Regulators and computations of Mahler measures

Mahler Measure in Mobile, University of South Alabama, Mobile, AL

January 5th, 2006
Matilde N. Lalín

Mahler measure

Definition 1 For $P \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, the (logarithmic) Mahler measure is defined by

$$
\begin{equation*}
m(P)=\frac{1}{(2 \pi \mathrm{i})^{n}} \int_{\mathbb{T}^{n}} \log \left|P\left(x_{1}, \ldots, x_{n}\right)\right| \frac{\mathrm{d} x_{1}}{x_{1}} \ldots \frac{\mathrm{~d} x_{n}}{x_{n}} . \tag{1}
\end{equation*}
$$

The simplest example in several variables is due to Smyth [11]

$$
\begin{gathered}
m(1+x+y)=\frac{3 \sqrt{3}}{4 \pi} \mathrm{~L}\left(\chi_{-3}, 2\right)=\mathrm{L}^{\prime}\left(\chi_{-3},-1\right) \\
\mathrm{L}\left(\chi_{-3}, s\right)=\sum_{n=1}^{\infty} \frac{\chi_{-3}(n)}{n^{s}} \quad \chi_{-3}(n)=\left\{\begin{array}{cl}
1 & n \equiv 1 \bmod 3 \\
-1 & n \equiv-1 \bmod 3 \\
0 & n \equiv 0 \bmod 3
\end{array}\right.
\end{gathered}
$$

Polylogarithms

Many examples should be understood in the context of polylogarithms.
Definition 2 The k th polylogarithm is the function defined by the power series

$$
\begin{equation*}
\operatorname{Li}_{k}(x):=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{k}} \quad x \in \mathbb{C}, \quad|x|<1 . \tag{2}
\end{equation*}
$$

This function can be continued analytically to $\mathbb{C} \backslash[1, \infty)$.
In order to avoid discontinuities, and to extend polylogarithms to the whole complex plane, several modifications have been proposed. Zagier [12] considers the following version:

$$
\begin{equation*}
\widehat{\mathcal{L}_{k}}(x):=\widehat{\operatorname{Re}_{k}}\left(\sum_{j=0}^{k-1} \frac{2^{j} B_{j}}{j!}(\log |x|)^{j} \operatorname{Li}_{k-j}(x)\right) \tag{3}
\end{equation*}
$$

where B_{j} is the j th Bernoulli number, and $\widehat{\operatorname{Re}_{k}}$ denotes Re or i Im depending on whether k is odd or even.

This function is one-valued, real analytic in $\mathbb{P}^{1}(\mathbb{C}) \backslash\{0,1, \infty\}$ and continuous in $\mathbb{P}^{1}(\mathbb{C})$. Moreover, $\widehat{\mathcal{L}_{k}}$ satisfy very clean functional equations. The simplest ones are

$$
\widehat{\mathcal{L}_{k}}\left(\frac{1}{x}\right)=(-1)^{k-1} \widehat{\mathcal{L}_{k}(x)} \quad \widehat{\mathcal{L}_{k}}(\bar{x})=(-1)^{k-1} \widehat{\mathcal{L}_{k}}(x) .
$$

There are also lots of functional equations which depend on the index k. For instance, for $k=2$, we have the Bloch-Wigner dilogarithm,

$$
D(x):=\operatorname{Im}\left(\operatorname{Li}_{2}(x)\right)+\arg (1-x) \log |x|
$$

which satisfies the well-known five-term relation

$$
\begin{equation*}
D(x)+D(1-x y)+D(y)+D\left(\frac{1-y}{1-x y}\right)+D\left(\frac{1-x}{1-x y}\right)=0 . \tag{4}
\end{equation*}
$$

The relation with regulators

We write the Mahler measure as an integral of a certain $\mathbb{R}(n-1)$-valued smooth n - 1 -form in $X(\mathbb{C})$, the variety determined by the zeroes of the polynomial.

$$
m(P)=m\left(P^{*}\right)+\frac{1}{(-2 \pi \mathrm{i})^{n-1}} \int_{\Gamma} \eta_{n}(n)\left(x_{1}, \ldots, x_{n}\right)
$$

where

$$
\Gamma=\left\{P\left(x_{1}, \ldots, x_{n}\right)=0\right\} \cap\left\{\left|x_{1}\right|=\ldots=\left|x_{n-1}\right|=1,\left|x_{n}\right| \geq 1\right\}
$$

This was an idea of Deninger [3].
As an example, let us look at Smyth's case in two variables ([11]). The two-variable differential form is

$$
\eta_{2}(2)(x, y)=\log |x| \operatorname{di} \arg y-\log |y| \operatorname{di} \arg x .
$$

Then

$$
m(1+x+y)=\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \log |1+x+y| \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y}
$$

By Jensen's equality:

$$
\begin{gathered}
=\frac{1}{2 \pi \mathrm{i}} \int_{\mathbb{T}^{1}} \log ^{+}|1+x| \frac{\mathrm{d} x}{x} \\
=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \log |y| \frac{\mathrm{d} x}{x}=-\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \eta_{2}(2)(x, y),
\end{gathered}
$$

where

$$
\Gamma=\{1+x+y=0\} \cap\{|x|=1,|y| \geq 1\} .
$$

Here are some properties of $\eta_{n}(n)\left(x_{1}, \ldots, x_{n}\right)$:

- $\eta_{n}(n)$ is multiplicative in each variable and anti-symmetric. Hence it can be thought as a function on $\Lambda^{n}\left(\mathbb{C}(X)^{*}\right)_{\mathbb{Q}}$.
- $\mathrm{d} \eta_{n}(n)\left(x_{1}, \ldots, x_{n}\right)=\widehat{\operatorname{Re}_{n}}\left(\frac{\mathrm{~d} x_{1}}{x_{1}} \wedge \ldots \wedge \frac{\mathrm{~d} x_{n}}{x_{n}}\right)$
- There is an $\mathbb{R}(n-2)$-valued smooth $n-2$-form in $X(\mathbb{C})$ such that

$$
\eta_{n}(n)\left(x, 1-x, x_{1}, \ldots, x_{n-2}\right)=\mathrm{d} \eta_{n-1}(n)\left(x, x_{1}, \ldots, x_{n-2}\right)
$$

In the two-variable case we have

$$
\eta_{2}(2)(x, 1-x)=\mathrm{d} \widehat{D}(x)
$$

The forms for $n=3$ are

$$
\begin{gathered}
\eta_{3}(3)(x, y, z)=\log |x|\left(\frac{1}{3} \mathrm{~d} \log |y| \wedge \mathrm{d} \log |z|+\operatorname{di} \arg y \wedge \operatorname{di} \arg z\right) \\
+\log |y|\left(\frac{1}{3} \mathrm{~d} \log |z| \wedge \mathrm{d} \log |x|+\operatorname{di} \arg z \wedge \operatorname{di} \arg x\right)+\log |z|\left(\frac{1}{3} \mathrm{~d} \log |x| \wedge \mathrm{d} \log |y|+\operatorname{di} \arg x \wedge \operatorname{di} \arg y\right) \\
\eta_{3}(3)(x, 1-x, y)=\mathrm{d} \eta_{3}(2)(x, y) \\
\eta_{3}(2)(x, y)=\widehat{D}(x) \operatorname{di} \arg y+\frac{1}{3} \log |y|(\log |1-x| \mathrm{d} \log |x|-\log |x| \mathrm{d} \log |1-x|) .
\end{gathered}
$$

Now the first variable of $\eta_{n}(n-1)$ behaves like the five-term relation.
As before, there is a $\mathbb{R}(n-3)$-valued smooth $n-3$-form in $X(\mathbb{C})$ such that

$$
\eta_{n}(n-1)\left(x, x, x_{1}, \ldots, x_{n-3}\right)=\mathrm{d} \eta_{n}(n-2)\left(x, x_{1}, \ldots, x_{n-3}\right) .
$$

The first variable in $\eta_{n}(n-2)$ behaves like the functional equations of the trilogarithm.
And so on...
Finally, the second to last form satisfies

$$
\eta_{n}(2)(x, x)=\mathrm{d} \eta_{n}(1)(x),
$$

with

$$
\eta_{n}(1)(x)=\widehat{\mathcal{L}_{n}}(x)
$$

Let us take a look at Smyth's case for three variables. We can express the polynomial as $P(x, y, z)=(1-x)+(1-y) z$. We get:

$$
\begin{gathered}
m(P)=m(1-y)+\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \log ^{+}\left|\frac{1-x}{1-y}\right| \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y}=-\frac{1}{(2 \pi)^{2}} \int_{\Gamma} \eta_{3}(3)(x, y, z) . \\
x \wedge y \wedge z=-x \wedge(1-x) \wedge y-y \wedge(1-y) \wedge x
\end{gathered}
$$

in other words,

$$
\eta_{3}(3)(x, y, z)=-\eta_{3}(3)(x, 1-x, y)-\eta_{3}(3)(y, 1-y, x) .
$$

We have

$$
m((1-x)+(1-y) z)=\frac{1}{4 \pi^{2}} \int_{\gamma} \eta_{3}(2)(x, y)+\eta_{3}(2)(y, x) .
$$

On the other hand,

$$
\eta_{3}(2)(x, x)=\mathrm{d} \widehat{\mathcal{L}_{3}}(x)
$$

We would like to apply Stokes' Theorem again. Observe that $\partial \Gamma=\{P(x, y, z)=$ $0\} \cap\{|x|=|y|=|z|=1\}$. When $P \in \mathbb{R}[x, y, z], \Gamma$ can be thought as

$$
\gamma=\left\{P(x, y, z)=P\left(x^{-1}, y^{-1}, z^{-1}\right)=0\right\} \cap\{|x|=|y|=1\} .
$$

Note that we are integrating now on a path inside the curve $C=\left\{P(x, y, z)=P\left(x^{-1}, y^{-1}, z^{-1}\right)=\right.$ $0\}$. The differential form ω is defined in this new curve (this way of thinking the integral over a new curve has been proposed by Maillot). Now it makes sense to try to apply Stokes' Theorem.

Back to Smyth's case, in order to compute C we set $\frac{(1-x)\left(1-x^{-1}\right)}{(1-y)\left(1-y^{-1}\right)}=1$ and we get $C=\{x=y\} \cup\{x y=1\}$ in this example, and

$$
-\{x\}_{2} \otimes y-\{y\}_{2} \otimes x= \pm 2\{x\}_{2} \otimes x
$$

We integrate in the set described by the following picture

Then

$$
m((1-x)+(1-y) z)=\frac{1}{4 \pi^{2}} 8\left(\mathcal{L}_{3}(1)-\mathcal{L}_{3}(-1)\right)=\frac{7}{2 \pi^{2}} \zeta(3) .
$$

New examples

Using this method we have been able to prove the following examples which were originally computed numerically by Boyd

$$
\begin{aligned}
& m\left(x^{2}+1+(x+1) y+(x-1) z\right)=\frac{\mathrm{L}\left(\chi_{-4}, 2\right)}{\pi}+\frac{21}{8 \pi^{2}} \zeta(3), \\
& m\left(x^{2}+x+1+(x+1) y+z\right)=\frac{\sqrt{3}}{4 \pi} \mathrm{~L}\left(\chi_{-3}, 2\right)+\frac{19}{6 \pi^{2}} \zeta(3) .
\end{aligned}
$$

An example in four variables

In [8] we computed this example

$$
\pi^{3} m\left(1+x+\left(\frac{1-x_{1}}{1+x_{1}}\right)(1+y) z\right)=2 \pi^{2} \mathrm{~L}\left(\chi_{-4}, 2\right)+8 \sum_{0 \leq j<k} \frac{(-1)^{j+k+1}}{(2 j+1)^{3} k}
$$

With this method we have been able to prove that

$$
=24 \mathrm{~L}\left(\chi_{-4}, 4\right)
$$

In particular this implies

$$
\sum_{0 \leq j<k} \frac{(-1)^{j+k+1}}{(2 j+1)^{3} k}=3 \mathrm{~L}\left(\chi_{-4}, 4\right)-\frac{\pi^{2}}{4} \mathrm{~L}\left(\chi_{-4}, 2\right)
$$

More generally, by using the Hurwitz zeta function we have been able to prove

$$
\sum_{0 \leq j<k} \frac{(-1)^{j+k+1}}{(2 j+1)^{m} k}=m \mathrm{~L}\left(\chi_{-4}, m+1\right)+\sum_{h=1}^{\frac{m-1}{2}} \frac{(-1)^{h} \pi^{2 h}\left(2^{2 h}-1\right)}{(2 h)!} B_{2 h} \mathrm{~L}\left(\chi_{-4}, m-2 h+1\right),
$$

for m odd.

Generalized Mahler measure

Introduced by Gon \& Oyanagi [4]
For $f_{1}, \ldots, f_{r} \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$,

$$
m\left(f_{1}, \ldots, f_{r}\right)=\frac{1}{(2 \pi \mathrm{i})^{n}} \int_{\mathbb{T}^{n}} \max \left\{\log \left|f_{1}\right|, \ldots, \log \left|f_{r}\right|\right\} \frac{\mathrm{d} x_{1}}{x_{1}} \ldots \frac{\mathrm{~d} x_{n}}{x_{n}}
$$

Note that in particular,

$$
m\left(f_{1}, f_{2}\right)=m\left(f_{1}+z f_{2}\right) .
$$

Examples

There is a particular case. Fix $P \in \mathbb{C}[x]$ and set $f_{j}=P\left(x_{j}\right)$.
Gon \& Oyanagi [4] computed the following example

$$
\begin{gathered}
m\left(1-x_{1}, \ldots, 1-x_{2 m}\right)=\frac{(-1)^{m+1}(2 m)!}{\pi^{2 m}} \zeta(2 m+1) \\
+(2 m)!\sum_{j=1}^{m}(-1)^{j} \frac{\left(1-2^{2 j}\right)}{(2 m-2 j)!(2 \pi)^{2 j}} \zeta(2 j+1), \\
m\left(1-x_{1}, \ldots, 1-x_{2 m-1}\right)=(2 m-1)!\sum_{j=1}^{m-1}(-1)^{j} \frac{\left(1-2^{2 j}\right)}{(2 m-2 j-1)!(2 \pi)^{2 j}} \zeta(2 j+1) .
\end{gathered}
$$

Some particular cases are:

$$
\begin{gathered}
m\left(1-x_{1}, 1-x_{2}\right)=m\left(1-x_{1}+z\left(1-x_{2}\right)\right)=\frac{7}{2 \pi^{2}} \zeta(3), \\
m\left(1-x_{1}, 1-x_{2}, 1-x_{3}\right)=\frac{9}{2 \pi^{2}} \zeta(3), \\
m\left(1-x_{1}, 1-x_{2}, 1-x_{3}, 1-x_{4}\right)=-\frac{93}{2 \pi^{4}} \zeta(5)+\frac{9}{\pi^{2}} \zeta(3) .
\end{gathered}
$$

This example can be also computed using regulators. Using that $|P(x)|$ is montononous when $0 \leq \arg x \leq \pi$ (in this case, $|P(x)|=2\left|\sin \frac{\arg x}{2}\right|$)

$$
m\left(P\left(x_{1}\right), \ldots, P\left(x_{n}\right)\right)=\frac{n!}{(\pi \mathrm{i})^{n}} \int_{0 \leq \arg x_{n} \leq \ldots \leq \arg x_{1} \leq \pi} \eta\left(P\left(x_{1}\right), x_{1}, \ldots, x_{n}\right)
$$

We have been able to also compute this example

$$
\begin{gathered}
m\left(\frac{1-x_{1}}{1+x_{1}}, \ldots, \frac{1-x_{2 m}}{1+x_{2 m}}\right)=\frac{(-1)^{m+1}(2 m)!\left(2^{2 m+1}-1\right)}{(2 \pi)^{2 m}} \zeta(2 m+1) \\
+(2 m)!\sum_{j=1}^{m}(-1)^{j} \frac{\left(1-2^{2 j+1}\right)}{(2 m-2 j)!(2 \pi)^{2 j}} \zeta(2 j+1), \\
m\left(\frac{1-x_{1}}{1+x_{1}}, \ldots, \frac{1-x_{2 m-1}}{1+x_{2 m-1}}\right)=(2 m-1)!\sum_{j=1}^{m-1}(-1)^{j} \frac{\left(1-2^{2 j+1}\right)}{(2 m-2 j-1)!(2 \pi)^{2 j}} \zeta(2 j+1) .
\end{gathered}
$$

Some particular cases:

$$
\begin{gathered}
m\left(\frac{1-x_{1}}{1+x_{1}}, \frac{1-x_{2}}{1+x_{2}}\right)=m\left(\frac{1-x_{1}}{1+x_{1}}+z\left(\frac{1-x_{2}}{1+x_{2}}\right)\right)=\frac{7}{\pi^{2}} \zeta(3), \\
m\left(\frac{1-x_{1}}{1+x_{1}}, \ldots, \frac{1-x_{3}}{1+x_{3}}\right)=\frac{21}{2 \pi^{2}} \zeta(3), \\
m\left(\frac{1-x_{1}}{1+x_{1}}, \ldots, \frac{1-x_{4}}{1+x_{4}}\right)=-\frac{93}{\pi^{4}} \zeta(5)+\frac{21}{\pi^{2}} \zeta(3) .
\end{gathered}
$$

Finally, we computed the following $m\left(1+x_{1}-x_{1}^{-1}, \ldots, 1+x_{n}-x_{n}^{-1}\right)=$ combination of polylogarithms.

Some particular cases include

$$
\begin{gathered}
m\left(1+x_{1}-x_{1}^{-1}\right)=-\log (\varphi) \\
m\left(1+x_{1}-x_{1}^{-1}, 1+x_{2}-x_{2}^{-1}\right)=\frac{1}{\pi^{2}} \operatorname{Re}\left(\operatorname{Li}_{3}\left(\varphi^{2}\right)-\operatorname{Li}_{3}\left(-\varphi^{2}\right)+\operatorname{Li}_{3}\left(\varphi^{-2}\right)-\operatorname{Li}_{3}\left(-\varphi^{-2}\right)\right)
\end{gathered}
$$

for $\varphi=\frac{-1+\sqrt{5}}{2}$.

References

[1] D. W. Boyd, F. Rodriguez Villegas, Mahler's measure and the dilogarithm (I), Canad. J. Math. 54 (2002), 468-492.
[2] D. W. Boyd, F. Rodriguez Villegas, with an appendix by N. M. Dunfield, Mahler's measure and the dilogarithm (II), (preprint, July 2003)
[3] C. Deninger, Deligne periods of mixed motives, K-theory and the entropy of certain Z^{n}-actions, J. Amer. Math. Soc. 10 (1997), no. 2, 259-281.
[4] Y. Gon, H. Oyanagi, Generalized Mahler measures and multiple sine functions. Internat. J. Math. 15 (2004), no. 5, 425-442.
[5] A. B. Goncharov, Geometry of Configurations, Polylogarithms, and Motivic Cohomology, Adv. Math. 114 (1995), no. 2, 197-318.
[6] A. B. Goncharov, The Classical Polylogarithms, Algebraic K-theory and $\zeta_{F}(n)$, The Gelfand Mathematical Seminars 1990-1992, Birkhauser, Boston (1993), 113-135.
[7] A. B. Goncharov, Explicit regulator maps on polylogarithmic motivic complexes, (preprint, March 2000).
[8] M. N. Lalín, Some examples of Mahler measures as multiple polylogarithms, J. Number Theory 103 (2003), no. 1, 85-108.
[9] M. N. Lalín, An algebraic integration for Mahler measure (submitted).
[10] F. Rodriguez Villegas, Modular Mahler measures I, Topics in number theory (University Park, PA 1997), 17-48, Math. Appl., 467, Kluwer Acad. Publ. Dordrecht, 1999.
[11] C. J. Smyth, On measures of polynomials in several variables, Bull. Austral. Math. Soc. Ser. A 23 (1981), 49-63. Corrigendum (with G. Myerson): Bull. Austral. Math. Soc. 26 (1982), 317-319.
[12] D. Zagier, Polylogarithms, Dedekind Zeta functions, and the Algebraic K-theory of Fields, Arithmetic algebraic geometry (Texel, 1989), 391-430, Progr. Math., 89, Birkhser Boston, Boston, MA, 1991.

