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Motivation

We borrow freely from the bibliography in these notes. This first part is mainly from
Milne’s notes [2].

Let X a connected Hausdorff topological space. A coordinate neighborhood of a point
P ∈ X is a pair (U, z) where P ∈ U open, and z is a homeomorphism of U onto an open
subset of C. A complex structure on X is a compatible family of coordinate neighborhoods
that cover X. A Riemann surface is a topological space together with its complex structure.
Examples: any open subset of C, the unit sphere.

Let V ⊂ X open subset of a Riemann sphere. A function f : V → C is holomorphic if
for all (U, z), f ◦ z−1 is holomorphic in z(U). Similarly for meromorphic functions.

Problem: study the holomorphic functions on all Riemann surfaces.
From topology there is the universal covering space X̃, p : X̃ → X local homeomor-

phism. X̃ admits a unique complex structure for which p is a local isomorphism of Riemann
surfaces. If Γ is the group of covering transformations, the X = Γ \ X̃.

By the Riemann mapping Theorem, X̃ is isomorphic to C, D = {z ∈ C | |z| < 1}, or
the Riemann sphere.

Instead of looking at D, we look at the complex upper half plane H = {z ∈ C | Im(z) >
0}, which is conformally equivalent because of the transformation z → z−i

z+i .
Then we study Riemann surfaces of the form Γ \H, with Γ discrete group acting on H.

We need to find Γ. An obvious choice is the special linear group SL2(R), the action given
by (

a b
c d

)
· z =

az + b

cz + d
.

Indeed,

Im
(

az + b

cz + d

)
= Im

(
(az + b)(cz̄ + d)

|cz + d|2
)

=
Im(adz + bcz̄)
|cz + d|2 =

Im(z)
|cz + d|2 .

Actually there is an isomorphism

SL2(R)/{±I} → Aut(H),

(bi-holomorphic automorphisms of H). An obvious discrete subgroup of SL2(R) is the full
modular group Γ = SL2(Z). For N ≥ 0, we have:

Γ(N) =
{(

a b
c d

)
| a ≡ d ≡ 1 (modN), b ≡ c ≡ 0 (modN)

}
. (1)
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Note that the Γ(N) are normal. In Number Theory we are interested in discrete subgroups
of SL2(R) that contain some Γ(N) as a finite index subgroup (congruence subgroups of
level N). For example, Γ0(N) (c ≡ 0 (modN) ), Γ1(N) (c ≡ 0 (modN), a ≡ 1 (modN) ).

Now we take Y (N) = Γ(N) \ H with the quotient topology. We can endow it with a
(unique) structure of Riemann surface. Its compactification is denoted by X(N).

The fundamental domain by the action of SL2(Z)

Here we follow Koblitz [1]. How does X(N) look like? Let us look at the case of the
full modular group. The fundamental domain for the action of a group Γ in H is a subset
F of H such that every point z ∈ H is Γ-equivalent to a point in F and no distinct points
z1, z2 in the interior of F are equivalent. It turns out that

Proposition 1 For Γ = Γ(1),

F =
{

z ∈ H | − 1
2
≤ Re(z) ≤ 1

2
, |z| ≥ 1

}
(2)

is a fundamental domain. PICTURE.

Idea of Proof. We use T =
(

1 1
0 1

)
and S =

(
0 −1
1 0

)
. First we prove that any z ∈ H

is equivalent to a point in F . We do that by translating with T until the real part is less
than 1

2 in absoulte value, and then applying S once if necessary. Then prove that not two
interior points are equivalent. This is easy but technical.

Let Γz be the isotropy subgroup of z, meaning, Γz := {γ ∈ Γ(1) | γ(z) = z}. Then

Proposition 2 z ∈ F , then Γz = ±I unless

• Γi = 〈S〉.

• Γω = 〈ST 〉 for ω = −1+
√

3i
2 .

• Γω = 〈TS〉 for ω = 1+
√

3i
2 .

Another consequence is

Proposition 3 The group Γ(1) is generated by S and T .

In order to complete Y (1), we need to add the point at infinity. Only one point is
enough, since Γ is transitive in Q ∪∞.

Modular forms

We are looking for functions that are a meromorphic on H, invariant under Γ(N) and
meromorphic at the cusps. That means that they can be regarded as functions on Y (N)
and as such, they remain meromorphic when extended to X(N).

In the case of the full modular group, to be invariant means that

f

(
az + b

cz + d

)
= f(z) for all

(
a b
c d

)
∈ SL2(Z).
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In particular taking T ∈ SL2(Z), we have that f(z + 1) = f(z), and thus we can write
f(z) = f∗(q) where q = e2πiz. As z moves in H, q moves in the unit punctured disk. To say
that f is meromorphic at the cusps means that f∗(q) is meromorphic in the whole disk,

f(z) =
∑

n≥−N0

anqn. (3)

It is hard to construct a meromorphic function on H that is invariant under the action of
Γ(N). We can, instead, construct functions that transform in a “nice way” under the action
of Γ(N). The quotient of two such functions will be then a modular function (analogous
to the construction of rational functions on the proyective space).

Definition 4 A holomorphic (meromorphic) function f(z) on H is a modular form (func-
tion) of level N and weight k if

1.

f

(
az + b

cz + d

)
= (cz + d)kf(z) for all

(
a b
c d

)
∈ Γ(N). (4)

2. f(z) is holomorphic (meromorphic) at the cusps.

In particular, for the full modular group

1.

f (z + 1) = f(z), f

(
−1

z

)
= (−z)kf(z). (5)

2.
f(z) =

∑

n≥0

anqn. (6)

If we further have that a0 = 0, the form is called a cusp-form of weight k for the full
modular group.

The set of such forms is denoted by Mk(Γ(N)). The cusp forms are denoted by Sk(Γ(N)).
Notice that for k odd there are no nonzero modular functions for Γ(1) (to see this, take

−I).
The set of modular forms of weight k is a vector space. The product of two modular

forms of weight k1 and k2 is a modular form of weight k1 + k2.

Examples

Eisenstein series.

Definition 5 If k is an even integer greater than 2, define

Gk(z) :=
′∑

m,n

1
(mz + n)k

, (7)

where the summation is taken over the pairs m,n where not both are zero.
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For k ≥ 4 the sum is absolutely convergent and uniformly convergent in any compact subset
of H. Hence Gk(z) is a holomorphic function. Clearly Gk(z + 1) = Gk(z), and the Fourier
expansion has no negative terms since

lim
z→i∞

′∑
m,n

1
(mz + n)k

= 2
∑

n 6=0

1
nk

= 2ζ(k).

Also

Gk

(
−1

z

)
=

′∑
m,n

zk

(−m + nz)k
= zkGk(z).

Then Gk(z) ∈ Mk(Γ(1)).

Proposition 6 The q-expansion of Gk(z) is given by

Gk(z) = 2ζ(k)

(
1− 2k

Bk

∞∑

n=1

σk−1(n)qn

)
, (8)

where
σk−1(n) :=

∑

d|n
dk−1,

and Bk is the kth Bernoulli number given by

x

ex − 1
=

∞∑

k=0

Bk
xk

k!
.

For the proof use that

πi +
2πi

e2πia − 1
= π cot(πa) =

1
a

+
∞∑

n=1

(
1

a + n
+

1
a− n

)
a ∈ H,

and differentiate many times. (This also proves that ζ(2k) = 22k−1

(2k)! B2kπ
2k).

Write Ek(z) = Gk(z)
2ζ(k) . The first few examples are:

E4(z) = 1 + 240
∞∑

n=1

σ3(n)qn,

E6(z) = 1− 504
∞∑

n=1

σ5(n)qn.

Another example (we follow [2] again): the (finite-index) quotients of C are given by
lattices

Λ = Zω1 ⊕ Zω2,

where the ωi are complex numbers whose quotient is not real, (the quotient may be taken
in such a way that Im

(
ω2
ω1

)
> 0. Then C/Λ is a torus and it can be given a unique complex

structure. A meromorphic function must satisfy f(z +λ) = f(z) for every λ ∈ Λ. Consider

P(z) =
1
z2

+
∑

λ∈Λ, λ 6=0

(
1

(z − λ)2
− 1

λ2

)
.
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This is a meromorphic function, invariant under Λ, and

[z] → (P(z) : P ′(z) : 1)

defines an isomorphism of the Riemann surface C/Λ onto the Riemann surface E(C) where
E is the elliptic curve

Y 2Z = 4X3 − g2XZ2 − g3Z
3,

for certain g2, g3. It turns out that

E(Λ) ∼= E(Λ′) ⇔ Λ′ = cΛ c ∈ C∗.

Then we can assume Λ = Z⊕ Zτ , with τ ∈ H. Then

g2 = 60G4(τ), g3 = 140G6(τ).

Indeed, this actually defines an isomorphism

Y (1) → {elliptic curves overC}/ ∼=

τ → E(τ)

Now consider ∆ = g3
2 − 27g2

3. It is the discriminant of the curve and is different from
zero. It is a modular form of weight 12 given by

(2π)−12∆ = q

∞∏

n=1

(1− qn)24 :=
∞∑

n=1

τ(n)qn.

It was studied by Ramanujan and it has many properties, like τ(mn) = τ(m)τ(n) when
m,n are coprime.

The function
j(τ) := 1728g2(τ)3/∆(τ)

is a modular function of weight 0 for Γ(1) and defines an isomorphism

j : Y (1) → C.

j(τ) =
1
q

+ 744 +
∞∑

n=1

c(n)qn

Arithmetic facts about elliptic curves translate in this way into arithmetic facts of special
values of modular forms.

Proposition 7 Let f(z) be a nonzero modular function of weight k for Γ(1). For P ∈ H,
let vP (f) denote the order of zero (taken with negative sign for poles) of f(z) at the point
P . Let v∞(f) denote the order at infinity (the index of the first non vanishing term in the
Fourier expansion). Then

v∞(f) +
1
2
vi(f) +

1
3
vω(f) +

∑

P∈Γ(1)\H,P 6=i,ω

vP (f) =
k

12
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Idea of the proof: count the number of zeros and poles in Γ(1) \ H by integrating the
logarithmic derivative f ′

f around the boundary of the fundamental domain and playing
with the Residue Theorem.

Corollary 8 Let k be an even integer.

• The only modular forms of weight 0 are the constants.

• Mk(Γ(1)) = 0 if k is negative or k = 2.

• Mk(Γ(1)) is one-dimensional, generated by Ek for k = 4, 6, 8, 10 or 14.

• Sk(Γ(1)) = 0 if k < 12 or k = 14. S12(Γ(1)) = C∆. For k > 14, Sk(Γ(1)) =
∆Mk−12(Γ(1)).

• Mk(Γ(1)) = Sk(Γ(1))⊕ CEk for k > 2.

• For k ≥ 0,

dimMk(Γ(1)) =
{ [

k
12

]
k ≡ 1 (mod12)[

k
12

]
+ 1 k 6≡ 1 (mod12)

Corollary 9 Any f ∈ Mk(Γ(1)) can be can be written as

f(z) =
∑

4i+6j=k

ci,jE4(z)iE6(z)j (9)

Proposition 10 The modular functions of weight zero for Γ are the rational functions for
j.
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