group. The fundamental domain for the action of a group Γ in \mathbb{H} is a subset F of \mathbb{H} such that every point $z \in \mathbb{H}$ is Γ-equivalent to a point in F and no distinct points z_{1}, z_{2} in the interior of F are equivalent. It turns out that

Proposition 1 For $\Gamma=\Gamma(1)$,

$$
\begin{equation*}
F=\left\{z \in \mathbb{H}\left|-\frac{1}{2} \leq \operatorname{Re}(z) \leq \frac{1}{2},|z| \geq 1\right\}\right. \tag{2}
\end{equation*}
$$

is a fundamental domain. PICTURE.
Idea of Proof. We use $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. First we prove that any $z \in \mathbb{H}$ is equivalent to a point in F. We do that by translating with T until the real part is less than $\frac{1}{2}$ in absoulte value, and then applying S once if necessary. Then prove that not two interior points are equivalent. This is easy but technical.

Let Γ_{z} be the isotropy subgroup of z, meaning, $\Gamma_{z}:=\{\gamma \in \Gamma(1) \mid \gamma(z)=z\}$. Then
Proposition $2 z \in F$, then $\Gamma_{z}= \pm I$ unless

- $\Gamma_{\mathrm{i}}=\langle S\rangle$.
- $\Gamma_{\omega}=\langle S T\rangle$ for $\omega=\frac{-1+\sqrt{3} \mathrm{i}}{2}$.
- $\Gamma_{\omega}=\langle T S\rangle$ for $\omega=\frac{1+\sqrt{3} \mathrm{i}}{2}$.

Another consequence is
Proposition 3 The group $\Gamma(1)$ is generated by S and T.
In order to complete $Y(1)$, we need to add the point at infinity. Only one point is enough, since Γ is transitive in $\mathbb{Q} \cup \infty$.

Modular forms

We are looking for functions that are a meromorphic on \mathbb{H}, invariant under $\Gamma(N)$ and meromorphic at the cusps. That means that they can be regarded as functions on $Y(N)$ and as such, they remain meromorphic when extended to $X(N)$.

In the case of the full modular group, to be invariant means that

$$
f\left(\frac{a z+b}{c z+d}\right)=f(z) \quad \text { for all } \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z})
$$

In particular taking $T \in S L_{2}(\mathbb{Z})$, we have that $f(z+1)=f(z)$, and thus we can write $f(z)=f^{*}(q)$ where $q=\mathrm{e}^{2 \pi \mathrm{i} z}$. As z moves in \mathbb{H}, q moves in the unit punctured disk. To say that f is meromorphic at the cusps means that $f^{*}(q)$ is meromorphic in the whole disk,

$$
\begin{equation*}
f(z)=\sum_{n \geq-N_{0}} a_{n} q^{n} \tag{3}
\end{equation*}
$$

It is hard to construct a meromorphic function on \mathbb{H} that is invariant under the action of $\Gamma(N)$. We can, instead, construct functions that transform in a "nice way" under the action of $\Gamma(N)$. The quotient of two such functions will be then a modular function (analogous to the construction of rational functions on the proyective space).

Definition 4 A holomorphic (meromorphic) function $f(z)$ on \mathbb{H} is a modular form (function) of level N and weight k if
1.

$$
f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{k} f(z) \quad \text { for all } \quad\left(\begin{array}{cc}
a & b \tag{4}\\
c & d
\end{array}\right) \in \Gamma(N)
$$

2. $f(z)$ is holomorphic (meromorphic) at the cusps.

In particular, for the full modular group
1.

$$
\begin{equation*}
f(z+1)=f(z), \quad f\left(-\frac{1}{z}\right)=(-z)^{k} f(z) \tag{5}
\end{equation*}
$$

2.

$$
\begin{equation*}
f(z)=\sum_{n \geq 0} a_{n} q^{n} \tag{6}
\end{equation*}
$$

If we further have that $a_{0}=0$, the form is called a cusp-form of weight k for the full modular group.

The set of such forms is denoted by $M_{k}(\Gamma(N))$. The cusp forms are denoted by $S_{k}(\Gamma(N))$.
Notice that for k odd there are no nonzero modular functions for $\Gamma(1)$ (to see this, take $-I)$.

The set of modular forms of weight k is a vector space. The product of two modular forms of weight k_{1} and k_{2} is a modular form of weight $k_{1}+k_{2}$.

Examples

Eisenstein series.
Definition 5 If k is an even integer greater than 2, define

$$
\begin{equation*}
G_{k}(z):=\sum_{m, n}^{\prime} \frac{1}{(m z+n)^{k}} \tag{7}
\end{equation*}
$$

where the summation is taken over the pairs m, n where not both are zero.

For $k \geq 4$ the sum is absolutely convergent and uniformly convergent in any compact subset of \mathbb{H}. Hence $G_{k}(z)$ is a holomorphic function. Clearly $G_{k}(z+1)=G_{k}(z)$, and the Fourier expansion has no negative terms since

$$
\lim _{z \rightarrow \mathrm{i} \infty} \sum_{m, n}^{\prime} \frac{1}{(m z+n)^{k}}=2 \sum_{n \neq 0} \frac{1}{n^{k}}=2 \zeta(k)
$$

Also

$$
G_{k}\left(-\frac{1}{z}\right)=\sum_{m, n}^{\prime} \frac{z^{k}}{(-m+n z)^{k}}=z^{k} G_{k}(z)
$$

Then $G_{k}(z) \in M_{k}(\Gamma(1))$.
Proposition 6 The q-expansion of $G_{k}(z)$ is given by

$$
\begin{equation*}
G_{k}(z)=2 \zeta(k)\left(1-\frac{2 k}{B_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n}\right) \tag{8}
\end{equation*}
$$

where

$$
\sigma_{k-1}(n):=\sum_{d \mid n} d^{k-1}
$$

and B_{k} is the k th Bernoulli number given by

$$
\frac{x}{\mathrm{e}^{x}-1}=\sum_{k=0}^{\infty} B_{k} \frac{x^{k}}{k!}
$$

For the proof use that

$$
\pi \mathrm{i}+\frac{2 \pi \mathrm{i}}{\mathrm{e}^{2 \pi \mathrm{i} a}-1}=\pi \cot (\pi a)=\frac{1}{a}+\sum_{n=1}^{\infty}\left(\frac{1}{a+n}+\frac{1}{a-n}\right) \quad a \in \mathbb{H}
$$

and differentiate many times. (This also proves that $\left.\zeta(2 k)=\frac{2^{2 k-1}}{(2 k)!} B_{2 k} \pi^{2 k}\right)$.
Write $E_{k}(z)=\frac{G_{k}(z)}{2 \zeta(k)}$. The first few examples are:

$$
\begin{aligned}
& E_{4}(z)=1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n} \\
& E_{6}(z)=1-504 \sum_{n=1}^{\infty} \sigma_{5}(n) q^{n}
\end{aligned}
$$

Another example (we follow [2] again): the (finite-index) quotients of \mathbb{C} are given by lattices

$$
\Lambda=\mathbb{Z} \omega_{1} \oplus \mathbb{Z} \omega_{2}
$$

where the ω_{i} are complex numbers whose quotient is not real, (the quotient may be taken in such a way that $\operatorname{Im}\left(\frac{\omega_{2}}{\omega_{1}}\right)>0$. Then \mathbb{C} / Λ is a torus and it can be given a unique complex structure. A meromorphic function must satisfy $f(z+\lambda)=f(z)$ for every $\lambda \in \Lambda$. Consider

$$
\mathcal{P}(z)=\frac{1}{z^{2}}+\sum_{\lambda \in \Lambda, \lambda \neq 0}\left(\frac{1}{(z-\lambda)^{2}}-\frac{1}{\lambda^{2}}\right)
$$

This is a meromorphic function, invariant under Λ, and

$$
[z] \rightarrow\left(\mathcal{P}(z): \mathcal{P}^{\prime}(z): 1\right)
$$

defines an isomorphism of the Riemann surface \mathbb{C} / Λ onto the Riemann surface $E(\mathbb{C})$ where E is the elliptic curve

$$
Y^{2} Z=4 X^{3}-g_{2} X Z^{2}-g_{3} Z^{3}
$$

for certain g_{2}, g_{3}. It turns out that

$$
E(\Lambda) \cong E\left(\Lambda^{\prime}\right) \Leftrightarrow \Lambda^{\prime}=c \Lambda \quad c \in \mathbb{C}^{*}
$$

Then we can assume $\Lambda=\mathbb{Z} \oplus \mathbb{Z} \tau$, with $\tau \in \mathbb{H}$. Then

$$
g_{2}=60 G_{4}(\tau), \quad g_{3}=140 G_{6}(\tau)
$$

Indeed, this actually defines an isomorphism

$$
\begin{gathered}
Y(1) \rightarrow\{\text { elliptic curves over } \mathbb{C}\} / \cong \\
\tau \rightarrow E(\tau)
\end{gathered}
$$

Now consider $\Delta=g_{2}^{3}-27 g_{3}^{2}$. It is the discriminant of the curve and is different from zero. It is a modular form of weight 12 given by

$$
(2 \pi)^{-12} \Delta=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}:=\sum_{n=1}^{\infty} \tau(n) q^{n}
$$

It was studied by Ramanujan and it has many properties, like $\tau(m n)=\tau(m) \tau(n)$ when m, n are coprime.

The function

$$
j(\tau):=1728 g_{2}(\tau)^{3} / \Delta(\tau)
$$

is a modular function of weight 0 for $\Gamma(1)$ and defines an isomorphism

$$
\begin{gathered}
j: Y(1) \rightarrow \mathbb{C} \\
j(\tau)=\frac{1}{q}+744+\sum_{n=1}^{\infty} c(n) q^{n}
\end{gathered}
$$

Arithmetic facts about elliptic curves translate in this way into arithmetic facts of special values of modular forms.

Proposition 7 Let $f(z)$ be a nonzero modular function of weight k for $\Gamma(1)$. For $P \in \mathbb{H}$, let $v_{P}(f)$ denote the order of zero (taken with negative sign for poles) of $f(z)$ at the point P. Let $v_{\infty}(f)$ denote the order at infinity (the index of the first non vanishing term in the Fourier expansion). Then

$$
v_{\infty}(f)+\frac{1}{2} v_{\mathrm{i}}(f)+\frac{1}{3} v_{\omega}(f)+\sum_{P \in \Gamma(1) \backslash \mathbb{H}, P \neq \mathbf{i}, \omega} v_{P}(f)=\frac{k}{12}
$$

Idea of the proof: count the number of zeros and poles in $\Gamma(1) \backslash \mathbb{H}$ by integrating the logarithmic derivative $\frac{f^{\prime}}{f}$ around the boundary of the fundamental domain and playing with the Residue Theorem.

Corollary 8 Let k be an even integer.

- The only modular forms of weight 0 are the constants.
- $M_{k}(\Gamma(1))=0$ if k is negative or $k=2$.
- $M_{k}(\Gamma(1))$ is one-dimensional, generated by E_{k} for $k=4,6,8,10$ or 14 .
- $S_{k}(\Gamma(1))=0$ if $k<12$ or $k=14$. $S_{12}(\Gamma(1))=\mathbb{C} \Delta$. For $k>14, S_{k}(\Gamma(1))=$ $\Delta M_{k-12}(\Gamma(1))$.
- $M_{k}(\Gamma(1))=S_{k}(\Gamma(1)) \oplus \mathbb{C} E_{k}$ for $k>2$.
- For $k \geq 0$,

$$
\operatorname{dim} M_{k}(\Gamma(1))= \begin{cases}{\left[\frac{k}{12}\right]} & k \equiv 1(\bmod 12) \\ {\left[\frac{k}{12}\right]+1} & k \not \equiv 1(\bmod 12)\end{cases}
$$

Corollary 9 Any $f \in M_{k}(\Gamma(1))$ can be can be written as

$$
\begin{equation*}
f(z)=\sum_{4 i+6 j=k} c_{i, j} E_{4}(z)^{i} E_{6}(z)^{j} \tag{9}
\end{equation*}
$$

Proposition 10 The modular functions of weight zero for Γ are the rational functions for j.

References

[1] N. Koblitz, Introduction to elliptic curves and modular forms. Second edition. Graduate Texts in Mathematics, 97. Springer-Verlag, New York, 1993.
[2] J. S. Milne, Modular functions and modular forms. Notes from the course math678, 1997, available at http://www.jmilne.org/math/CourseNotes/math678.html.
[3] J. P. Serre, A Course in Arithmetic. Graduate Texts in Mathematics 7, Springer-Verlag, New York, 1973.
[4] D. Zagier, Introduction to modular forms. From number theory to physics (Les Houches, 1989), 238-291, Springer, Berlin, 1992.

[^0]: ${ }^{1}$ mlalin@math.ubc.ca- http://www.math.ubc.ca/ ${ }^{\sim}$ mlalin

