Sujets spéciaux en théorie des nombres - formes modulaires/ Special Topics in Number
Theory - Modular Forms.
MAT 6684w
Homework 4. Due November 13, 2017
To get full credit solve 3 of the following problems (you are welcome to do them all). The
answers may be submitted in English or French.

1. Let N be a positive integer, let p be a prime number, and let

a:((l) g), [ =To(N),I'=TnNna 'Ta.

Determine a system of coset representatives for the quotient IV \ T.

Solution: As seen in class,

(250 )
F’:{(Z Z)GSLQ(Z)']\”C,])H)}.

Now consider the map I' — SLy(FF,,). When p | N, the image of the map consists of
the matrices of the form ( ; i ) and the inverse image of { ( ; 2 ) } equals I".

e (i )

p(p—1)
p—1

Thus

Therefore,

F’\F%{<g a01>

The index of the quotient above is

aeF;,beIFp}

A system of representatives is

(o v )lo=r=rr),

since they are p elements and they are non-equivalent.

)G )G

iffo=10.




When p t N, the image of the map is SLy(Z) (since I'1 (V) C I'o(NN) and we proved
that the map is surjective for I';(N)) and the inverse image of the matrices of the

form ( ; : ) gives IV, This implies

F/\Fg{(i aol)

This is the case that was discussed in class. Thus we get

(o 7 )lo=esrnju{ (1))

where a, ¢ are fixed numbers such that ap — c¢N = 1.

ac€lFy ce Fp} \ SLy(F))

2. Prove that for any even integer £ > 4 and prime p we have
Tka = Uk—l(p)Gk:

for the Eisenstein series G and the Hecke operator T}, on M (SLy(Z)).

Solution: Since the diamond operator is trivial for N = 1, we have

T,Gr = Z(apn(Gk) + pkilan/p(Gk))qn
=y z(fm S + 1ol

27i)* B 2mi)k
Z—Uk—l(p)( ), L2 ( Uk 1( ZUk 1
k! ( n>1
(271
+2(/{ ,Z or-1(pn) +p*lok_1(n/p))g"
n>1
pln
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If p | n, we write n = p‘n; with p{n;, we have

+1 (-1

or—1(pn) + p" tor_i(n/p) =ok_1(p"'ny) + P oro (0 )
I(qu(pul) +pk710k71(p£71)0k71(n1)
(k=1)(¢+2) _ 1 (k=1)¢ _ 1
p k—1P
(pk—l—_l +p pk—l—_l) Ok-1(m)

(k=1)(E+1) _ ) (ph=1 4 1
- ((p pE1 _)(1]7 )) op—1(n1)

=0k-1(p")ok—1(p)ok—1(m1)
=0p-1(p)ox-1(n).

Combining with the computation above, this proves the result.

3. Let p be a prime and consider the lattice A := Zw; + Zw,, where wq,ws € C* and
wl/ wy  R.

(a) Show that there are exactly p® + p + 1 lattices A’ C C satisfying A’ D A and
[A": A] = p?, and give a list of these.

(b) Try to generalize part (a) (e.g. replace [\’ : A] = p? by [\ : A] = p* with k € Z).

Solution: (a) Let A’ = Zvy + Zvy. Then wy; = avy + by and wy = cvy + dvy

/
with det ( CCL 2 ) = p? Turning to Hermitian normal form gives ( CCL, 3, ) with
a',d >0,and 0 < < d. Also a'd = p?. Thus, we have three possibilities. (1) a’ =
P’ d=1,=012)d=p=d,0<d <p,and (3) d = 1,d =p* 0 < ¢ < p? This
yields 1+ p+ p? non-equivalent lattices of the form (1) Z;’—; +Zws, (2) Z%—’—Z%,
0<c<p, (3) Zwy +Z*5=2,0 < c < p*.

(b) We consider the same transformation, but now we get that o’ = p’, d' = p*~J

and 0 < ¢ < pFi,

We get, 14+p+ -+ p” lattices, namely, for j =0, ..., k, Z% —i—Z%:ﬂ”, 0<c<
k—j

P,

4. Calculate the matrix of the Hecke operator T, on the space Say(SLa(7Z)) with respect to
a basis of your choice. Show that the characteristic polynomial of Tj is 22 — 1080z —
20468736. (You may use a computer, but not a package in which this question can be
solved with a one-line command.)
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Solution: There are various bases for Sgs. A natural choice is

Fy = E3A = q+696¢% + 162252¢° + 12831808¢* + - - -
Fy = A? = ¢* — 48¢® + 1080¢* + . ..

ToFy =(ag(Fy) + 2%ao(F)) 4 a2(F1)q + (as(Fy) 4+ 2Pa(F)) ¢ + - --
=696¢ + 21220416¢> + - - -

Ty Fy =(ag(Fy) + 2%ao(Fy)) 4 az(F2)q + (as(Fa) 4+ 2%Pay(Fy)) ¢ + - --
=g + 1080¢>

Then

T5F) = 6967 + 20736000 F%
ToFy; = Fy + 384F;

696 1
20736000 384 ) °

This has the characteristic polynomial of the statement.

Finally,

5. Consider the formal (so we do not worry about convergence) generating function of the
Hecke operators T, on My (I'1(N))

g(s) == Z T,n~*.
n=1

Deduce the following formal product expansion (over all primes p):

g(s) =[]0 = Tp~ + ()" >) 7",

p

where we assume that (p) = 0 when p | N.

Solution: Using multiplicativity of 7}, and the Fundamental Theorem of Arith-
metics, we have

9(s) = H(l +Top™* + Tp2p72s ).

p
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We look at
(1 —T,x + (p)p™'a?) Z Tpna" = Z Tona™ — Z T, Tzt + Z(p)pk_lTpnx"+2
n=0 n=0 n=0 n=0
o0 o0 [ee]
— Z Tona™ — Z T,Tpn—1a" + Z(p}pk’lTpn_zx”
n=0 n=1 n=2

=1+ Z(Tp" =TT + <p>pk_1Tp"*2)mn
n=2

=1.

6. Let k, N € Z~¢, and let x be a Dirichlet character modulo .
(a) For v € SLy(Z), denote by d., the lower-right entry of 7. Show that
Mi(N, x) ={f € Mp(I't(N)) : fley = x(dy) f for all v € To(N)}

and
SN, x) ={f € Se(T1(N)) « flwy = x(dy) f for all v € T'o(N)}

(b) Let 1y denote the trivial character modulo N. Show that
Mp(N,1y) = Mi(To(N)) and  Sp(N,1y) = Sp(To(N)).

Solution: (a) By definition, My (N, x) is the set of f € My (I';(N)) such that
(d)f =x(d)f  vde(Z/NZ)*.

But
az+b

cz+d

() F)(=) = (2 + ) f (

and this, for the classes in I'1(N) \ T'o(N).

Since every v € I'g(IN) corresponds to a (d), and every (d) gives rise to 74 € I'o(N),
we get the equality.

> = fleva(2),

The case of cusps is similar and follows from the fact that (d) preserves cusps (which
is a consequence of the fact that T, preserves cusps).

(b) In this case we have
(dyf=f Vde(Z/NZ)*
or
fliv=17F Yy eTi(N)\To(N),
which is equivalent to saying that f € My (I'o(N)).

The case of cusps is similar and follows from the fact that (d) preserves cusps.
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7. Let k € Zso, let f € M(SLa(Z)) be an eigenform, normalized such that a;(f) = 1, and
let p be a prime number. Let «, 3 € C be the roots of the polynomial t? — a,(f)t +p*~'.

You may use without proof that a,(f) is real.

(a) Prove the formula

apr(f):Zajﬂr’j Vr > 0.

=0
(b) Show that the following conditions are equivalent: (1) |a,(f)| < 2p*~1/2; (2) @ and
(3 are complex conjugates of absolute value p*=1)/2,

(c) Show that if the equivalent conditions of part (b) hold for all prime numbers p, then
the g-expansion coefficients of f satisfy the bound

lan(f)] < Uo(n)n(k_l)/Q Vn > 1,

where o((n) is the number of (positive) divisors of n.

Note: If f is a cusp form, then the conditions of part (b) do hold. This follows from two
very deep theorems proved by P. Deligne in 1968 and 1974.

Solution: (a) We have that

Upr = ApQpr—1 — pk_lapr_z

and a, = a + 3, p*~! = af. We proceed by induction. Notice that a; = 1 and the

statement is also true for a,. Suppose that

¢
ape:Zajb’é’j VO</i<rT

=0
Now

_ k—1
Apr =Appr—1 —p Apr—2

=(a + ) Zoﬂﬁr = ]—aBZaJ/BT 2=J

7=0
—1
Z J+1ﬁrlj+za3ﬁrj Zaj+1BT1J
=0 Jj=0 J=0
r—1
:of—i-ZoﬂﬂT_j
=0
T
:ZajBT—J
7=0
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(b) (2) = (1):

la, ()] = la + 8] < |a| + 8] < 2p* D72,

(1) = (2): The roots of t> — a,(f)t + p*~! are

ap(f) £ \/ap(f)2 — 4pk-1
5 )

If |a,(f)| < 2p*~Y/2 then the discriminant is negative (since a,(f) is real), and the
absolute value of each roots is

Vap(f)? +4pF=1 — a,(f)? = plk1/2,
2

(c) By part (a) we have

japr ()] <D la?B77| = (r+ 1)pr D2 = gy (p) () D72,
7=0

For arbitrary n, let

n = H P

pprime
be the prime factorization of n, where e, > 0 and e, = 0 for all but finitely many p.

Then
janl = [T lageo| < [T o0(p) (07) 572 = o (myn=72,

p p

since og(n) is multiplicative.
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