Sujets spéciaux en théorie des nombres - formes modulaires/ Special Topics in Number Theory - Modular Forms.

MAT 6684w
Homework 3. Due October 30, 2017
To get full credit solve $\mathbf{3}$ of the following problems (you are welcome to do them all). The answers may be submitted in English or French.

1. Show that the cusps of $\Gamma_{1}(4)$, viewed as $\Gamma_{1}(4)$-orbits in $\mathbb{P}^{1}(\mathbb{Q})$, are represented by the elements $0,1 / 2$ and ∞ of $\mathbb{P}^{1}(\mathbb{Q})$. For each of these cusps \mathfrak{c}, determine whether \mathfrak{c} is regular or irregular, and compute its width $h_{\Gamma}(\mathfrak{c})$.
2. Let p be an odd prime number. Determine a set of representatives for the $\Gamma_{1}(p)$-orbits in $\mathbb{P}^{1}(\mathbb{Q})$. For each of the corresponding cusps \mathfrak{c} of $\Gamma_{1}(p)$, compute its width $h_{\Gamma}(\mathfrak{c})$.
3. (a) Let χ be a Dirichlet character modulo N. Prove that

$$
\sum_{j=0}^{N-1} \chi(j)= \begin{cases}\phi(N) & \chi=\mathbf{1}_{N} \\ 0 & \text { otherwise }\end{cases}
$$

where ϕ denotes Euler's totient function.
(b) Let j be an integer. Prove that

$$
\sum_{\chi \bmod N} \chi(j)= \begin{cases}\phi(N) & j \equiv 1 \quad(\bmod N) \\ 0 & \text { otherwise }\end{cases}
$$

where the sum is over all Dirichlet characters modulo N.
4. For integers $k>0$ and $n \geq 0$, write

$$
r_{k}(n)=\#\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{Z}^{k} \mid x_{1}^{2}+\cdots+x_{k}^{2}=n\right\} .
$$

Let χ be the unique non-trivial Dirichlet character modulo 4. Assume without proof that there exist modular forms $E_{1}^{\mathbf{1 , \chi}} \in M_{1}\left(\Gamma_{1}(4)\right)$, and $E_{3}^{\mathbf{1 , \chi}}, E_{3}^{\chi, \mathbf{1}} \in M_{3}\left(\Gamma_{1}(4)\right)$ with q-expansions

$$
\begin{aligned}
& E_{1}^{\mathbf{1}, \chi}=\frac{1}{4}+\sum_{n=1}^{\infty}\left(\sum_{d \mid n} \chi(d)\right) q^{n}, \\
& E_{3}^{\mathbf{1}, \chi}=-\frac{1}{4}+\sum_{n=1}^{\infty}\left(\sum_{d \mid n} \chi(d) d^{2}\right) q^{n}, \\
& E_{3}^{\chi, \mathbf{1}}=\sum_{n=1}^{\infty}\left(\sum_{d \mid n} \chi(n / d) d^{2}\right) q^{n} .
\end{aligned}
$$

(a) Prove that

$$
r_{2}(n)=4 \sum_{d \mid n} \chi(d) \quad \forall n \geq 1
$$

(b) Prove that

$$
r_{6}(n)=\sum_{d \mid n}(16 \chi(n / d)-4 \chi(d)) d^{2} \quad \forall n \geq 1
$$

5. Let $\chi: \mathbb{Z} \rightarrow \mathbb{C}$ be a Dirichlet character modulo N. The L-function of χ is the holomorphic function $L(\chi, s)$ (of the variable s) defined by

$$
L(\chi, s)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}
$$

(a) Prove that the sum converges absolutely and uniformly on every right half-plane of the form $\{s \in \mathbb{C} \mid \operatorname{Re} s \geq \sigma\}$ with $\sigma>1$.
(b) Prove the identity

$$
L(\chi, s)=\prod_{p \text { prime }}\left(1-\frac{\chi(p)}{p^{s}}\right)^{-1} \quad \operatorname{Re} s>1
$$

(Hint: expand each factor in a power series...)
Note: The functions $L(\chi, s)$ were introduced by Dirichlet in the proof of his famous theorem on primes in arithmetic progressions: Let N and a be coprime positive integers. Then there exist infinitely many prime numbers p with $p \equiv a \bmod N$.
6. Let χ be a Dirichlet character modulo N. We consider the function $\mathbb{Z} \rightarrow \mathbb{C}$ sending an integer m to the complex number

$$
\tau(\chi, m)=\sum_{n=0}^{N-1} \chi(n) \exp (2 \pi i m n / N)
$$

(This can be viewed as a discrete Fourier transform of χ.) The case $m=1$ is known as the Gauss sum attached to χ.

$$
\tau(\chi)=\sum_{n=0}^{N-1} \chi(n) \exp (2 \pi i n / N)
$$

(a) Compute $\tau(\chi)$ for all non-trivial Dirichlet characters χ modulo 4 and modulo 5 , respectively.
(b) Suppose that χ is primitive. Prove that for all $m \in \mathbb{Z}$ we have

$$
\tau(\chi, m)=\bar{\chi}(m) \tau(\chi)
$$

(Hint: writing $d=(m, N)$, distinguish the cases $d=1$ and $d>1$. If $N_{1}=N / d$, prove There is an integer c such that $c \equiv 1 \bmod N_{1},(c, N)=1$, and $\chi(c) \neq 1$.)
(c) Deduce that if χ is primitive, we have

$$
\tau(\chi) \tau(\bar{\chi})=\chi(-1) N
$$

and

$$
\tau(\chi) \overline{\tau(\chi)}=N
$$

The goal of the following questions is to construct Eisenstein series with character. In each question you may use the results of all preceding questions.
For the problems 7 and 9, I only have partial solutions written. The computations may be long. Please think of the following problems as "just for fun".
7. Let χ be a primitive Dirichlet character modulo N. The generalized Bernoulli numbers attached to χ are the complex numbers $B_{k}(\chi)$ for $k \geq 0$ defined by the identity

$$
\sum_{k=0}^{\infty} \frac{B_{k}(\chi)}{k!} t^{k}=\frac{t}{\exp (N t)-1} \sum_{j=1}^{N} \chi(j) \exp (j t)
$$

in the ring $\mathbb{C}[[t]]$ of formal power series in t.
(a) Let ω_{N} be a primitive N-th root of unity in \mathbb{C}. Prove that if χ is non-trivial (i.e. $N>1$), then we have

$$
\sum_{j=0}^{N-1} \chi(j) \frac{x+\omega_{N}^{j}}{x-\omega_{N}^{j}}=\frac{2 N}{\tau(\bar{\chi})\left(x^{N}-1\right)} \sum_{m=0}^{N-1} \bar{\chi}(m) x^{m}
$$

in the field $\mathbb{C}(x)$ of rational functions in the variable x. (Hint: compute residues.)
(b) Prove that for every integer $k \geq 2$ such that $(-1)^{k}=\chi(-1)$, the special value of the Dirichlet L-function of χ at k is

$$
L(\chi, k)=-\frac{(2 \pi i)^{k} B_{k}(\bar{\chi})}{2 \tau(\bar{\chi}) N^{k-1} k!} .
$$

8. Let $k \geq 3$, and let α and β be Dirichlet characters modulo M and N, respectively. For all $k \geq 3$, we define a function $G_{k}^{\alpha, \beta}: \mathbb{H} \rightarrow \mathbb{C}$ by

$$
G_{k}^{\alpha, \beta}(z)=\sum_{\substack{m, n \in \mathbb{Z} \\(m, n) \neq(0,0)}} \frac{\alpha(m) \bar{\beta}(n)}{(m z+n)^{k}}
$$

(a) Prove that the function $G_{k}^{\alpha, \beta}$ is weakly modular of weight k for the congruence subgroup
$\Gamma_{1}(M, N)=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) \right\rvert\, a \equiv d \equiv 1 \bmod [M, N], c \equiv 0 \bmod M, b \equiv 0 \bmod N\right\}$.
(b) Show that $G_{k}^{\alpha, \beta}$ is the zero function unless $\alpha(-1) \beta(-1)=(-1)^{k}$.
(c) Prove the identity

$$
G_{k}^{\alpha, \beta}(z)=2 \alpha(0) \sum_{n>0} \frac{\bar{\beta}(n)}{n^{k}}+2 \sum_{m>0} \alpha(m) \sum_{n \in \mathbb{Z}} \frac{\bar{\beta}(n)}{(m z+n)^{k}} .
$$

9. Keeping the notation of the previous question, assume in addition that $\alpha(-1) \beta(-1)=$ $(-1)^{k}$ and that the character β is primitive.
(a) Prove that for all $w \in \mathbb{H}$ we have

$$
\sum_{n \in \mathbb{Z}} \frac{\bar{\beta}(n)}{(w+n)^{k}}=\frac{(-2 \pi i)^{k} \tau(\bar{\beta})}{N^{k}(k-1)!} \sum_{d=1}^{\infty} \beta(d) d^{k-1} \exp (2 \pi i d w / N)
$$

(b) Deduce the formula

$$
\begin{aligned}
G_{k}^{\alpha, \beta}(z)= & -\alpha(0) \frac{(2 \pi i)^{k} B_{k}(\beta)}{\tau(\beta) N^{k-1} k!} \\
& +\frac{2(-2 \pi i)^{k} \tau(\bar{\beta})}{N^{k}(k-1)!} \sum_{n=1}^{\infty}\left(\sum_{d \mid n} \alpha(n / d) \beta(d) d^{k-1}\right) \exp (2 \pi i n z / N)
\end{aligned}
$$

(c) Let $E_{k}^{\alpha, \beta}(z)$ be the unique scalar multiple of $G_{k}^{\alpha, \beta}(N z)$ such that the coefficient of q in the q-expansion of $E_{k}^{\alpha, \beta}$ equals 1 . Prove the identity

$$
E_{k}^{\alpha, \beta}(z)=-\alpha(0) \frac{B_{k}(\beta)}{2 k}+\sum_{n=1}^{\infty}\left(\sum_{d \mid n} \alpha(n / d) \beta(d) d^{k-1}\right) q^{n} .
$$

(d) Prove that $E_{k}^{\alpha, \beta}(z)$ is a modular form of weight k for $\Gamma_{1}(M N)$.

