
Sujets spéciaux en théorie des nombres - formes modulaires/ Special Topics in Number
Theory - Modular Forms.

MAT 6684w
Homework 4. Due November 13, 2017

To get full credit solve 3 of the following problems (you are welcome to do them all). The
answers may be submitted in English or French.

1. Let N be a positive integer, let p be a prime number, and let

α =

(
1 0
0 p

)
, Γ = Γ0(N),Γ′ = Γ ∩ α−1Γα.

Determine a system of coset representatives for the quotient Γ′ \ Γ.

Solution: As seen in class,

α−1
(
a b
c d

)
α =

(
a bp
c/p d

)
.

Thus

Γ′ =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣N | c, p | b} .
Now consider the map Γ→ SL2(Fp). When p | N , the image of the map consists of

the matrices of the form

(
∗ ∗
0 ∗

)
and the inverse image of

{(
∗ 0
0 ∗

)}
equals Γ′.

Therefore,

Γ′ \ Γ ∼=
{(

a 0
0 a−1

)∣∣∣∣ a ∈ F×p
}
\
{(

a b
0 a−1

)∣∣∣∣ a ∈ F×p , b ∈ Fp
}

The index of the quotient above is p(p−1)
p−1 = p.

A system of representatives is{(
1 b
0 1

)∣∣∣∣ 0 ≤ b ≤ p− 1

}
,

since they are p elements and they are non-equivalent.(
1 b
0 1

)(
1 −b′
0 1

)
=

(
1 b− b′
0 1

)
=

(
a 0
0 a−1

)
iff b = b′.



When p - N , the image of the map is SL2(Z) (since Γ1(N) ⊂ Γ0(N) and we proved
that the map is surjective for Γ1(N)) and the inverse image of the matrices of the

form

(
∗ ∗
0 ∗

)
gives Γ′. This implies

Γ′ \ Γ ∼=
{(

a 0
c a−1

)∣∣∣∣ a ∈ F×p , c ∈ Fp
}
\ SL2(Fp)

This is the case that was discussed in class. Thus we get{(
1 b
0 1

)∣∣∣∣ 0 ≤ b ≤ p− 1

}
∪
{(

ap 1
cN 1

)}
,

where a, c are fixed numbers such that ap− cN = 1.

2. Prove that for any even integer k ≥ 4 and prime p we have

TpGk = σk−1(p)Gk

for the Eisenstein series Gk and the Hecke operator Tp on Mk(SL2(Z)).

Solution: Since the diamond operator is trivial for N = 1, we have

TpGk =
∞∑
n=0

(apn(Gk) + pk−1an/p(Gk))q
n

=− (1 + pk−1)
(2πi)kBk

k!
+ 2

(2πi)k

(k − 1)!

∞∑
n=1

(σk−1(pn) + pk−1σk−1(n/p))q
n

=− σk−1(p)
(2πi)kBk

k!
+ 2

(2πi)k

(k − 1)!
σk−1(p)

∑
n≥1
p-n

σk−1(n)qn

+ 2
(2πi)k

(k − 1)!

∑
n≥1
p|n

(σk−1(pn) + pk−1σk−1(n/p))q
n

Page 2



If p | n, we write n = p`n1 with p - n1, we have

σk−1(pn) + pk−1σk−1(n/p) =σk−1(p
`+1n1) + pk−1σk−1(p

`−1n1)

=(σk−1(p
`+1) + pk−1σk−1(p

`−1)σk−1(n1)

=

(
p(k−1)(`+2) − 1

pk−1 − 1
+ pk−1

p(k−1)` − 1

pk−1 − 1

)
σk−1(n1)

=

(
(p(k−1)(`+1) − 1)(pk−1 + 1)

pk−1 − 1

)
σk−1(n1)

=σk−1(p
`)σk−1(p)σk−1(n1)

=σk−1(p)σk−1(n).

Combining with the computation above, this proves the result.

3. Let p be a prime and consider the lattice Λ := Zω1 + Zω2, where ω1, ω2 ∈ C× and
ω1/ω2 6∈ R.

(a) Show that there are exactly p2 + p + 1 lattices Λ′ ⊂ C satisfying Λ′ ⊃ Λ and
[Λ′ : Λ] = p2, and give a list of these.

(b) Try to generalize part (a) (e.g. replace [Λ′ : Λ] = p2 by [Λ′ : Λ] = pk with k ∈ Z>0).

Solution: (a) Let Λ′ = Zν1 + Zν2. Then ω1 = aν1 + bν2 and ω2 = cν1 + dν2

with det

(
a b
c d

)
= p2 Turning to Hermitian normal form gives

(
a′ 0
c′ d′

)
with

a′, d′ > 0, and 0 ≤ c′ < d′. Also a′d′ = p2. Thus, we have three possibilities. (1) a′ =
p2, d′ = 1, c′ = 0 (2) a′ = p = d′, 0 ≤ c′ < p, and (3) a′ = 1, d′ = p2, 0 ≤ c′ < p2. This
yields 1+p+p2 non-equivalent lattices of the form (1) Zω1

p2
+Zω2, (2) Zω1

p
+Z cω1+pω2

p2
,

0 ≤ c < p, (3) Zω1 + Z cω1+ω2

p2
, 0 ≤ c < p2.

(b) We consider the same transformation, but now we get that a′ = pj, d′ = pk−j

and 0 ≤ c′ < pk−j.

We get, 1 + p+ · · ·+ pk lattices, namely, for j = 0, . . . , k, Zω1

pj
+Z cω1+pk−jω2

pk
, 0 ≤ c <

pk−j,

4. Calculate the matrix of the Hecke operator T2 on the space S24(SL2(Z)) with respect to
a basis of your choice. Show that the characteristic polynomial of T2 is x2 − 1080x −
20468736. (You may use a computer, but not a package in which this question can be
solved with a one-line command.)
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Solution: There are various bases for S24. A natural choice is

F1 = E3
4∆ = q + 696q2 + 162252q3 + 12831808q4 + · · ·

F2 = ∆2 = q2 − 48q3 + 1080q4 + . . .

T2F1 =(a0(F1) + 223a0(F1)) + a2(F1)q + (a4(F1) + 223a1(F1))q
2 + · · ·

=696q + 21220416q2 + · · ·
T2F2 =(a0(F2) + 223a0(F2)) + a2(F2)q + (a4(F2) + 223a1(F2))q

2 + · · ·
=q + 1080q2

Then

T2F1 = 696F1 + 20736000F2

T2F2 = F1 + 384F2

Finally, (
696 1

20736000 384

)
.

This has the characteristic polynomial of the statement.

5. Consider the formal (so we do not worry about convergence) generating function of the
Hecke operators Tn on Mk(Γ1(N))

g(s) :=
∞∑
n=1

Tnn
−s.

Deduce the following formal product expansion (over all primes p):

g(s) =
∏
p

(1− Tpp−s + 〈p〉pk−1−2s)−1,

where we assume that 〈p〉 = 0 when p | N .

Solution: Using multiplicativity of Tn and the Fundamental Theorem of Arith-
metics, we have

g(s) =
∏
p

(1 + Tpp
−s + Tp2p

−2s + · · · ).
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We look at

(1− Tpx+ 〈p〉pk−1x2)
∞∑
n=0

Tpnx
n =

∞∑
n=0

Tpnx
n −

∞∑
n=0

TpTpnx
n+1 +

∞∑
n=0

〈p〉pk−1Tpnxn+2

=
∞∑
n=0

Tpnx
n −

∞∑
n=1

TpTpn−1xn +
∞∑
n=2

〈p〉pk−1Tpn−2xn

=1 +
∞∑
n=2

(Tpn − TpTpn−1 + 〈p〉pk−1Tpn−2)xn

=1.

6. Let k,N ∈ Z>0, and let χ be a Dirichlet character modulo N .

(a) For γ ∈ SL2(Z), denote by dγ the lower-right entry of γ. Show that

Mk(N,χ) = {f ∈Mk(Γ1(N)) : f |kγ = χ(dγ)f for all γ ∈ Γ0(N)}

and
Sk(N,χ) = {f ∈ Sk(Γ1(N)) : f |kγ = χ(dγ)f for all γ ∈ Γ0(N)}

(b) Let 1N denote the trivial character modulo N . Show that

Mk(N,1N) = Mk(Γ0(N)) and Sk(N,1N) = Sk(Γ0(N)).

Solution: (a) By definition, Mk(N,χ) is the set of f ∈Mk(Γ1(N)) such that

〈d〉f = χ(d)f ∀d ∈ (Z/NZ)×.

But

(〈d〉f)(z) = (cz + d)−kf

(
az + b

cz + d

)
= f |kγd(z),

and this, for the classes in Γ1(N) \ Γ0(N).

Since every γ ∈ Γ0(N) corresponds to a 〈d〉, and every 〈d〉 gives rise to γd ∈ Γ0(N),
we get the equality.

The case of cusps is similar and follows from the fact that 〈d〉 preserves cusps (which
is a consequence of the fact that Tα preserves cusps).

(b) In this case we have

〈d〉f = f ∀d ∈ (Z/NZ)×

or
f |kγ = f ∀γ ∈ Γ1(N) \ Γ0(N),

which is equivalent to saying that f ∈Mk(Γ0(N)).

The case of cusps is similar and follows from the fact that 〈d〉 preserves cusps.
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7. Let k ∈ Z>0, let f ∈Mk(SL2(Z)) be an eigenform, normalized such that a1(f) = 1, and
let p be a prime number. Let α, β ∈ C be the roots of the polynomial t2− ap(f)t+ pk−1.

You may use without proof that ap(f) is real.

(a) Prove the formula

apr(f) =
r∑
j=0

αjβr−j ∀r ≥ 0.

(b) Show that the following conditions are equivalent: (1) |ap(f)| ≤ 2p(k−1)/2; (2) α and
β are complex conjugates of absolute value p(k−1)/2.

(c) Show that if the equivalent conditions of part (b) hold for all prime numbers p, then
the q-expansion coefficients of f satisfy the bound

|an(f)| ≤ σ0(n)n(k−1)/2 ∀n ≥ 1,

where σ0(n) is the number of (positive) divisors of n.

Note: If f is a cusp form, then the conditions of part (b) do hold. This follows from two
very deep theorems proved by P. Deligne in 1968 and 1974.

Solution: (a) We have that

apr = apapr−1 − pk−1apr−2

and ap = α + β, pk−1 = αβ. We proceed by induction. Notice that a1 = 1 and the
statement is also true for ap. Suppose that

ap` =
∑̀
j=0

αjβ`−j ∀0 ≤ ` < r

Now

apr =apapr−1 − pk−1apr−2

=(α + β)
r−1∑
j=0

αjβr−1−j − αβ
r−2∑
j=0

αjβr−2−j

=
r−1∑
j=0

αj+1βr−1−j +
r−1∑
j=0

αjβr−j −
r−2∑
j=0

αj+1βr−1−j

=αr +
r−1∑
j=0

αjβr−j

=
r∑
j=0

αjβr−j.
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(b) (2)⇒ (1):
|ap(f)| = |α + β| ≤ |α|+ |β| ≤ 2p(k−1)/2.

(1)⇒ (2): The roots of t2 − ap(f)t+ pk−1 are

ap(f)±
√
ap(f)2 − 4pk−1

2
.

If |ap(f)| ≤ 2p(k−1)/2, then the discriminant is negative (since ap(f) is real), and the
absolute value of each roots is√

ap(f)2 + 4pk−1 − ap(f)2

2
= p(k−1)/2.

(c) By part (a) we have

|apr(f)| ≤
r∑
j=0

|αjβr−j| = (r + 1)pr(k−1)/2 = σ0(p
r)(pr)(k−1)/2.

For arbitrary n, let

n =
∏
pprime

pep

be the prime factorization of n, where ep ≥ 0 and ep = 0 for all but finitely many p.

Then
|an| =

∏
p

|apep | ≤
∏
p

σ0(p
ep)(pep)(k−1)/2 = σ0(n)n(k−1)/2,

since σ0(n) is multiplicative.
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