Sujets spéciaux en théorie des nombres - formes modulaires/ Special Topics in Number Theory - Modular Forms.

MAT 6684w
Homework 4. Due November 13, 2017
To get full credit solve $\mathbf{3}$ of the following problems (you are welcome to do them all). The answers may be submitted in English or French.

1. Let N be a positive integer, let p be a prime number, and let

$$
\alpha=\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right), \quad \Gamma=\Gamma_{0}(N), \Gamma^{\prime}=\Gamma \cap \alpha^{-1} \Gamma \alpha
$$

Determine a system of coset representatives for the quotient $\Gamma^{\prime} \backslash \Gamma$.
2. Prove that for any even integer $k \geq 4$ and prime p we have

$$
T_{p} G_{k}=\sigma_{k-1}(p) G_{k}
$$

for the Eisenstein series G_{k} and the Hecke operator T_{p} on $M_{k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$.
3. Let p be a prime and consider the lattice $\Lambda:=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$, where $\omega_{1}, \omega_{2} \in \mathbb{C}^{\times}$and $\omega_{1} / \omega_{2} \notin \mathbb{R}$.
(a) Show that there are exactly $p^{2}+p+1$ lattices $\Lambda^{\prime} \subset \mathbb{C}$ satisfying $\Lambda^{\prime} \supset \Lambda$ and $\left[\Lambda^{\prime}: \Lambda\right]=p^{2}$, and give a list of these.
(b) Try to generalize part (a) (e.g. replace $\left[\Lambda^{\prime}: \Lambda\right]=p^{2}$ by $\left[\Lambda^{\prime}: \Lambda\right]=p^{k}$ with $k \in \mathbb{Z}_{>0}$).
4. Calculate the matrix of the Hecke operator T_{2} on the space $S_{24}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ with respect to a basis of your choice. Show that the characteristic polynomial of T_{2} is $x^{2}-1080 x-$ 20468736. (You may use a computer, but not a package in which this question can be solved with a one-line command.)
5. Consider the formal (so we do not worry about convergence) generating function of the Hecke operators T_{n} on $M_{k}\left(\Gamma_{1}(N)\right)$

$$
g(s):=\sum_{n=1}^{\infty} T_{n} n^{-s} .
$$

Deduce the following formal product expansion (over all primes p):

$$
g(s)=\prod_{p}\left(1-T_{p} p^{-s}+\langle p\rangle p^{k-1-2 s}\right)^{-1}
$$

where we assume that $\langle p\rangle=0$ when $p \mid N$.
6. Let $k, N \in \mathbb{Z}_{>0}$, and let χ be a Dirichlet character modulo N.
(a) For $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$, denote by d_{γ} the lower-right entry of γ. Show that

$$
M_{k}(N, \chi)=\left\{f \in M_{k}\left(\Gamma_{1}(N)\right):\left.f\right|_{k} \gamma=\chi\left(d_{\gamma}\right) f \text { for all } \gamma \in \Gamma_{0}(N)\right\}
$$

and

$$
S_{k}(N, \chi)=\left\{f \in S_{k}\left(\Gamma_{1}(N)\right):\left.f\right|_{k} \gamma=\chi\left(d_{\gamma}\right) f \text { for all } \gamma \in \Gamma_{0}(N)\right\}
$$

(b) Let $\mathbf{1}_{N}$ denote the trivial character modulo N. Show that

$$
M_{k}\left(N, \mathbf{1}_{N}\right)=M_{k}\left(\Gamma_{0}(N)\right) \quad \text { and } \quad S_{k}\left(N, \mathbf{1}_{N}\right)=S_{k}\left(\Gamma_{0}(N)\right)
$$

7. Let $k \in \mathbb{Z}_{>0}$, let $f \in M_{k}\left(\operatorname{SL}_{2}(\mathbb{Z})\right)$ be an eigenform, normalized such that $a_{1}(f)=1$, and let p be a prime number. Let $\alpha, \beta \in \mathbb{C}$ be the roots of the polynomial $t^{2}-a_{p}(f) t+p^{k-1}$. You may use without proof that $a_{p}(f)$ is real.
(a) Prove the formula

$$
a_{p^{r}}(f)=\sum_{j=0}^{r} \alpha^{j} \beta^{r-j} \quad \forall r \geq 0
$$

(b) Show that the following conditions are equivalent: (1) $\left|a_{p}(f)\right| \leq 2 p^{(k-1) / 2} ;(2) \alpha$ and β are complex conjugates of absolute value $p^{(k-1) / 2}$.
(c) Show that if the equivalent conditions of part (b) hold for all prime numbers p, then the q-expansion coefficients of f satisfy the bound

$$
\left|a_{n}(f)\right| \leq \sigma_{0}(n) n^{(k-1) / 2} \quad \forall n \geq 1,
$$

where $\sigma_{0}(n)$ is the number of (positive) divisors of n.
Note: If f is a cusp form, then the conditions of part (b) do hold. This follows from two very deep theorems proved by P. Deligne in 1968 and 1974.

