Sujets spéciaux en théorie des nombres - formes modulaires/ Special Topics in Number Theory - Modular Forms.

MAT 6684w
Homework 2. Due October 11, 2017
To get full credit solve 4 of the following problems (you are welcome to do them all). The answers may be submitted in English or French.

1. (a) Prove that

$$
\sigma_{9}(n)=\frac{21}{11} \sigma_{5}(n)-\frac{10}{11} \sigma_{3}(n)+\frac{5040}{11} \sum_{j=1}^{n-1} \sigma_{3}(j) \sigma_{5}(n-j) \quad \forall n \in \mathbb{Z}_{>0}
$$

(b) Find similar expressions for σ_{13} in terms of σ_{3} and σ_{9} and in terms of σ_{5} and σ_{7}.
2. (a) Find rational numbers λ and μ such that

$$
\Delta=\lambda E_{4}^{3}+\mu E_{12} .
$$

(b) Let $\tau(n)$ be the n-th coefficient in the q-expansion of Δ, in other words,

$$
\Delta=\sum_{n=1}^{\infty} \tau(n) q^{n}
$$

Prove Ramanujan's congruence:

$$
\tau(n) \equiv \sigma_{11}(n) \bmod 691
$$

3. (a) Prove that $\frac{7}{10} E_{6}=\frac{1}{2 \pi i} E_{4}^{\prime}+8 E_{2} E_{4}, \frac{10}{21} E_{8}=\frac{1}{2 \pi i} E_{6}^{\prime}+12 E_{2} E_{6}$. (Hint: Problem 9, Homework 1).
(b) Prove that $\frac{5}{6} E_{4}=\frac{1}{2 \pi i} E_{2}^{\prime}+2 E_{2}^{2}$. (Recall that E_{2} is not a modular form.)
(Points (a) and (b) are known are Ramanujan's identities for Eisenstein series.)
(c) Conclude that the ring $\mathbb{C}\left[E_{2}, E_{4}, E_{6}\right]$ is closed under differentiation.
4. Consider the modular function $j: \mathbb{H} \rightarrow \mathbb{C}$.
(a) Show that $j(i)=1728$ and $j\left(e^{\frac{2 \pi i}{3}}\right)=0$.
(b) Let $z \in \mathcal{D}$ (the standard fundamental domain for $\mathrm{SL}_{2}(\mathbb{Z})$). Prove that if z lies on the boundary of \mathcal{D} or $\operatorname{Re} z=0$, then $j(z) \in \mathbb{R}$.
(c) Show that $\bar{j}: \mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H} \rightarrow \mathbb{C}$ given by $\bar{j}([z]):=j(z)$ is well-defined and prove that \bar{j} is bijective. (Hint: Use the valence formula to show that $f_{\lambda}=\left(240 E_{4}\right)^{3}-\lambda \Delta$ has exactly one zero on the fundamental domain.)
(Here $[z]$ denotes the orbit of z under the action of $\mathrm{SL}_{2}(\mathbb{Z})$.)
(d) Prove the converse to part (b).
5. (a) Show that M_{k} is spanned by all $E_{4}^{j} E_{6}^{\ell}$ with $j, \ell \in \mathbb{Z}_{\geq 0}$ and $4 j+6 \ell=k$.
(b) Show that E_{4} and E_{6} are algebraically independent over \mathbb{C}.

This question shows that the ring of modular forms (for $S L_{2}(\mathbb{Z})$) defined as $M:=$ $\bigoplus_{k \in \mathbb{Z}} M_{k}$ is isomorphic to the ring of polynomials over \mathbb{C} in two variables $\mathbb{C}[x, y]$ with isomorphism $\mathbb{C}[x, y] \xrightarrow{\sim} M$ given by $(x, y) \mapsto\left(E_{4}, E_{6}\right)$.
(If we grade the rings by assigning grade k to a modular form of weight k and grades 4 and 6 to x and y respectively, we get an isomorphism of graded rings.)
6. (a) Show that the modular functions for $\mathrm{SL}_{2}(\mathbb{Z})$ form a field F with addition and multiplication defined pointwise.
(b) Prove that $F=\mathbb{C}(j)$ and that j is transcendental over \mathbb{C}.
7. Let $\mathcal{L}_{1}(N)$ be the set of pairs (Λ, P) where Λ is a lattice in \mathbb{C} and P is a point of order N in the group \mathbb{C} / Λ.
(a) Show that on $\mathcal{L}_{1}(N)$ there is an equivalence relation \sim with the property that $(\Lambda, P) \sim\left(\Lambda^{\prime}, P^{\prime}\right)$ if and only if there exists $\alpha \in \mathbb{C}^{\times}$such that for any $\omega \in \mathbb{C}$ with $\omega+\Lambda=P$ in \mathbb{C} / Λ we have $\alpha \Lambda=\Lambda^{\prime}$ and $\alpha \omega+\Lambda^{\prime}=P^{\prime}$ in $\mathbb{C} / \Lambda^{\prime}$.
(b) Recall that $\Gamma_{1}(N)$ is the subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ consisting of matrices of the form $\left(\begin{array}{cc}a & b \\ N c & d\end{array}\right)$ with $a, b, c, d \in \mathbb{Z}, a \equiv d \equiv 1 \bmod N$ and $a d-N b c=1$. Prove that there is a bijection

$$
\mathcal{L}_{1}(N) / \sim \cong \Gamma_{1}(N) \backslash \mathbb{H}
$$

(Hint: consider lattices together with a suitable \mathbb{Z}-basis $\left(\omega_{1}, \omega_{2}\right)$, and use a similar argument as for the bijection $\mathcal{L}_{0}(N) / \sim \cong \Gamma_{0}(N) \backslash \mathbb{H}$ constructed in the lecture.)
8. Let N be a positive integer, and let H be a subgroup of $(\mathbb{Z} / N \mathbb{Z})^{\times}$. Show that the set

$$
\Gamma_{H}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) \right\rvert\, a, d \bmod N \text { are in } H \text { and } c \equiv 0 \bmod N\right\}
$$

is a congruence subgroup, and determine its level.

