Mahler measure as special values of L-functions

Matilde N. Lalín

Université de Montréal
mlalin@dms.umontreal.ca
http://www.dms.umontreal.ca/~mlalin
CRM-ISM Colloquium
February 4, 2011

Diophantine equations and zeta functions

$$
2 x^{2}=1 \quad x \in \mathbb{Z}
$$

Diophantine equations and zeta functions

$$
2 x^{2}=1 \quad x \in \mathbb{Z}
$$

No solutions!!!
($2 x^{2}$ is always even and 1 is odd.)
We are looking at "odd" and "even" numbers instead of integers (reduction modulo $p=2$).

Local solutions $=$ solutions modulo p, and in \mathbb{R}.
Global solutions $=$ solutions in \mathbb{Z}
global solutions \Rightarrow local solutions
local solutions \nRightarrow global solutions

Zeta functions

Local info \rightsquigarrow zeta functions

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p \text { prime }}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

Nice properties:

- Euler product
- Functional equation
- Riemann Hypothesis
- Special values

$$
\zeta(1) \quad \text { pole, } \quad \zeta(2)=\frac{\pi^{2}}{6}
$$

Periods

Definition

A complex number whose real and imaginary parts are values of absolutely convergent integrals of rational functions with rational coefficients over domains in \mathbb{R}^{n} given by polynomial inequalities with rational coefficients.
Example:

$$
\begin{aligned}
& \pi=\iint_{x^{2}+y^{2} \leq 1} d x d y=\int_{\mathbb{R}} \frac{d x}{1+x^{2}} \\
& \zeta(3)=\iiint_{0<x<y<z<1} \frac{d x d y d z}{(1-x) y z}
\end{aligned}
$$

algebraic numbers

$$
\begin{gathered}
\log (2)=\int_{1}^{2} \frac{d x}{x} \\
e=2.718218 \ldots \text { does not seem to be a period }
\end{gathered}
$$

"Beilinson's type" statements: Special values of L, zeta-functions may be written in terms of certain periods called regulators.

Mahler measure of one-variable polynomials

Pierce (1918): $P \in \mathbb{Z}[x]$ monic,

$$
\begin{gathered}
P(x)=\prod_{i}\left(x-\alpha_{i}\right) \\
\Delta_{n}=\prod_{i}\left(\alpha_{i}^{n}-1\right) \\
P(x)=x-2 \Rightarrow \Delta_{n}=2^{n}-1
\end{gathered}
$$

Lehmer (1933):

$$
\begin{gathered}
\frac{\Delta_{n+1}}{\Delta_{n}} \\
\lim _{n \rightarrow \infty} \frac{\left|\alpha^{n+1}-1\right|}{\left|\alpha^{n}-1\right|}=\left\{\begin{array}{cc}
|\alpha| & \text { if }|\alpha|>1 \\
1 & \text { if }|\alpha|<1
\end{array}\right.
\end{gathered}
$$

For

$$
\begin{gathered}
P(x)=a \prod_{i}\left(x-\alpha_{i}\right) \\
M(P)=|a| \prod_{i} \max \left\{1,\left|\alpha_{i}\right|\right\} \\
m(P)=\log M(P)=\log |a|+\sum_{i} \log ^{+}\left|\alpha_{i}\right|
\end{gathered}
$$

Mahler measure of multivariable polynomials

$P \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, the (logarithmic) Mahler measure is :

$$
\begin{aligned}
m(P) & =\int_{0}^{1} \ldots \int_{0}^{1} \log \left|P\left(e^{2 \pi i \theta_{1}}, \ldots, e^{2 \pi i \theta_{n}}\right)\right| d \theta_{1} \ldots d \theta_{n} \\
& =\frac{1}{(2 \pi i)^{n}} \int_{\mathbb{T}^{n}} \log \left|P\left(x_{1}, \ldots, x_{n}\right)\right| \frac{d x_{1}}{x_{1}} \ldots \frac{d x_{n}}{x_{n}}
\end{aligned}
$$

Jensen's formula implies

$$
m(P)=\log |a|+\sum_{i} \log \left\{\max \left\{1,\left|\alpha_{i}\right|\right\}\right\} \quad \text { for } \quad P(x)=a \prod_{i}\left(x-\alpha_{i}\right)
$$

Mahler measure is ubiquitous!

- Interesting questions about distribution of values
- Heights
- Volumes in hyperbolic space
- Entropy of certain arithmetic dynamical systems

Examples in several variables

Smyth (1981)

$$
\begin{gathered}
m(1+x+y)=\frac{3 \sqrt{3}}{4 \pi} L\left(\chi_{-3}, 2\right)=L^{\prime}(\chi-3,-1) \\
L(\chi-3, s)=\sum_{n=1}^{\infty} \frac{\chi_{-3}(n)}{n^{s}} \quad \chi_{-3}(n)=\left\{\begin{array}{cl}
1 & n \equiv 1 \bmod 3 \\
-1 & n \equiv-1 \bmod 3 \\
0 & n \equiv 0 \bmod 3
\end{array}\right. \\
m(1+x+y+z)=\frac{7}{2 \pi^{2}} \zeta(3)
\end{gathered}
$$

More examples in several variables

- Boyd \& L. (2005)

$$
m\left(x^{2}+1+(x+1) y+(x-1) z\right)=\frac{1}{\pi} L(\chi-4,2)+\frac{21}{8 \pi^{2}} \zeta(3)
$$

- L. (2003)

$$
m\left(1+x+\left(\frac{1-x_{1}}{1+x_{1}}\right)\left(\frac{1-x_{2}}{1+x_{2}}\right)(1+y) z\right)=\frac{93}{\pi^{4}} \zeta(5)
$$

- Rogers \& Zudilim (2010)

$$
m\left(x+\frac{1}{x}+y+\frac{1}{y}+8\right)=\frac{24}{\pi^{2}} L\left(E_{24}, 2\right)
$$

Why do we get nice numbers?

In many cases, the Mahler measure is the special period coming from Beilinson's conjectures!

Deninger (1997) General framework.
Rodriguez-Villegas (1997) 2-variable case.

An algebraic integration for Mahler measure

$$
\begin{aligned}
P(x, y) & =y+x-1 \quad X=\{P(x, y)=0\} \\
m(P) & =\frac{1}{(2 \pi i)^{2}} \int_{\mathbb{T}^{2}} \log |y+x-1| \frac{d x}{x} \frac{d y}{y}
\end{aligned}
$$

By Jensen's equality:

$$
=\frac{1}{2 \pi i} \int_{\mathbb{T}^{1}} \log ^{+}|1-x| \frac{d x}{x}
$$

$$
\begin{gathered}
=\frac{1}{2 \pi i} \int_{\mathbb{T}^{1}} \log ^{+}|1-x| \frac{d x}{x} \\
=\frac{1}{2 \pi i} \int_{\gamma} \log |y| \frac{d x}{x}=-\frac{1}{2 \pi i} \int_{\gamma} \eta(x, y)
\end{gathered}
$$

where

$$
\begin{gathered}
\gamma=X \cap\{|x|=1,|y| \geq 1\} \\
\eta(x, y)=\log |x| d i \arg y-\log |y| d i \arg x \\
d \arg x=\operatorname{Im}\left(\frac{d x}{x}\right)
\end{gathered}
$$

$$
\eta(x, 1-x)=\operatorname{diD}(x)
$$

dilogarithm

$$
\begin{gathered}
\operatorname{Li}_{2}(x):=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}} \quad|x|<1 \\
m(y+x-1)=-\frac{1}{2 \pi i} \int_{\gamma} \eta(x, y) \\
=-\frac{1}{2 \pi} D(\partial \gamma)=\frac{1}{2 \pi}\left(D\left(\xi_{6}\right)-D\left(\bar{\xi}_{6}\right)\right)=\frac{3 \sqrt{3}}{4 \pi} L\left(\chi_{-3}, 2\right)
\end{gathered}
$$

The three-variable case

Theorem
L. (2005)
$P(x, y, z) \in \mathbb{Q}[x, y, z]$ irreducible, nonreciprocal,

$$
X=\{P(x, y, z)=0\}, \quad C=\left\{\operatorname{Res}_{z}\left(P(x, y, z), P\left(x^{-1}, y^{-1}, z^{-1}\right)\right)=0\right\}
$$

$$
\begin{aligned}
x \wedge y \wedge z & =\sum_{i} r_{i} x_{i} \wedge\left(1-x_{i}\right) \wedge y_{i} \quad \text { in } \quad \bigwedge^{3}\left(\mathbb{C}(X)^{*}\right) \otimes \mathbb{Q} \\
\left\{x_{i}\right\}_{2} \otimes y_{i} & =\sum_{j} r_{i, j}\left\{x_{i, j}\right\}_{2} \otimes x_{i, j} \quad \text { in } \quad\left(\mathcal{B}_{2}(\mathbb{C}(C)) \otimes \mathbb{C}(C)^{*}\right)_{\mathbb{Q}}
\end{aligned}
$$

Then

$$
4 \pi^{2}\left(m\left(P^{*}\right)-m(P)\right)=\mathcal{L}_{3}(\xi) \quad \xi \in \mathcal{B}_{3}(\overline{\mathbb{Q}})_{\mathbb{Q}}
$$

The three-variable case

Theorem
L. (2005)
$P(x, y, z) \in \mathbb{Q}[x, y, z]$ irreducible, nonreciprocal,
$X=\{P(x, y, z)=0\}, \quad C=\left\{\operatorname{Res}_{z}\left(P(x, y, z), P\left(x^{-1}, y^{-1}, z^{-1}\right)\right)=0\right\}$

$$
\{x, y, z\}=0 \quad \text { in } \quad K_{3}^{M}(\mathbb{C}(X)) \otimes \mathbb{Q}
$$

$\left\{x_{i}\right\}_{2} \otimes y_{i} \quad$ trivial in $\quad \operatorname{gr}_{3}^{\gamma} K_{4}(\mathbb{C}(C)) \otimes \mathbb{Q}(?)$

Then

$$
4 \pi^{2}\left(m\left(P^{*}\right)-m(P)\right)=\mathcal{L}_{3}(\xi) \quad \xi \in \mathcal{B}_{3}(\overline{\mathbb{Q}})_{\mathbb{Q}}
$$

- Explains all the known cases involving $\zeta(3)$ (by Borel's Theorem).
- It is constructive (no need of "happy idea" integrals).
- Integration sets hard to describe.
- Conjecture for n-variables using Goncharov's regulator currents. Provides motivation for Goncharov's construction.

Elliptic curves

$$
E: Y^{2}=X^{3}+a X+b
$$

Group structure!

Example:

$$
\begin{gathered}
x+\frac{1}{x}+y+\frac{1}{y}+k=0 \\
x=\frac{k X-2 Y}{2 X(X-1)} \quad y=\frac{k X+2 Y}{2 X(X-1)} \\
Y^{2}=X\left(X^{2}+\left(\frac{k^{2}}{4}-2\right) X+1\right)
\end{gathered}
$$

L-function

$$
\begin{gathered}
L(E, s)=\prod_{\operatorname{good} p}\left(1-a_{p} p^{-s}+p^{1-2 s}\right)^{-1} \prod_{\operatorname{bad} p}\left(1-a_{p} p^{-s}\right)^{-1} \\
a_{p}=1+p-\# E\left(\mathbb{F}_{p}\right)
\end{gathered}
$$

Back to Mahler measure in two variables

$$
m(k):=m\left(x+\frac{1}{x}+y+\frac{1}{y}+k\right)
$$

Boyd (1998)

$$
\begin{gathered}
m(k) \stackrel{?}{=} s_{k} L^{\prime}\left(E_{N(k)}, 0\right) \quad k \in \mathbb{N} \neq 0,4 \\
m(4 \sqrt{2})=L^{\prime}\left(E_{64}, 0\right)
\end{gathered}
$$

- Kurokawa \& Ochiai (2005)

For $h \in \mathbb{R}^{*}$,

$$
m\left(4 h^{2}\right)+m\left(\frac{4}{h^{2}}\right)=2 m\left(2\left(h+\frac{1}{h}\right)\right) .
$$

- Rogers \& L. (2006) For $|h|<1, h \neq 0$,

$$
m\left(2\left(h+\frac{1}{h}\right)\right)+m\left(2\left(i h+\frac{1}{i h}\right)\right)=m\left(\frac{4}{h^{2}}\right) .
$$

- Rogers \& L. (2006)

$$
m(8)=4 m(2)
$$

- L. (2008)

$$
m(5)=6 m(1)
$$

- Regulator $\int_{\gamma} \eta(x, y)$ is given by a Kronecker-Eisenstein series that depends on the divisors (zeros and poles) of x, y.
- The relation between Mahler measures can be read from relations of the divisors.

Rogers (2007)

$$
g(p)=\frac{1}{3} n\left(\frac{p+4}{p^{2 / 3}}\right)+\frac{4}{3} n\left(\frac{p-2}{p^{1 / 3}}\right),
$$

where

$$
\begin{gathered}
g(k)=m((1+x)(1+y)(x+y)-k x y) \\
n(k)=m\left(x^{3}+y^{3}+1-k x y\right) .
\end{gathered}
$$

Using hypergeometric series.
In progress: understanding the relations using regulators and isogenies.

Rogers \& Zudilim (late 2010)

$$
m(8)=\frac{24}{\pi^{2}} L\left(E_{24}, 2\right)=4 L^{\prime}\left(E_{24}, 0\right)
$$

$$
\begin{gathered}
m(k)=\operatorname{Re}\left(\log (k)-\frac{2}{k^{2}}{ }_{4} F_{3}\left(\left.\begin{array}{c}
\frac{3}{2}, \frac{3}{2}, 1,1 \\
2,2,2
\end{array} \right\rvert\, \frac{16}{k^{2}}\right)\right) \quad k \in \mathbb{C} \\
=\frac{k}{4} \operatorname{Re}{ }_{3} F_{2}\left(\left.\begin{array}{c}
\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\
1,1
\end{array} \right\rvert\, \frac{k^{2}}{16}\right) \quad k \geq 0 \\
m(8)=\frac{24}{\pi^{2}} F(2,3)
\end{gathered}
$$

where

$$
=144 \sum_{\substack{n_{i}=-\infty \\ i=1,2,3,4}}^{\infty} \frac{(-1)^{n_{1}+\cdots+n_{4}}}{\left(\left(6 n_{1}+1\right)^{2}+2\left(6 n_{2}+1\right)^{2}+3\left(6 n_{3}+1\right)^{2}+6\left(6 n_{4}+1\right)^{2}\right)^{2}}
$$

which can be in turn related the special values of L-functions of elliptic curves via modularity.

A three-variable example

Boyd (2005)

$$
m(z+(x+1)(y+1)) \stackrel{?}{=} 2 L^{\prime}\left(E_{15},-1\right)
$$

Eliminating z in

$$
\begin{aligned}
& \left\{\begin{array}{l}
z=(x+1)(y+1) \\
z^{-1}=\left(x^{-1}+1\right)\left(y^{-1}+1\right)
\end{array}\right. \\
& E_{15}: Y^{2}=X^{3}-7 X^{2}+16 X
\end{aligned}
$$

They can also be related to regulators and some complicated generalizations of Kronecker-Eisenstein series due to Goncharov.

Boyd \& L. (in progress)
This relationship may be used to compare with other Mahler measure formulas.
$m\left(x+1+\left(x^{2}+x+1\right) y+(x+1)^{2} z\right) \stackrel{?}{=} \frac{1}{3} L^{\prime}(\chi-3,-1)+\frac{13}{3 \pi^{2}} \zeta(3)=m_{1}+m_{2}$
with the exotic relation

$$
\begin{align*}
& m_{1}-m_{2} \stackrel{?}{=} 3 L^{\prime}\left(\chi_{-3},-1\right)-L^{\prime}\left(E_{15},-1\right) \tag{1}\\
& m(z+(x+1)(y+1)) \stackrel{?}{=} 2 L^{\prime}\left(E_{15},-1\right) \tag{2}
\end{align*}
$$

We can prove that the coefficient of $L^{\prime}\left(E_{15},-1\right)$ in (1) is $-\frac{1}{2}$ of the coefficient in (2)

Higher Mahler measure

For $k \in \mathbb{Z}_{\geq 0}$, the k-higher Mahler measure of P is

$$
\begin{gathered}
m_{k}(P):=\int_{0}^{1} \log ^{k}\left|P\left(e^{2 \pi i \theta}\right)\right| d \theta \\
k=1: \quad m_{1}(P)=m(P)
\end{gathered}
$$

and

$$
m_{0}(P)=1 .
$$

The simplest examples

Kurokawa, L.\& Ochiai (2008)

$$
\begin{aligned}
& m_{2}(x-1)=\frac{\zeta(2)}{2}=\frac{\pi^{2}}{12} \\
& m_{3}(x-1)=-\frac{3 \zeta(3)}{2} . \\
& m_{4}(x-1)=\frac{3 \zeta(2)^{2}+21 \zeta(4)}{4}=\frac{19 \pi^{4}}{240} . \\
& m_{5}(x-1)=-\frac{15 \zeta(2) \zeta(3)+45 \zeta(5)}{2} . \\
& m_{6}(x-1)=\frac{45}{2} \zeta(3)^{2}+\frac{275}{1344} \pi^{6} .
\end{aligned}
$$

Sinha\& L. (2010)

$$
m_{3}\left(\frac{x^{n}-1}{x-1}\right)=\frac{3}{2} \zeta(3)\left(\frac{-2+3 n-n^{3}}{n^{2}}\right)+\frac{3 \pi}{2} \sum_{\substack{j=1 \\ n j}}^{\infty} \frac{\cot \left(\pi \frac{j}{n}\right)}{j^{2}}
$$

Examples

$$
\begin{gathered}
m_{3}\left(x^{2}+x+1\right)=-\frac{10}{3} \zeta(3)+\frac{\sqrt{3} \pi}{2} L\left(2, \chi_{-3}\right) . \\
m_{3}\left(x^{3}+x^{2}+x+1\right)=-\frac{81}{16} \zeta(3)+\frac{3 \pi}{2} L\left(2, \chi_{-4}\right) .
\end{gathered}
$$

Regulator interpretation?

In conclusion...

- Natural examples of Beilinson conjectures in action
- Examples of nontrivial identities between periods
- Hope of better understanding of special values of L-functions

Merci!

Thank you!

