Sujets spéciaux en théorie des nombres - formes modulaires/ Special Topics in Number Theory - Modular Forms.

MAT 6684w
Homework 4. Due November 13, 2017
To get full credit solve $\mathbf{3}$ of the following problems (you are welcome to do them all). The answers may be submitted in English or French.

1. Let N be a positive integer, let p be a prime number, and let

$$
\alpha=\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right), \quad \Gamma=\Gamma_{0}(N), \Gamma^{\prime}=\Gamma \cap \alpha^{-1} \Gamma \alpha
$$

Determine a system of coset representatives for the quotient $\Gamma^{\prime} \backslash \Gamma$.

Solution: As seen in class,

$$
\alpha^{-1}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \alpha=\left(\begin{array}{cc}
a & b p \\
c / p & d
\end{array}\right) .
$$

Thus

$$
\Gamma^{\prime}=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})|N| c, p \mid b\right\}
$$

Now consider the map $\Gamma \rightarrow \mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$. When $p \mid N$, the image of the map consists of the matrices of the form $\left(\begin{array}{cc}* & * \\ 0 & *\end{array}\right)$ and the inverse image of $\left\{\left(\begin{array}{cc}* & 0 \\ 0 & *\end{array}\right)\right\}$ equals Γ^{\prime}. Therefore,

$$
\Gamma^{\prime} \backslash \Gamma \cong\left\{\left.\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right) \right\rvert\, a \in \mathbb{F}_{p}^{\times}\right\} \backslash\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right) \right\rvert\, a \in \mathbb{F}_{p}^{\times}, b \in \mathbb{F}_{p}\right\}
$$

The index of the quotient above is $\frac{p(p-1)}{p-1}=p$.
A system of representatives is

$$
\left\{\left.\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) \right\rvert\, 0 \leq b \leq p-1\right\}
$$

since they are p elements and they are non-equivalent.

$$
\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -b^{\prime} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & b-b^{\prime} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right)
$$

iff $b=b^{\prime}$.

When $p \nmid N$, the image of the map is $\mathrm{SL}_{2}(\mathbb{Z})$ (since $\Gamma_{1}(N) \subset \Gamma_{0}(N)$ and we proved that the map is surjective for $\left.\Gamma_{1}(N)\right)$ and the inverse image of the matrices of the form $\left(\begin{array}{cc}* & * \\ 0 & *\end{array}\right)$ gives Γ^{\prime}. This implies

$$
\Gamma^{\prime} \backslash \Gamma \cong\left\{\left.\left(\begin{array}{cc}
a & 0 \\
c & a^{-1}
\end{array}\right) \right\rvert\, a \in \mathbb{F}_{p}^{\times}, c \in \mathbb{F}_{p}\right\} \backslash \mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)
$$

This is the case that was discussed in class. Thus we get

$$
\left\{\left.\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) \right\rvert\, 0 \leq b \leq p-1\right\} \cup\left\{\left(\begin{array}{cc}
a p & 1 \\
c N & 1
\end{array}\right)\right\}
$$

where a, c are fixed numbers such that $a p-c N=1$.
2. Prove that for any even integer $k \geq 4$ and prime p we have

$$
T_{p} G_{k}=\sigma_{k-1}(p) G_{k}
$$

for the Eisenstein series G_{k} and the Hecke operator T_{p} on $M_{k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$.

Solution: Since the diamond operator is trivial for $N=1$, we have

$$
\begin{aligned}
T_{p} G_{k}= & \sum_{n=0}^{\infty}\left(a_{p n}\left(G_{k}\right)+p^{k-1} a_{n / p}\left(G_{k}\right)\right) q^{n} \\
= & -\left(1+p^{k-1}\right) \frac{(2 \pi i)^{k} B_{k}}{k!}+2 \frac{(2 \pi i)^{k}}{(k-1)!} \sum_{n=1}^{\infty}\left(\sigma_{k-1}(p n)+p^{k-1} \sigma_{k-1}(n / p)\right) q^{n} \\
= & -\sigma_{k-1}(p) \frac{(2 \pi i)^{k} B_{k}}{k!}+2 \frac{(2 \pi i)^{k}}{(k-1)!} \sigma_{k-1}(p) \sum_{\substack{n \geq 1 \\
p \nmid n}} \sigma_{k-1}(n) q^{n} \\
& +2 \frac{(2 \pi i)^{k}}{(k-1)!} \sum_{\substack{n \geq 1 \\
p \mid n}}\left(\sigma_{k-1}(p n)+p^{k-1} \sigma_{k-1}(n / p)\right) q^{n}
\end{aligned}
$$

If $p \mid n$, we write $n=p^{\ell} n_{1}$ with $p \nmid n_{1}$, we have

$$
\begin{aligned}
\sigma_{k-1}(p n)+p^{k-1} \sigma_{k-1}(n / p) & =\sigma_{k-1}\left(p^{\ell+1} n_{1}\right)+p^{k-1} \sigma_{k-1}\left(p^{\ell-1} n_{1}\right) \\
& =\left(\sigma_{k-1}\left(p^{\ell+1}\right)+p^{k-1} \sigma_{k-1}\left(p^{\ell-1}\right) \sigma_{k-1}\left(n_{1}\right)\right. \\
& =\left(\frac{p^{(k-1)(\ell+2)}-1}{p^{k-1}-1}+p^{k-1} \frac{p^{(k-1) \ell}-1}{p^{k-1}-1}\right) \sigma_{k-1}\left(n_{1}\right) \\
& =\left(\frac{\left(p^{(k-1)(\ell+1)}-1\right)\left(p^{k-1}+1\right)}{p^{k-1}-1}\right) \sigma_{k-1}\left(n_{1}\right) \\
& =\sigma_{k-1}\left(p^{\ell}\right) \sigma_{k-1}(p) \sigma_{k-1}\left(n_{1}\right) \\
& =\sigma_{k-1}(p) \sigma_{k-1}(n) .
\end{aligned}
$$

Combining with the computation above, this proves the result.
3. Let p be a prime and consider the lattice $\Lambda:=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$, where $\omega_{1}, \omega_{2} \in \mathbb{C}^{\times}$and $\omega_{1} / \omega_{2} \notin \mathbb{R}$.
(a) Show that there are exactly $p^{2}+p+1$ lattices $\Lambda^{\prime} \subset \mathbb{C}$ satisfying $\Lambda^{\prime} \supset \Lambda$ and $\left[\Lambda^{\prime}: \Lambda\right]=p^{2}$, and give a list of these.
(b) Try to generalize part (a) (e.g. replace $\left[\Lambda^{\prime}: \Lambda\right]=p^{2}$ by $\left[\Lambda^{\prime}: \Lambda\right]=p^{k}$ with $k \in \mathbb{Z}_{>0}$).

Solution: (a) Let $\Lambda^{\prime}=\mathbb{Z} \nu_{1}+\mathbb{Z} \nu_{2}$. Then $\omega_{1}=a \nu_{1}+b \nu_{2}$ and $\omega_{2}=c \nu_{1}+d \nu_{2}$ with $\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=p^{2}$ Turning to Hermitian normal form gives $\left(\begin{array}{cc}a^{\prime} & 0 \\ c^{\prime} & d^{\prime}\end{array}\right)$ with $a^{\prime}, d^{\prime}>0$, and $0 \leq c^{\prime}<d^{\prime}$. Also $a^{\prime} d^{\prime}=p^{2}$. Thus, we have three possibilities. (1) $a^{\prime}=$ $p^{2}, d^{\prime}=1, c^{\prime}=0$ (2) $a^{\prime}=p=d^{\prime}, 0 \leq c^{\prime}<p$, and (3) $a^{\prime}=1, d^{\prime}=p^{2}, 0 \leq c^{\prime}<p^{2}$. This yields $1+p+p^{2}$ non-equivalent lattices of the form (1) $\mathbb{Z} \frac{\omega_{1}}{p^{2}}+\mathbb{Z} \omega_{2}$, (2) $\mathbb{Z} \frac{\omega_{1}}{p}+\mathbb{Z} \frac{c \omega_{1}+p \omega_{2}}{p^{2}}$, $0 \leq c<p,(3) \mathbb{Z} \omega_{1}+\mathbb{Z} \frac{c \omega_{1}+\omega_{2}}{p^{2}}, 0 \leq c<p^{2}$.
(b) We consider the same transformation, but now we get that $a^{\prime}=p^{j}, d^{\prime}=p^{k-j}$ and $0 \leq c^{\prime}<p^{k-j}$.
We get, $1+p+\cdots+p^{k}$ lattices, namely, for $j=0, \ldots, k, \mathbb{Z} \frac{\omega_{1}}{p^{j}}+\mathbb{Z} \frac{c \omega_{1}+p^{k-j} \omega_{2}}{p^{k}}, 0 \leq c<$ p^{k-j},
4. Calculate the matrix of the Hecke operator T_{2} on the space $S_{24}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ with respect to a basis of your choice. Show that the characteristic polynomial of T_{2} is $x^{2}-1080 x-$ 20468736. (You may use a computer, but not a package in which this question can be solved with a one-line command.)

Solution: There are various bases for S_{24}. A natural choice is

$$
\begin{aligned}
& F_{1}=E_{4}^{3} \Delta=q+696 q^{2}+162252 q^{3}+12831808 q^{4}+\cdots \\
& =q^{2}-48 q^{3}+1080 q^{4}+\ldots \\
& F_{2}=\Delta^{2} \\
T_{2} F_{1}= & \left(a_{0}\left(F_{1}\right)+2^{23} a_{0}\left(F_{1}\right)\right)+a_{2}\left(F_{1}\right) q+\left(a_{4}\left(F_{1}\right)+2^{23} a_{1}\left(F_{1}\right)\right) q^{2}+\cdots \\
= & 696 q+21220416 q^{2}+\cdots \\
T_{2} F_{2}= & \left(a_{0}\left(F_{2}\right)+2^{23} a_{0}\left(F_{2}\right)\right)+a_{2}\left(F_{2}\right) q+\left(a_{4}\left(F_{2}\right)+2^{23} a_{1}\left(F_{2}\right)\right) q^{2}+\cdots \\
= & q+1080 q^{2}
\end{aligned}
$$

Then

$$
\begin{aligned}
& T_{2} F_{1}=696 F_{1}+20736000 F_{2} \\
& T_{2} F_{2}=F_{1}+384 F_{2}
\end{aligned}
$$

Finally,

$$
\left(\begin{array}{cc}
696 & 1 \\
20736000 & 384
\end{array}\right) .
$$

This has the characteristic polynomial of the statement.
5. Consider the formal (so we do not worry about convergence) generating function of the Hecke operators T_{n} on $M_{k}\left(\Gamma_{1}(N)\right)$

$$
g(s):=\sum_{n=1}^{\infty} T_{n} n^{-s}
$$

Deduce the following formal product expansion (over all primes p):

$$
g(s)=\prod_{p}\left(1-T_{p} p^{-s}+\langle p\rangle p^{k-1-2 s}\right)^{-1}
$$

where we assume that $\langle p\rangle=0$ when $p \mid N$.

Solution: Using multiplicativity of T_{n} and the Fundamental Theorem of Arithmetics, we have

$$
g(s)=\prod_{p}\left(1+T_{p} p^{-s}+T_{p^{2}} p^{-2 s}+\cdots\right)
$$

We look at

$$
\begin{aligned}
\left(1-T_{p} x+\langle p\rangle p^{k-1} x^{2}\right) \sum_{n=0}^{\infty} T_{p^{n}} x^{n} & =\sum_{n=0}^{\infty} T_{p^{n}} x^{n}-\sum_{n=0}^{\infty} T_{p} T_{p^{n}} x^{n+1}+\sum_{n=0}^{\infty}\langle p\rangle p^{k-1} T_{p^{n}} x^{n+2} \\
& =\sum_{n=0}^{\infty} T_{p^{n}} x^{n}-\sum_{n=1}^{\infty} T_{p} T_{p^{n-1}} x^{n}+\sum_{n=2}^{\infty}\langle p\rangle p^{k-1} T_{p^{n-2}} x^{n} \\
& =1+\sum_{n=2}^{\infty}\left(T_{p^{n}}-T_{p} T_{p^{n-1}}+\langle p\rangle p^{k-1} T_{p^{n-2}}\right) x^{n} \\
& =1 .
\end{aligned}
$$

6. Let $k, N \in \mathbb{Z}_{>0}$, and let χ be a Dirichlet character modulo N.
(a) For $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$, denote by d_{γ} the lower-right entry of γ. Show that

$$
M_{k}(N, \chi)=\left\{f \in M_{k}\left(\Gamma_{1}(N)\right):\left.f\right|_{k} \gamma=\chi\left(d_{\gamma}\right) f \text { for all } \gamma \in \Gamma_{0}(N)\right\}
$$

and

$$
S_{k}(N, \chi)=\left\{f \in S_{k}\left(\Gamma_{1}(N)\right):\left.f\right|_{k} \gamma=\chi\left(d_{\gamma}\right) f \text { for all } \gamma \in \Gamma_{0}(N)\right\}
$$

(b) Let $\mathbf{1}_{N}$ denote the trivial character modulo N. Show that

$$
M_{k}\left(N, \mathbf{1}_{N}\right)=M_{k}\left(\Gamma_{0}(N)\right) \quad \text { and } \quad S_{k}\left(N, \mathbf{1}_{N}\right)=S_{k}\left(\Gamma_{0}(N)\right) .
$$

Solution: (a) By definition, $M_{k}(N, \chi)$ is the set of $f \in M_{k}\left(\Gamma_{1}(N)\right)$ such that

$$
\langle d\rangle f=\chi(d) f \quad \forall d \in(\mathbb{Z} / N \mathbb{Z})^{\times} .
$$

But

$$
(\langle d\rangle f)(z)=(c z+d)^{-k} f\left(\frac{a z+b}{c z+d}\right)=\left.f\right|_{k} \gamma_{d}(z)
$$

and this, for the classes in $\Gamma_{1}(N) \backslash \Gamma_{0}(N)$.
Since every $\gamma \in \Gamma_{0}(N)$ corresponds to a $\langle d\rangle$, and every $\langle d\rangle$ gives rise to $\gamma_{d} \in \Gamma_{0}(N)$, we get the equality.
The case of cusps is similar and follows from the fact that $\langle d\rangle$ preserves cusps (which is a consequence of the fact that T_{α} preserves cusps).
(b) In this case we have

$$
\langle d\rangle f=f \quad \forall d \in(\mathbb{Z} / N \mathbb{Z})^{\times}
$$

or

$$
\left.f\right|_{k} \gamma=f \quad \forall \gamma \in \Gamma_{1}(N) \backslash \Gamma_{0}(N),
$$

which is equivalent to saying that $f \in M_{k}\left(\Gamma_{0}(N)\right)$.
The case of cusps is similar and follows from the fact that $\langle d\rangle$ preserves cusps.
7. Let $k \in \mathbb{Z}_{>0}$, let $f \in M_{k}\left(\operatorname{SL}_{2}(\mathbb{Z})\right)$ be an eigenform, normalized such that $a_{1}(f)=1$, and let p be a prime number. Let $\alpha, \beta \in \mathbb{C}$ be the roots of the polynomial $t^{2}-a_{p}(f) t+p^{k-1}$. You may use without proof that $a_{p}(f)$ is real.
(a) Prove the formula

$$
a_{p^{r}}(f)=\sum_{j=0}^{r} \alpha^{j} \beta^{r-j} \quad \forall r \geq 0
$$

(b) Show that the following conditions are equivalent: (1) $\left|a_{p}(f)\right| \leq 2 p^{(k-1) / 2} ;(2) \alpha$ and β are complex conjugates of absolute value $p^{(k-1) / 2}$.
(c) Show that if the equivalent conditions of part (b) hold for all prime numbers p, then the q-expansion coefficients of f satisfy the bound

$$
\left|a_{n}(f)\right| \leq \sigma_{0}(n) n^{(k-1) / 2} \quad \forall n \geq 1,
$$

where $\sigma_{0}(n)$ is the number of (positive) divisors of n.
Note: If f is a cusp form, then the conditions of part (b) do hold. This follows from two very deep theorems proved by P. Deligne in 1968 and 1974.

Solution: (a) We have that

$$
a_{p^{r}}=a_{p} a_{p^{r-1}}-p^{k-1} a_{p^{r-2}}
$$

and $a_{p}=\alpha+\beta, p^{k-1}=\alpha \beta$. We proceed by induction. Notice that $a_{1}=1$ and the statement is also true for a_{p}. Suppose that

$$
a_{p^{\ell}}=\sum_{j=0}^{\ell} \alpha^{j} \beta^{\ell-j} \quad \forall 0 \leq \ell<r
$$

Now

$$
\begin{aligned}
a_{p^{r}} & =a_{p} a_{p^{r-1}}-p^{k-1} a_{p^{r-2}} \\
& =(\alpha+\beta) \sum_{j=0}^{r-1} \alpha^{j} \beta^{r-1-j}-\alpha \beta \sum_{j=0}^{r-2} \alpha^{j} \beta^{r-2-j} \\
& =\sum_{j=0}^{r-1} \alpha^{j+1} \beta^{r-1-j}+\sum_{j=0}^{r-1} \alpha^{j} \beta^{r-j}-\sum_{j=0}^{r-2} \alpha^{j+1} \beta^{r-1-j} \\
& =\alpha^{r}+\sum_{j=0}^{r-1} \alpha^{j} \beta^{r-j} \\
& =\sum_{j=0}^{r} \alpha^{j} \beta^{r-j} .
\end{aligned}
$$

(b) $(2) \Rightarrow(1)$:

$$
\left|a_{p}(f)\right|=|\alpha+\beta| \leq|\alpha|+|\beta| \leq 2 p^{(k-1) / 2}
$$

$(1) \Rightarrow(2)$: The roots of $t^{2}-a_{p}(f) t+p^{k-1}$ are

$$
\frac{a_{p}(f) \pm \sqrt{a_{p}(f)^{2}-4 p^{k-1}}}{2}
$$

If $\left|a_{p}(f)\right| \leq 2 p^{(k-1) / 2}$, then the discriminant is negative (since $a_{p}(f)$ is real), and the absolute value of each roots is

$$
\frac{\sqrt{a_{p}(f)^{2}+4 p^{k-1}-a_{p}(f)^{2}}}{2}=p^{(k-1) / 2}
$$

(c) By part (a) we have

$$
\left|a_{p^{r}}(f)\right| \leq \sum_{j=0}^{r}\left|\alpha^{j} \beta^{r-j}\right|=(r+1) p^{r(k-1) / 2}=\sigma_{0}\left(p^{r}\right)\left(p^{r}\right)^{(k-1) / 2}
$$

For arbitrary n, let

$$
n=\prod_{p \text { prime }} p^{e_{p}}
$$

be the prime factorization of n, where $e_{p} \geq 0$ and $e_{p}=0$ for all but finitely many p. Then

$$
\left|a_{n}\right|=\prod_{p}\left|a_{p^{e_{p}}}\right| \leq \prod_{p} \sigma_{0}\left(p^{e_{p}}\right)\left(p^{e_{p}}\right)^{(k-1) / 2}=\sigma_{0}(n) n^{(k-1) / 2}
$$

since $\sigma_{0}(n)$ is multiplicative.

