Mahler measure and special values of L-functions

Matilde N. Lalín

University of Alberta
mlalin@math.ualberta.ca
http://WWw.math.ualberta.ca/~mlalin
October 24, 2008

Diophantine equations and zeta functions

$$
\begin{gathered}
2 x^{2}-1=0 \quad x \in \mathbb{Z} \\
\text { No solutions!!! } \\
\left(2 x^{2} \text { is always even and } 1 \text { is odd. }\right)
\end{gathered}
$$

We are looking at "odd" and "even" numbers instead of integers (reduction modulo $p=2$).

Diophantine equations and zeta functions

$$
2 x^{2}-1=0 \quad x \in \mathbb{Z}
$$

No solutions!!!
($2 x^{2}$ is always even and 1 is odd.)
We are looking at "odd" and "even" numbers instead of integers (reduction modulo $p=2$).

Diophantine equations and zeta functions

$$
2 x^{2}-1=0 \quad x \in \mathbb{Z}
$$

No solutions!!!
($2 x^{2}$ is always even and 1 is odd.)
We are looking at "odd" and "even" numbers instead of integers (reduction modulo $p=2$).

Local solutions $=$ solutions modulo p, and in \mathbb{R}.
Global solutions $=$ solutions in \mathbb{Z}
global solutions \Rightarrow local solutions
local solutions \nrightarrow global solutions

Local solutions $=$ solutions modulo p, and in \mathbb{R}.

$$
\begin{aligned}
& \text { Global solutions }=\text { solutions in } \mathbb{Z} \\
& \text { global solutions } \Rightarrow \text { local solutions }
\end{aligned}
$$

local solutions \nRightarrow global solutions

Zeta functions

Local info \rightsquigarrow zeta functions

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p \text { prime }}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

Nice properties:

- Euler product
- Functional equation
- Riemann Hypothesis
- Special values
$\zeta(1) \quad$ pole, $\quad \zeta(2)=\frac{\pi^{2}}{6}$

Periods

Definition

A complex number whose real and imaginary parts are values of absolutely convergent integrals of rational functions with rational coefficients over domains in \mathbb{R}^{n} given by polynomial inequalities with rational coefficients.

Example:

$$
\begin{aligned}
& \pi=\iint_{x^{2}+y^{2} \leq 1} d x d y=\int_{\mathbb{R}} \frac{d x}{1+x^{2}} \\
& \zeta(3)=\iiint_{0<x<y<z<1} \frac{d x d y d z}{(1-x) y z}
\end{aligned}
$$

algebraic numbers

$$
\begin{gathered}
\log (2)=\int_{1}^{2} \frac{d x}{x} \\
e=2.718218 \ldots \text { does not seem to be a period }
\end{gathered}
$$

"Beilinson's type" conjectures: Special values of zeta-functions may be

 written in terms of certain periods called regulators.
algebraic numbers

$$
\begin{gathered}
\log (2)=\int_{1}^{2} \frac{d x}{x} \\
e=2.718218 \ldots \text { does not seem to be a period }
\end{gathered}
$$

"Beilinson's type" conjectures: Special values of zeta-functions may be written in terms of certain periods called regulators.

Mahler measure of multivariable polynomials

$P \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, the (logarithmic) Mahler measure is :

$$
\begin{aligned}
m(P) & =\int_{0}^{1} \ldots \int_{0}^{1} \log \left|P\left(\mathrm{e}^{2 \pi \mathrm{i} \theta_{1}}, \ldots, \mathrm{e}^{2 \pi \mathrm{i} \theta_{n}}\right)\right| \mathrm{d} \theta_{1} \ldots \mathrm{~d} \theta_{n} \\
& =\frac{1}{(2 \pi \mathrm{i})^{n}} \int_{\mathbb{T}^{n}} \log \left|P\left(x_{1}, \ldots, x_{n}\right)\right| \frac{\mathrm{d} x_{1}}{x_{1}} \ldots \frac{\mathrm{~d} x_{n}}{x_{n}}
\end{aligned}
$$

Jensen's formula implies

Mahler measure of multivariable polynomials

$P \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, the (logarithmic) Mahler measure is :

$$
\begin{aligned}
m(P) & =\int_{0}^{1} \ldots \int_{0}^{1} \log \left|P\left(\mathrm{e}^{2 \pi \mathrm{i} \theta_{1}}, \ldots, \mathrm{e}^{2 \pi \mathrm{i} \theta_{n}}\right)\right| \mathrm{d} \theta_{1} \ldots \mathrm{~d} \theta_{n} \\
& =\frac{1}{(2 \pi \mathrm{i})^{n}} \int_{\mathbb{T}^{n}} \log \left|P\left(x_{1}, \ldots, x_{n}\right)\right| \frac{\mathrm{d} x_{1}}{x_{1}} \ldots \frac{\mathrm{~d} x_{n}}{x_{n}}
\end{aligned}
$$

Jensen's formula implies

$$
m(P)=\log |a|+\sum_{i} \log \left\{\max \left\{1,\left|\alpha_{i}\right|\right\}\right\} \quad \text { for } \quad P(x)=a \prod_{i}\left(x-\alpha_{i}\right)
$$

Mahler measure is ubiquitous!

- Interesting questions about distribution of values
- Heights
- Volumes in hyperbolic space
- Entropy of certain discrete dynamical systems

Examples in several variables

Smyth (1981)

$$
\begin{gathered}
m(1+x+y)=\frac{3 \sqrt{3}}{4 \pi} L\left(\chi_{-3}, 2\right)=L^{\prime}\left(\chi_{-3},-1\right) \\
L(\chi-3, s)=\sum_{n=1}^{\infty} \frac{\chi-3(n)}{n^{s}} \quad \chi-3(n)=\left\{\begin{array}{cl}
1 & n \equiv 1 \bmod 3 \\
-1 & n \equiv-1 \bmod 3 \\
0 & n \equiv 0 \bmod 3
\end{array}\right. \\
m(1+x+y+z)=\frac{7}{2 \pi^{2}} \zeta(3)
\end{gathered}
$$

More examples in several variables

- Boyd \& L. (2005)

$$
\pi^{2} m\left(x^{2}+1+(x+1) y+(x-1) z\right)=\pi L\left(\chi_{-4}, 2\right)+\frac{21}{8} \zeta(3)
$$

- L. (2003)

$$
\pi^{4} m\left(1+x+\left(\frac{1-x_{1}}{1+x_{1}}\right)\left(\frac{1-x_{2}}{1+x_{2}}\right)(1+y) z\right)=93 \zeta(5)
$$

- Known formulas for

$$
\pi^{n+2} m\left(1+x+\left(\frac{1-x_{1}}{1+x_{1}}\right) \ldots\left(\frac{1-x_{n}}{1+x_{n}}\right)(1+y) z\right)
$$

Why do we get nice numbers?

In many cases, the Mahler measure is the special period coming from Beilinson's conjectures!

Deninger (1997) General framework.
Rodriguez-Villegas (1997) 2-variable case.

An algebraic integration for Mahler measure

$$
\begin{aligned}
P(x, y) & =y+x-1 \quad X=\{P(x, y)=0\} \\
m(P) & =\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \log |y+x-1| \frac{d x}{x} \frac{d y}{y}
\end{aligned}
$$

An algebraic integration for Mahler measure

$$
\begin{aligned}
P(x, y) & =y+x-1 \quad X=\{P(x, y)=0\} \\
m(P) & =\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \log |y+x-1| \frac{d x}{x} \frac{d y}{y}
\end{aligned}
$$

By Jensen's equality:

$$
=\frac{1}{2 \pi \mathrm{i}} \int_{\mathbb{T}^{1}} \log ^{+}|1-x| \frac{\mathrm{d} x}{x}
$$

$$
\begin{gathered}
=\frac{1}{2 \pi \mathrm{i}} \int_{\mathbb{T}^{1}} \log ^{+}|1-x| \frac{\mathrm{d} x}{x} \\
=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \log |y| \frac{\mathrm{d} x}{x}=-\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \eta(x, y)
\end{gathered}
$$

where

$$
\begin{gathered}
\gamma=X \cap\{|x|=1,|y| \geq 1\} \\
\eta(x, y)=\log |x| \operatorname{di} \arg y-\log |y| \operatorname{di} \arg x
\end{gathered}
$$

$$
\mathrm{d} \arg x=\operatorname{Im}\left(\frac{\mathrm{d} x}{x}\right)
$$

Theorem

$$
\eta(x, 1-x)=\operatorname{di} D(x)
$$

dilogarithm

$$
\begin{gathered}
\operatorname{Li}_{2}(x):=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}} \quad|x|<1 \\
m(y+x-1)=-\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \eta(x, y) \\
=-\frac{1}{2 \pi} D(\partial \gamma)=\frac{1}{2 \pi}\left(D\left(\xi_{6}\right)-D\left(\bar{\xi}_{6}\right)\right)=\frac{3 \sqrt{3}}{4 \pi} L(\chi-3,2)
\end{gathered}
$$

The three-variable case

Theorem

L. (2005)
$P(x, y, z) \in \mathbb{Q}[x, y, z]$ irreducible, nonreciprocal,

$$
X=\{P(x, y, z)=0\}, \quad C=\left\{\operatorname{Res}_{z}\left(P(x, y, z), P\left(x^{-1}, y^{-1}, z^{-1}\right)\right)=0\right\}
$$

$$
x \wedge y \wedge z=\sum_{i} r_{i} x_{i} \wedge\left(1-x_{i}\right) \wedge y_{i} \quad \text { in } \quad \bigwedge\left(\mathbb{C}(X)^{*}\right) \otimes \mathbb{Q}
$$

$$
\left\{x_{i}\right\}_{2} \otimes y_{i}=\sum_{j} r_{i, j}\left\{x_{i, j}\right\}_{2} \otimes x_{i, j} \quad \text { in } \quad\left(\mathcal{B}_{2}(\mathbb{C}(C)) \otimes \mathbb{C}(C)^{*}\right)_{\mathbb{Q}}
$$

Then

$$
4 \pi^{2}\left(m\left(P^{*}\right)-m(P)\right)=\mathcal{L}_{3}(\xi) \quad \xi \in \mathcal{B}_{3}(\overline{\mathbb{Q}})_{\mathbb{Q}}
$$

The three-variable case

Theorem

L. (2005)
$P(x, y, z) \in \mathbb{Q}[x, y, z]$ irreducible, nonreciprocal,
$X=\{P(x, y, z)=0\}, \quad C=\left\{\operatorname{Res}_{z}\left(P(x, y, z), P\left(x^{-1}, y^{-1}, z^{-1}\right)\right)=0\right\}$
$\{x, y, z\}=0 \quad$ in $\quad K_{3}^{M}(\mathbb{C}(X)) \otimes \mathbb{Q}$
$\left\{x_{i}\right\}_{2} \otimes y_{i} \quad$ trivial in $\quad \operatorname{gr}_{3}^{\gamma} K_{4}(\mathbb{C}(C)) \otimes \mathbb{Q}(?)$

Then

$$
4 \pi^{2}\left(m\left(P^{*}\right)-m(P)\right)=\mathcal{L}_{3}(\xi) \quad \xi \in \mathcal{B}_{3}(\overline{\mathbb{Q}})_{\mathbb{Q}}
$$

- Explains all the known cases involving $\zeta(3)$ (by Borel's Theorem).
- It is constructive (no need of "happy idea" integrals).
- Integration sets hard to describe.
- Conjecture for n-variables using Goncharov's regulator currents. Provides motivation for Goncharov's construction.
- Explains all the known cases involving $\zeta(3)$ (by Borel's Theorem).
- It is constructive (no need of "happy idea" integrals).
- Integration sets hard to describe.
- Conjecture for n-variables using Goncharov's regulator currents. Provides motivation for Goncharov's construction.
- Explains all the known cases involving $\zeta(3)$ (by Borel's Theorem).
- It is constructive (no need of "happy idea" integrals).
- Integration sets hard to describe.
- Conjecture for n-variables using Goncharov's regulator currents. Provides motivation for Goncharov's construction.
- Explains all the known cases involving $\zeta(3)$ (by Borel's Theorem).
- It is constructive (no need of "happy idea" integrals).
- Integration sets hard to describe.
- Conjecture for n-variables using Goncharov's regulator currents. Provides motivation for Goncharov's construction.

Elliptic curves

$$
E: Y^{2}=X^{3}+a X+b
$$

Group structure!

Example:

$$
\begin{gathered}
x+\frac{1}{x}+y+\frac{1}{y}+k=0 \\
x=\frac{k X-2 Y}{2 X(X-1)} \quad y=\frac{k X+2 Y}{2 X(X-1)} \\
Y^{2}=X\left(X^{2}+\left(\frac{k^{2}}{4}-2\right) X+1\right)
\end{gathered}
$$

L-function

$$
\begin{gathered}
L(E, s)=\prod_{\operatorname{good} p}\left(1-a_{p} p^{-s}+p^{1-2 s}\right)^{-1} \prod_{\text {bad } p}\left(1-a_{p} p^{-s}\right)^{-1} \\
a_{p}=1+p-\# E\left(\mathbb{F}_{p}\right)
\end{gathered}
$$

Back to Mahler measure in two variables

$$
m(k):=m\left(x+\frac{1}{x}+y+\frac{1}{y}+k\right)
$$

Boyd (1998)

$$
\begin{gathered}
m(k) \stackrel{?}{=} \frac{L^{\prime}\left(E_{k}, 0\right)}{s_{k}} \quad k \in \mathbb{N} \neq 0,4 \\
m(4 \sqrt{2})=L^{\prime}\left(E_{4 \sqrt{2}}, 0\right)
\end{gathered}
$$

- Rogers \& L. (2006)

For $|h|<1, h \neq 0$,

$$
m\left(2\left(h+\frac{1}{h}\right)\right)+m\left(2\left(\mathrm{i} h+\frac{1}{\mathrm{i} h}\right)\right)=m\left(\frac{4}{h^{2}}\right) .
$$

- Kurokawa \& Ochiai (2005)

For $h \in \mathbb{R}^{*}$,

$$
m\left(4 h^{2}\right)+m\left(\frac{4}{h^{2}}\right)=2 m\left(2\left(h+\frac{1}{h}\right)\right) .
$$

Corollary

- Rogers \& L. (2006)

$$
m(8)=4 m(2)
$$

- L. (2008)

$$
m(5)=6 m(1)
$$

Combining results of Bloch, Beilinson:
E / \mathbb{Q}
Regulator is given by a Kronecker-Eisenstein series that depends on the divisors of x, y.

$$
\int_{\gamma} \eta(x, y)=\operatorname{covol}(\Lambda) \Omega \sum_{\lambda \in \Lambda}^{\prime} \frac{(x-y, \lambda) \bar{\lambda}}{|\lambda|^{4}}
$$

If $x=\sum \alpha_{i}\left(P_{i}\right)$, then

Combining results of Bloch, Beilinson:
E / \mathbb{Q}
Regulator is given by a Kronecker-Eisenstein series that depends on the divisors of x, y.

$$
\int_{\gamma} \eta(x, y)=\operatorname{covol}(\Lambda) \Omega \sum_{\lambda \in \Lambda}^{\prime} \frac{(x-y, \lambda) \bar{\lambda}}{|\lambda|^{4}}
$$

$$
\begin{gathered}
E / \mathbb{C}=\mathbb{C} / \Lambda \quad \Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2} \\
(\cdot, \cdot): \mathbb{C} / \Lambda \times \Lambda \rightarrow \mathbb{S}^{1}
\end{gathered}
$$

If $x=\sum \alpha_{i}\left(P_{i}\right)$, then

$$
(x, \lambda):=\sum \alpha_{i}\left(P_{i}, \lambda\right)
$$

A three-variable example

Boyd (2005)

$$
m(z+(x+1)(y+1)) \stackrel{?}{=} 2 L^{\prime}\left(E_{15},-1\right) .
$$

$$
E_{15}: Y^{2}=X^{3}-7 X^{2}+16 X
$$

$$
\begin{gathered}
m(z-(x+1)(y+1))=-\frac{1}{(2 \pi)^{2}} \int_{\Gamma} \eta(x, y, z) \\
x \wedge y \wedge z=x \wedge y \wedge(1+x)(1+y)=-x \wedge(1+x) \wedge y+y \wedge(1+y) \wedge x \\
\eta(x, 1-x, y)=\mathrm{d} \omega(x, y) \\
=-\frac{1}{4 \pi^{2}} \int_{\gamma}-\omega(-x, y)+\omega(-y, x)
\end{gathered}
$$

under the condition

$$
\begin{gathered}
z=(x+1)(y+1) \\
z^{-1}=\left(x^{-1}+1\right)\left(y^{-1}+1\right) \\
(x+1)^{2} y^{2}+\left(2(x+1)^{2}-x\right) y+(x+1)^{2}=0
\end{gathered}
$$

L (2008)
By a result of Goncharov,

$$
\begin{gathered}
\int_{\gamma} \omega(x, y)= \\
=(\operatorname{covol}(\Lambda))^{2} \Omega \sum_{\lambda_{1}+\lambda_{2}+\lambda_{3}=0}^{\prime} \frac{\left(y, \lambda_{1}\right)\left(x, \lambda_{2}\right)\left(1-x, \lambda_{3}\right)\left(\overline{\lambda_{3}}-\overline{\lambda_{2}}\right)}{\left|\lambda_{1}\right|^{2}\left|\lambda_{2}\right|^{2}\left|\lambda_{3}\right|^{2}}
\end{gathered}
$$

the L-function can be related to the Kronecker-Eisenstein series.

Working with the divisors

Let $(x)=\sum \alpha_{j}\left(P_{j}\right),(1-x)=\sum \beta_{k}\left(Q_{k}\right)$, and $(y)=\sum \gamma_{l}\left(R_{l}\right)$ divisors in E.

Then

$$
\begin{aligned}
\diamond & (\operatorname{Div}(E) \wedge \operatorname{Div}(E)) \otimes \operatorname{Div}(E) \rightarrow \operatorname{Div}(E) \wedge \operatorname{Div}(E) / \sim \\
& ((x) \wedge(1-x)) \diamond(y)=\sum \alpha_{j} \beta_{k} \gamma_{l}\left(P_{j}-R_{l}, Q_{k}-R_{l}\right)
\end{aligned}
$$

Here

$$
(P, Q) \sim-(-P,-Q)
$$

Note that

$$
(P, Q)=-(Q, P)
$$

$$
\begin{gathered}
m(z-(x+1)(y+1))=-\frac{1}{4 \pi^{2}} \int_{\gamma}-\omega(-x, y)+\omega(-y, x) \\
Y^{2}=X^{3}-7 X^{2}+16 X
\end{gathered}
$$

Let $P=(4,4)$ (point of order 4).

$$
\begin{aligned}
(x) & =2(2 P)-2 O \\
(1+x) & =(P)+(3 P)-2 O \\
(y) & =2(P)-2(3 P) \\
(1+y) & =(2 P)+O-2(3 P)
\end{aligned}
$$

$$
-((x) \wedge(1+x)) \diamond(y)+((y) \wedge(1+y)) \diamond(x)=-32((P, O)+(P, 2 P)-(P,-P))
$$

Boyd \& L. (in progress)
This relationship may be used to compare with other Mahler measure formulas.
$m\left(x+1+\left(x^{2}+x+1\right) y+(x+1)^{2} z\right) \stackrel{?}{=} \frac{1}{3} L^{\prime}(\chi-3,-1)+\frac{13}{3 \pi^{2}} \zeta(3)=m_{1}+m_{2}$
with the exotic relation

$$
\begin{align*}
& m_{1}-m_{2} \stackrel{?}{=} 3 L^{\prime}\left(\chi_{-3},-1\right)-L^{\prime}\left(E_{15},-1\right) \tag{1}\\
& m(z+(x+1)(y+1)) \stackrel{?}{=} 2 L^{\prime}\left(E_{15},-1\right) \tag{2}
\end{align*}
$$

We can prove that the coefficient of $L^{\prime}\left(E_{15},-1\right)$ in (1) is $-\frac{1}{2}$ of the coefficient in (2)

In conclusion...

- Natural examples of Beilinson conjectures in action
- Examples of nontrivial identities between periods
- Hope of better understanding of special values of L-functions

Merci de votre attention!

