
Sujets spéciaux en théorie des nombres - formes modulaires/ Special Topics in Number
Theory - Modular Forms.

MAT 6684w
Homework 3. Due October 30, 2017

To get full credit solve 3 of the following problems (you are welcome to do them all). The
answers may be submitted in English or French.

1. Show that the cusps of Γ1(4), viewed as Γ1(4)-orbits in P1(Q), are represented by the
elements 0, 1/2 and ∞ of P1(Q). For each of these cusps c, determine whether c is
regular or irregular, and compute its width hΓ(c).

Solution: The orbit of 0 ∈ P1(Q) is

Γ1(4) · 0 =

{(
a b
4c d

)
0

∣∣∣∣ a, b, c, d ∈ Z, a ≡ d ≡ 1 mod 4, ad− 4bc = 1

}
=

{
b

d

∣∣∣∣ b, d ∈ Z, d ≡ 1 mod 4, (b, d) = 1

}
.

The orbit of 1
2
∈ P1(Q) is

Γ1(4) · 1

2
=

{(
a b
4c d

)
1

2

∣∣∣∣ a, b, c, d ∈ Z, a ≡ d ≡ 1 mod 4, ad− 4bc = 1

}
=

{
a+ 2b

4c+ 2d

∣∣∣∣ a, b, c, d ∈ Z, a ≡ d ≡ 1 mod 4, (a+ 2b)d− b(4c+ 2d) = 1

}
=

{
a1

c1

∣∣∣∣ a1, c1 ∈ Z, a1 odd , c1 ≡ 2 mod 4, (a1, c1) = 1

}
.

The orbit of ∞ ∈ P1(Q) is

Γ1(4) · ∞ =

{(
a b
4c d

)
∞
∣∣∣∣ a, b, c, d ∈ Z, a ≡ d ≡ 1 mod 4, ad− 4bc = 1

}
=
{ a

4c

∣∣∣ a, c ∈ Z, a ≡ 1 mod 4, (a, c) = 1
}

=

{
a

c1

∣∣∣∣ a, c1 ∈ Z, a ≡ 1 mod 4, 4 | c1, (a, c1) = 1

}
.

It is clear that the orbits are disjoint (by comparing denominators of the elements).
Let us check that each element of P1(Q) is in exactly one orbit. Let r = a

c
∈ Q with



(a, c) = 1. If c is odd, then either c or −c is ≡ 1 mod 4. Then replacing by −a
−c if

necessary, we get r ∈ Γ1(4) · 0. Now assume c is even but not divisible by 4. Then
clearly r ∈ Γ1(4) · 1

2
. Finally, if 4 | c, a is odd, and by possibly considering −a

−c , we
get r ∈ Γ1(4) · ∞.

For c = 0, take γ0 = S =

(
0 −1
1 0

)
. Then

H0 =S−1Γ1(4)S ∩ SL2(Z)∞

=

{(
d −4c
−b a

)}
∩ SL2(Z)∞

=

{(
1 −4c
0 1

)}
since a ≡ d ≡ 1 mod 4.

Thus, the cusp is regular, and hΓ1(4)(0) = 4.

For c = 1
2
, take γ 1

2
=

(
1 0
2 1

)
. Then

H 1
2

=γ−1
1
2

Γ1(4)γ 1
2
∩ SL2(Z)∞

=

{(
a+ 2b b

−2a− 4b+ 4c+ 2d −2b+ d

)}
∩ SL2(Z)∞

=

{(
1 2b1

0 1

)
,

(
−1 2b1 + 1
0 −1

)}
Above we have solved for a + 2b = d − 2b = 1 or a + 2b = d − 2b = −1 and
−2a− 4b+ 4c+ 2d = 0, keeping in mind that we also have a ≡ d ≡ 1 (mod 4).

Thus, the cusp is irregular, and hΓ1(4)(1/2) = 1.

For c =∞, take γ∞ = 1. Then

H∞ =Γ1(4) ∩ SL2(Z)∞

=

{(
1 b
0 1

)}
Thus, the cusp is regular, and hΓ1(4)(∞) = 1.

2. Let p be an odd prime number. Determine a set of representatives for the Γ1(p)-orbits
in P1(Q). For each of the corresponding cusps c of Γ1(p), compute its width hΓ(c).
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Solution: The orbit of 0 ∈ P1(Q) is

Γ1(p) · 0 =

{(
a b
pc d

)
0

∣∣∣∣ a, b, c, d ∈ Z, a ≡ d ≡ 1 mod p, ad− pbc = 1

}
=

{
b

d

∣∣∣∣ b, d ∈ Z, d ≡ 1 mod p, (b, d) = 1

}
.

The orbit of ∞ ∈ P1(Q) is

Γ1(p) · ∞ =

{(
a b
pc d

)
∞
∣∣∣∣ a, b, c, d ∈ Z, a ≡ d ≡ 1 mod p, ad− pbc = 1

}
=

{
a

pc

∣∣∣∣ a, c ∈ Z, a ≡ 1 mod p, (a, c) = 1

}
=

{
a

c1

∣∣∣∣ a, c1 ∈ Z, a ≡ 1 mod p, p | c1, (a, c1) = 1

}
.

The orbit of 1
n
∈ P1(Q) for 2 ≤ n < p/2 is

Γ1(p) · 1

n
=

{(
a b
pc d

)
1

n

∣∣∣∣ a, b, c, d ∈ Z, a ≡ d ≡ 1 mod p, ad− pbc = 1

}
=

{
a+ bn

pc+ dn

∣∣∣∣ a, b, c, d ∈ Z, a ≡ d ≡ 1 mod p, (a+ bn)d− (pc+ dn)b = 1

}
=

{
a1

c1

∣∣∣∣ a1, c1 ∈ Z, c1 ≡ n mod p, (a1, c1) = 1

}
.

The orbit of n
p
∈ P1(Q) for 2 ≤ n < p/2 is

Γ1(p) · n
p

=

{(
a b
pc d

)
n

p

∣∣∣∣ a, b, c, d ∈ Z, a ≡ d ≡ 1 mod p, ad− pbc = 1

}
=

{
an+ bp

pcn+ dp

∣∣∣∣ a, b, c, d ∈ Z, a ≡ d ≡ 1 mod p, (an+ bp)d− (pcn+ dp)b = n

}
=

{
a1

c1

∣∣∣∣ a1, c1 ∈ Z, a1 ≡ n mod p, p | c1, (a1, c1) = 1

}
.

It is clear that each element is in exactly one orbit. Indeed, one has to consider all
the possible congruences modulo p for the denominator and do an argument similar
to what we did in problem 1.
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Notice that 0 corresponds to 1 and ∞ corresponds to 1/p.

For c = 1
n
, take γ 1

n
=

(
1 0
n 1

)
. Then

H 1
n

=γ−1
1
n

Γ1(p)γ 1
n
∩ SL2(Z)∞

=

{(
a+ nb b

−na− n2b+ pc+ nd −nb+ d

)}
∩ SL2(Z)∞

=

{(
1 pb1

0 1

)}
where, again, we have considered that a+nb = −nb+ d = ±1 and −na−n2b+ pc+
nd = 0 as well as a ≡ d ≡ 1 mod p.

Thus, the cusp is regular, and hΓ1(p)(1/n) = p.

For c = n
p
, take γn

p
=

(
n s
p r

)
with rn− sp = 1. Then

Hn
p

=γ−1
n
p

Γ1(p)γn
p
∩ SL2(Z)∞

=

{(
a+ k1p r2b+ k2p
k3p d+ k4p

)}
∩ SL2(Z)∞

=

{(
1 b
0 1

)}
(the computation is long).

Thus, the cusp is regular, and hΓ1(p)(n/p) = 1.

Solution: Another way (combining Anayo, Joëlle, Simone, and Subham’s solutions,
sketch): We have that Γ1(p) ⊂ Γ0(p). Then Cusps(Γ1(p)) maps to Cusps(Γ0(p)) =
{[∞], [0]}. Since Γ0(p) acts transitively in [∞], we have a surjective map

Γ1(p)\Γ0(p)→ Γ1(p)\Γ0(p) · ∞

A set of coset representatives of Γ1(p)\Γ0(p) is

{(
n s
p r

)
: 1 ≤ n ≤ (p− 1)/2

}
.

This yields cusps of the form [n/p] sent to [∞].

Similarly
Γ1(p)\Γ0(p)→ Γ1(p)\Γ0(p) · 0
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A set of coset representatives of Γ1(p) Γ0(p) is

{(
r 1
sp n

)
: 1 ≤ n ≤ (p− 1)/2

}
.

This yields cusps of the form [1/n] sent to [0].

We have h[n/p] | h[∞] = 1 and h[1/n] | h[0] = p. Finally∑
Cusps(Γ1(p))

hc = [SL2(Z) : {±1}Γ1(p)] = [SL2(Z) : {±1}Γ0(p)][{±1}Γ0(p) : {±1}Γ1(p)]

= (p+ 1)
(p− 1)

2

This implies that h[1/n] = p.

3. (a) Let χ be a Dirichlet character modulo N . Prove that

N−1∑
j=0

χ(j) =

{
φ(N) χ = 1N ,
0 otherwise,

where φ denotes Euler’s totient function.

(b) Let j be an integer. Prove that∑
χ mod N

χ(j) =

{
φ(N) j ≡ 1 (mod N)
0 otherwise,

where the sum is over all Dirichlet characters modulo N .

Solution: (a) The case χ = 1N comes from the fact that 1N(j) = 1 unless (j,N) > 1,
and in that case 1N(j) = 0.

If χ 6= 1N , we have j0 such that (j0, N) = 1 and χ(j0) 6= 1. Then the numbers j0j
with j = 0, . . . , N − 1 are a system of residues modulo N .

χ(j0)
N−1∑
j=0

χ(j) =
N−1∑
j=0

χ(j0j) =
N−1∑
j=0

χ(j)

and since χ(j0) 6= 1, we get that the sum is zero.

(b)

If j ≡ 1 (mod N), this is trivial since χ(j) = 1 for all χ, and we saw in class that
|Hom((Z/NZ)×,C×)| = φ(N). If (j,N) > 1, then χ(j) = 0 and the sum is trivially
0.
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Suppose that (j,N) = 1. Then there is χ1 such that χ1(j) 6= 0, 1 (write (Z/NZ)× '
Z/a1Z × · · · × Z/anZ, let (`1, . . . , `n) be the image of j. Assume wlog that `1 6= 0
and consider χ1(r1, . . . , rn) = exp(2πir1/a1)).

Then
χ1(j)

∑
χ mod N

χ(j) =
∑

χ mod N

χ1χ(j) =
∑

χ mod N

χ(j)

and since χ1(j) 6= 0, 1, we get that the sum is zero.

4. For integers k > 0 and n ≥ 0, write

rk(n) = #{(x1, . . . , xk) ∈ Zk |x2
1 + · · ·+ x2

k = n}.

Let χ be the unique non-trivial Dirichlet character modulo 4. Assume without proof
that there exist modular forms E1,χ

1 ∈ M1(Γ1(4)), and E1,χ
3 , Eχ,1

3 ∈ M3(Γ1(4)) with
q-expansions

E1,χ
1 =

1

4
+
∞∑
n=1

∑
d|n

χ(d)

 qn,

E1,χ
3 =− 1

4
+
∞∑
n=1

∑
d|n

χ(d)d2

 qn,

Eχ,1
3 =

∞∑
n=1

∑
d|n

χ(n/d)d2

 qn.

(a) Prove that

r2(n) = 4
∑
d|n

χ(d) ∀n ≥ 1.

(b) Prove that

r6(n) =
∑
d|n

(16χ(n/d)− 4χ(d))d2 ∀n ≥ 1.

Solution: Recall that

θk =
∞∑
n=0

rk(n)qn

and that θ2k ∈Mk/2(Γ1(4)). In addition, the valence formula implies that

dimMk(Γ1(4)) ≤ 1 + bk/2c.
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(a) We have θ2 ∈M1(Γ1(4)), which has dimension at most 1. Therefore, θ2 = cE1,χ
1 .

We compare the q-expansions.

θ2 = r2(0) + r2(1)q + · · · = 1 + 4q + · · ·

E1,χ
1 =

1

4
+ q + · · ·

Therefore, c = 4 and

r2(n) = 4
∑
d|n

χ(d).

(b) We have θ6 ∈ M3(Γ1(4)), which has dimension at most 2. Therefore, θ =
c1E

1,χ
3 + c2E

χ,1
3 . Again we check first coefficients.

θ6 = r6(0) + r6(1)q + r6(2)q2 + · · · = 1 + 12q + 60q2 + · · ·

E1,χ
3 = −1

4
+ q + q2 + · · ·

Eχ,1
3 = q + 4q2 + · · ·

Solving −c1/4 = 1 and c1 + c2 = 12 yields c1 = −4 and c2 = 16 and

r6(n) =
∑
d|n

(16χ(n/d)− 4χ(d))d2.

5. Let χ : Z→ C be a Dirichlet character modulo N . The L-function of χ is the holomor-
phic function L(χ, s) (of the variable s) defined by

L(χ, s) =
∞∑
n=1

χ(n)

ns

(a) Prove that the sum converges absolutely and uniformly on every right half-plane of
the form {s ∈ C|Re s ≥ σ} with σ > 1.

(b) Prove the identity

L(χ, s) =
∏
pprime

(
1− χ(p)

ps

)−1

Re s > 1

(Hint: expand each factor in a power series...)

Note: The functions L(χ, s) were introduced by Dirichlet in the proof of his famous
theorem on primes in arithmetic progressions: Let N and a be coprime positive integers.
Then there exist infinitely many prime numbers p with p ≡ a mod N .
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Solution: (a) Let s be such that Re s ≤ σ. Then

|L(χ, s)| ≤
∞∑
n=1

∣∣∣∣χ(n)

ns

∣∣∣∣
≤
∞∑
n=1

1

nσ
<∞ for σ > 1.

Thus, by the Weierstrass M -test, we get that on the region {s ∈ C|Re s ≥ σ} the
series converges absolutely and uniformily.

(b) Since χ is completely multiplicative, we have that(
1− χ(p)

ps

)−1

=
∞∑
`=0

(
χ(p)

ps

)`
=
∞∑
`=0

χ(p`)

p`s
.

The equality is then a consequence of the Fundamental Theorem of Arithmetic and
the fact that we can rearrange the sum and the products in the domain of conver-
gence.

6. Let χ be a Dirichlet character modulo N . We consider the function Z → C sending an
integer m to the complex number

τ(χ,m) =
N−1∑
n=0

χ(n) exp(2πimn/N)

(This can be viewed as a discrete Fourier transform of χ.) The case m = 1 is known as
the Gauss sum attached to χ.

τ(χ) =
N−1∑
n=0

χ(n) exp(2πin/N)

(a) Compute τ(χ) for all non-trivial Dirichlet characters χ modulo 4 and modulo 5,
respectively.

(b) Suppose that χ is primitive. Prove that for all m ∈ Z we have

τ(χ,m) = χ(m)τ(χ)

(Hint: writing d = (m,N), distinguish the cases d = 1 and d > 1. If N1 = N/d, prove
There is an integer c such that c ≡ 1 mod N1, (c,N) = 1, and χ(c) 6= 1.)

(c) Deduce that if χ is primitive, we have

τ(χ)τ(χ) = χ(−1)N
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and
τ(χ)τ(χ) = N.

Solution: (a) Modulo 4: the only nontrivial character is χ−1(n) =
(
n
4

)
.

τ(χ−1) = χ−1(0) + χ−1(1)i+ χ−1(2)(−1) + χ−1(3)(−i) = 2i

Modulo 5: there are three nontrivial characters. Take

χ1(m) =

{
in m ≡ 2n mod 5,
0 5 | m.

Then the non-trivial characters are χ` = χ`1 for ` = 1, 2, 3. Set ω5 = exp(2πi/5)

We have

τ(χ`) =χ`(0) + χ`(1)ω5 + χ`(2)ω2
5 + χ`(3)ω3

5 + χ`(4)ω4
5

=ω5 + i`ω2
5 + (−i)`ω3

5 + (−1)`ω4
5

=i`(ω2
5 + (−1)`ω3

5) + (ω5 + (−1)`ω4
5)

=


(−1)m2 cos(4π/5) + 2 cos(2π/5) ` = 2m

(−1)m+12 sin(4π/5) + 2i sin(2π/5) ` = 2m+ 1

We have that ω5 = −1+
√

5
4

+ i
√

5+
√

5
8

and that ω2
5 = −1−

√
5

4
+ i
√

5−
√

5
8

. We further

obtain

τ(χ`) =


(−1)m−1−

√
5

2
+ −1+

√
5

2
` = 2m

(−1)m+1

√
5−
√

5
2

+ i
√

5+
√

5
2

` = 2m+ 1

=



−1 ` = 0

−
√

5−
√

5
2

+ i
√

5+
√

5
2

` = 1

√
5 ` = 2√
5−
√

5
2

+ i
√

5+
√

5
2

` = 3

(The first line corresponds to the trivial character.)
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(b) First suppose that (m,N) = 1.

τ(χ,m) =
N−1∑
n=0

χ(n) exp(2πimn/N)

=χ(m)χ(m)
N−1∑
n=0

χ(n) exp(2πimn/N)

=χ(m)
N−1∑
n=0

χ(mn) exp(2πimn/N).

Now, going over all n modulo N is equivalent to going over all nm modulo N and
we get

τ(χ,m) = χ(m)τ(χ).

Now suppose that (m,N) = d > 1. Write m = dm1, N = dN1. There is an integer
c such that c ≡ 1 mod N1, (c,N) = 1, and χ(c) 6= 1. Otherwise, χ would not be
primitive modulo N . Indeed, let a ≡ b mod N1 with a, b relatively prime to N . Then
a ≡ cb mod N , with some c defined modulo N . Now χ(a) = χ(cb) = χ(b) and the
character is modulo N1.

Take such a c,

χ(c)τ(χ,m) =
N−1∑
n=0

χ(cn) exp(2πimn/N).

cn runs through a complete residue system modulo N . In addition

exp(2πimn/N) = exp(2πim1n/N1) = exp(2πicm1n/N1) = exp(2πicmn/N)

and

χ(c)τ(χ,m) =
N−1∑
`=0

χ(`) exp(2πim`/N) = τ(χ,m).

Since χ(c) 6= 1, we get that τ(χ,m) = 0 = χ(m)τ(χ).

Page 10



(c) Notice that χ(n) 6= 0 only when (n,N) = 1.

τ(χ)τ(χ) =
N−1∑
m=0

χ(m) exp(2πim/N)τ(χ)

=
N−1∑
m=0

τ(χ,m) exp(2πim/N)

=
N−1∑
m=0

(
N−1∑
n=0

χ(n) exp(2πimn/N)

)
exp(2πim/N)

=
N−1∑
n=0

χ(n)
N−1∑
m=0

exp(2πim(n+ 1)/N).

We have
∑N−1

m=0 exp(2πim(n+ 1)/N) = N if n+ 1 = 0 and 0 otherwise. Then

τ(χ)τ(χ) = χ(N − 1)N = χ(−1)N.

The other equality is similar. In this case,

τ(χ)τ(χ) =
N−1∑
m=0

χ(m) exp(−2πim/N)τ(χ)

=
N−1∑
m=0

τ(χ,m) exp(−2πim/N)

=
N−1∑
m=0

(
N−1∑
n=0

χ(n) exp(2πimn/N)

)
exp(−2πim/N)

=
N−1∑
n=0

χ(n)
N−1∑
m=0

exp(2πim(n− 1)/N)

=χ(1)N

=N
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