Q1. [10 pts]. (1.1) Find the greatest common divisor of \(a = 726 \) and \(b = 275 \).

(1.2) Write \(\text{gcd}(726, 275) \) as an integer combination of \(a \) and \(b \).

(1.3) Let \(A \) be the set consisting of all integer combination of \(a \) and \(b \):

\[
A = \{ua + vb : \text{for all integers } u, v\}.
\]

Prove that \(A \) is an ideal of \(I \).

(1.4) Is \(A \) a principal ideal of \(I \)? If so, find a positive integer \(n \) such that \(A = (n) \).

Q2. [10 pts]. Do only one of (2.1) or (2.2):

(2.1) Let \(a, b, c \) be non-zero integers, and let \((b, c) = d \) and \((ab, c) = e \). Assume that \((a, c) = 1 \). Prove that \(d = e \).

(2.2) Let \(R \) be an integral domain, and let \(p \) be a prime element of \(R \). Prove that \(p \) is irreducible in \(R \).

Q3. [10 pts]. Prove, by induction on \(n \), that

\[
n^2 + (n + 1)^2 + \ldots + (2n)^2 = \frac{n(n + 1)(14n + 1)}{6}
\]

for all \(n \geq 1 \). (The left-hand side is the sum of the squares of all integers from \(n \) to \(2n \), inclusive, i.e., \(\sum_{i=n}^{2n} i^2 \).)
Q4. [20 pts]. Let \(I \) be the ring of integers, and let \(R = I/(3) \) be the quotient ring.

(4.1) Write down the distinct elements of \(R \). (You do not have to use brackets around the elements of \(R \) if this does not confuse you.)

(4.2) Calculate \([2] + [2]\) and \([2]^2\) in \(R \).

(4.3) Is \(R \) an integral domain? Why or why not. (Do not simply repeat the definition of an integral domain.)

Next, consider the polynomial ring \(R[x] \), the polynomial \(f(x) = x^2 + 1 \), the quotient ring \(S = R[x]/(f) \), and \(\alpha = [x] \).

(4.4) Show that no element of \(R \) is a root of \(f \).

(4.5) Prove that \(f \) is an irreducible polynomial in \(R[x] \).

(4.6) Prove that \(\alpha^2 = [2] \) in the quotient ring \(S \).

(4.7) How many elements does \(S \) have?

(4.8) Show that \(\alpha^4 = [1] \).

(4.9) Put \(\beta = [1] + \alpha \). Show that \(\beta^2 = [2] \alpha \).

(4.10) Prove that \(\beta^8 = [1] \).

(4.11) Is every non-zero element of \(S \) a unit? Give a reason for your answer.