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Mahler measure of polynomials

Definition 1 For P ∈ C[x±1
1 , . . . , x±1

n ], the (logarithmic) Mahler measure is defined by

m(P ) =
1

(2πi)n

∫
Tn

log |P (x1, . . . , xn)| dx1

x1
. . .

dxn

xn
(1)

This integral is not singular and m(P ) always exists.
Because of Jensen’s formula:∫ 1

0
log |e2πiθ − α| dθ = log+ |α| (2)

2we have a simple expression for the Mahler measure of one-variable polynomials:

m(P ) = log |ad|+
d∑

n=1

log+ |αn| for P (x) = ad

d∏
n=1

(x− αn)

Properties

Here are some general properties (see [6])

• For P,Q ∈ C[x1, . . . , xn], we have m(P · Q) = m(P ) + m(Q). Because of that, it
makes sense to talk about the Mahler measure of rational functions.

• m(P ) ≥ 0 if P has integral coefficients.

• Mahler measure is related to heights. Indeed, if α is an algebraic number, and Pα is
its minimal polynomial over Q, then

m(Pα) = [Q(α) : Q]h(α),

where h is the logarithmic Weil height.

• By Kronecker’s Lemma, P ∈ Z[x], P 6= 0, then m(P ) = 0 if and only if P is the
product of powers of x and cyclotomic polynomials.

• For P ∈ C[x1, . . . , xn]

lim
k2→∞

. . . lim
kn→∞

m(P (x, xk2 , . . . xkn)) = m(P (x1, . . . xn)) (3)

(this result is due to Boyd and Lawton see [2], [9]).
1mlalin@mpi-bonn.mpg.de– http://www.math.ubc.ca/~mlalin
2log+ x = log max{1, x} for x ∈ R≥0
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• Lehmer [10] studied this example in 1933:

m(x10 +x9−x7−x6−x5−x4−x3 +x+1) = log(1.176280818 . . .) = 0.162357612 . . .

This example is special because its Mahler measure is very small, but still greater
than zero.

The following questions are still open: Is there a lower bound for positive Mahler
measure of polynomials in one variable with integral coefficients? Does this degree
10 polynomial reach the lowest bound?

Boyd–Lawton result implies that Lehmer’s problem in several variables reduces to
the one variable case.

Examples

For one-variable polynomials, the Mahler measure has to do with the roots of the
polynomial. However, it is very hard to compute explicit formulas for examples in several
variables. The first and simplest ones were computed by Smyth:

• Smyth [13]

m(x + y + 1) =
3
√

3
4π

L(χ−3, 2) = L′(χ−3,−1), (4)

where

L(χ−3, s) =
∞∑

n=1

χ−3(n)
ns

and χ−3(n) =


1 if n ≡ 1 mod 3

−1 if n ≡ −1 mod 3
0 if n ≡ 0 mod 3

• Smyth [2]

m(x + y + z + 1) =
7

2π2
ζ(3). (5)

• D’Andrea & L. (2003):

m
(
z(1− xy)2 − (1− x)(1− y)

)
=

4
√

5ζQ(
√

5)(3)

ζ(3)π2

• Boyd & L. (2005):

m(x2 + 1 + (x + 1)y + (x− 1)z) =
L(χ−4, 2)

π
+

21
8π2

ζ(3)

L.(2003):
•

m

(
1 +

(
1− x1

1 + x1

)(
1− x2

1 + x2

)(
1− x3

1 + x3

)
z

)
=

24
π3

L(χ−4, 4) +
L(χ−4, 2)

π

•

m

(
1 +

(
1− x1

1 + x1

)
. . .

(
1− x4

1 + x4

)
z

)
=

62
π4

ζ(5) +
14
3π2

ζ(3)
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•

m

(
1 + x +

(
1− x1

1 + x1

)
(1 + y)z

)
=

24
π3

L(χ−4, 4)

•

m

(
1 + x +

(
1− x1

1 + x1

)(
1− x2

1 + x2

)
(1 + y)z

)
=

93
π4

ζ(5)

The measures of a family of genus-one curves

The family of two-variable polynomials Pk(x, y) = x+ 1
x +y+ 1

y +k was studied by Boyd
[2], Deninger [5], and Rodriguez-Villegas [11] from different points of view. They found

m

(
x +

1
x

+ y +
1
y

+ k

)
?=

L′(Ek, 0)
sk

k ∈ N

m

(
x +

1
x

+ y +
1
y

+ 4
)

= 2L′(χ−4,−1)

(6)

Where sk is a rational number (often integer), and Ek is the elliptic curve with corresponds
to the zero set of the polynomial. When k = 4 the curve has genus zero. The conection
with L′(E, 0) can be predicted by Beilinson’s conjectures. The question mark stands for
numerical results. However, there are some cases in which this identity can be proved
(when Beilinson’s conjectures are known). For instance, consider the case of k = 4

√
2. In

this case the curve has complex multiplication and

m

(
x +

1
x

+ y +
1
y

+ 4
√

2
)

= L′(E4
√

2, 0)

If k = 3
√

2 we get the modular curve X0(24) and again,

m

(
x +

1
x

+ y +
1
y

+ 3
√

2
)

=
5
2
L′(E3

√
2, 0)

Let m(k) := m
(
x + 1

x + y + 1
y + k

)
.

Theorem 2 (Rodriguez-Villegas [11])

m(k) = Re

(
16yµ

π2

′∑
m,n

χ−4 (m)
(m + n4µ)2(m + n4µ̄)

)
= Re

−πiµ + 2
∞∑

n=1

∑
d|n

χ−4(d)d2 qn

n


where j(Ek) = j

(
− 1

4µ

)
,

q = e2πiµ = q

(
16
k2

)
= exp

(
−π

2F1

(
1
2 , 1

2 ; 1, 1− 16
k2

)
2F1

(
1
2 , 1

2 ; 1, 16
k2

) )
and yµ is the imaginary part of µ
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This result is achieved by computing the Mahler measure as a function on the parameter
λ = 1

k . The result is a hypergeometric series in λ which satisfies a Picard-Fuchs differential
equation.

Here is our main result.

Theorem 3 For h ∈ R∗,

m(4h2) + m

(
4
h2

)
= 2m

(
2
(

h +
1
h

))
. (7)

For h ∈ R∗, |h| < 1,

m

(
2
(

h +
1
h

))
+ m

(
2
(

ih +
1
ih

))
= m

(
4
h2

)
. (8)

These identitites can provide information that allows us to compute more Mahler mea-
sures. For instance,

m(8) = 4m(2) =
8
5
m(3

√
2)

These results were discovered by Rogers. We will interpret them directly from regula-
tors.

The elliptic regulator

Let F be a field. By Matsumoto’s Theorem, K2(F ) is generated by the symbols
{a, b} for a, b ∈ F with the bilinearity relations {a1a2, b} = {a1, b}{a2, b} and {a, b1b2} =
{a, b1}{a, b2}, and the Steinberg relation {a, 1− a} = 1 for all a 6= 0.

Recall that for a field F with discrete valuation v and maximal ideal M the tame
symbol is

(x, y)v ≡ (−1)v(x)v(y) x
v(y)

yv(x)
mod M

(see [11]). In the case when F = Q(E) (from now on E denotes an elliptic curve), a
valuation is determined by de order of the rational functions in each point S ∈ E(Q̄). We
will denote the valuation determined by a point S ∈ E(Q̄) by vS .

The tame symbol is then a map K2(Q(E)) → Q(S)∗.
We have

0 → K2(E)⊗Q → K2(Q(E))⊗Q →
∐

S∈E(Q̄)

Q(S)∗ ⊗Q,

where the last arrow corresponds to the coproduct of tame symbols.
Hence an element {x, y} ∈ K2(Q(E))⊗Q can be seen as an element in K2(E)⊗Q when

(x, y)vS = 1 for all S ∈ E(Q̄).
(Beilinson, Bloch) regulator map can be defined by

r : K2(E)⊗Q → H1(E, R)

{x, y} →
{

γ →
∫

γ
η(x, y)

}
for γ ∈ H1(E, Z) and

η(x, y) := log |x| d arg y − log |y| d arg x
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Here we think of H1(E, R) as the dual of H1(E, Z). The function is well defined because
η(x, 1− x) = dD(x) where

D(z) = Im(Li2(z)) + arg(1− z) log |z|

is the Bloch-Wigner dilogarithm.
Assume that E is defined over R. Because of the way that complex conjugation acts on

η the regulator map is trivial for the classes in H1(E, Z)+, the cycles that remain invariant
by complex conjugation. Therefore it suffices to consider the regulator as a funcion on
H1(E, Z)−.

Bloch defines the regulator function by a Kronecker-Eisenstein series

Rτ

(
e2πiα

)
=

y2
τ

π

′∑
m,n∈Z

e2πi(bn−am)

(mτ + n)2(mτ̄ + n)
(9)

if α = a + bτ and yτ is the imaginary part of τ .
Let J(z) = log |z| log |1− z|.
We write E(C) ∼= C/Z + τZ we have C/Z + τZ ∼= C∗/qZ where z mod Λ = Z + τZ is

identified with e2iπz.

Definition 4 We consider the following function on E(C) ∼= C∗/qZ:

Jτ (z) =
∞∑

n=0

J(zqn)−
∞∑

n=1

J(z−1qn) +
1
3

log2 |q|B3

(
log |z|
log |q|

)
(10)

where B3(x) = x3 − 3
2x2 + 1

2x is the third Bernoulli polynomial.
On the other hand, the elliptic dilogarithm is defined by

Dτ (z) :=
∑
n∈Z

D(zqn) (11)

Then the regulator function (see [1]) is given by

Rτ = Dτ − iJτ (12)

By linearity Rτ can be extended to the divisors with support in E(C). Let Z[E(C)]−

mean that [−P ] ∼ −[P ]. Because Rτ is an odd function, we obtain a map

Z[E(C)]− → C.

Let x, y be non-constant functions on E with divisors

(x) =
∑

mi(ai), (y) =
∑

nj(bj).

Following [1] and the notation in [11], we recall the diamond operation C(E)∗ ⊗ C(E)∗ →
Z[E(C)]−

(x) � (y) =
∑

minj(ai − bj).
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Theorem 5 x, y are non-constant functions in Q(E) with {x, y} ∈ K2(E), then

−
∫

γ
η(x, y) = Im

(
Ω

yτΩ0
Rτ ((x) � (y))

)
(13)

where Ω0 is the real period and Ω =
∫
γ ω.

PROOF. (Inspired in Deninger’s proof) η(x, y) is an element of the one dimensional
vector space H1(E/R, R) and so is i([ω]− [ω̄]). Then we may write

η(x, y) = αi([ω]− [ω̄]),

from where ∫
γ
η(x, y) = 2αi Im(Ω).

On the other hand, we have∫
E(C)

η(x, y) ∧ ω̄ = αi
∫

E(C)
ω ∧ ω̄ = −α2Ω2

0yτ

Beilinson proves ∫
E(C)

η(x, y) ∧ ω̄ = Ω0Rτ ((x) � (y)).

The proof is completed by observing that Rτ ((x) � (y)) is real in this case since η(x, y)
changes its sign under conjugation. �

The relation with Mahler measures

Let us recall the relation of Mahler measure and the regulator (proved by Deninger [5],
studied by Rodriguez-Villegas [11]):

m(k) ∼Z
1
2π

r({x, y})(γ) (14)

For our particular family we write

yPk(x, y) = (y − y(1)(x))(y − y(2)(x)),

we have

m(k) = m(yPk(x, y)) =
1

2πi

∫
T1

(log+ |y(1)(x)|+ log+ |y(2)(x)|) dx

x
.

The last equality is the result of applying Jensen’s formula respect to the variable y. When
the polynomial does not intersect the torus (when |k| > 4 or k 6∈ R), we may forget the
”+” in the log as each y(i)(x) is always inside or outside the unit circle. Indeed there is
always a branch inside the unit circle and a branch outside. Then we may write

m(k) =
1

2πi

∫
T1

log |y| dx

x
= − 1

2π

∫
T1

η(x, y), (15)

then T1 is interpreted as a cycle in the homology of the elliptic curve defined by Pk(x, y) = 0,
namely, H1(E, Z).

If |k| ≤ 4 and k real, we can still write the above equation, but it is more subtle.

Functional identities for the regulator

We recall a result by Bloch [1] which studies the modularity of Rτ :
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Proposition 6 Let
(

α β
γ δ

)
∈ SL2(Z) and let τ ′ = ατ+β

γτ+δ , such that

(
b′

a′

)
=
(

δ −γ
−β α

)(
b
a

)
Then:

Rτ ′

(
e2πi(a′+b′τ ′)

)
=

1
γτ̄ + δ

Rτ

(
e2πi(a+bτ)

)
.

We will need to use functional equations for Jτ . First let us recall the following trivial
property.

J(z) = p
∑
xp=z

J(x) (16)

Proposition 7 Let p prime, and let q = e2πiτ , and qj = e
2πi(τ+j)

p for j = 0, . . . , p− 1.

(1 + χ−4(p)p2)J4τ (q) =
p−1∑
j=0

pJ 4(τ+j)
p

(qj) + χ−4(p)J4pτ (qp) (17)

In addition,
J 2τ+1

2

(
eπiτ

)
= J2τ

(
eπiτ

)
− J2τ

(
−eπiτ

)
(18)

Proof of the result

First we will write the equation

x +
1
x

+ y +
1
y

+ k = 0

in Weierstrass form. We consider the rational transformation

X = − 1
xy

Y =
(y − x)

(
1 + 1

xy

)
2xy

x =
kX − 2Y

2X(X − 1)
y =

kX + 2Y

2X(X − 1)
,

which leads to

Y 2 = X

(
X2 +

(
k2

4
− 2
)

X + 1
)

.

Let us note that there is a torsion point of order 4 in Q(k), namely P =
(
1, k

2

)
. Note

that 2P = (0, 0) and 3P =
(
1,−k

2

)
.

Now
(X) = 2(2P )− 2O,

and
(x) = (P )− (2P )− (3P ) + O,

(y) = −(P )− (2P ) + (3P ) + O.
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We compute
(x) � (y) = 4(P )− 4(−P ) = 8(P ).

Note that P corresponds to 3w1
4 for k ∈ R. On the other hand, τ is purely imaginary

for k ∈ R, |k| > 4, and with real part 1
2 for k ∈ R and |k| < 4.

The next step is to understand the cycle |x| = 1 as an element of H1(E, Z) in order to
compute the value of Ω. It runs out that Ω = τΩ0 for k ∈ R.

Then we get

m(k) =
4
π

Im
(

τ

yτ
Rτ (−i)

)
.

for k ∈ R.

For the case of k real, take
(

0 −1
1 0

)
∈ SL2(Z). Then

Rτ (−i) = Rτ

(
e−

2πi
4

)
= τ̄R− 1

τ

(
e−

2πi
4τ

)
then,

m(k) = −4|τ |2

πyτ
J− 1

τ

(
e−

2πi
4τ

)
If we let µ = − 1

4τ , then

m(k) = − 1
πyµ

J4µ

(
e2πiµ

)
= Im

(
1

πyµ
R4µ

(
e2πiµ

))
Thus we have recovered the result for k ∈ R. For k ∈ C we obtain the result by using
continuity and holomorphicity.

We will deduce our equations directly from the identity

m(k) = − 1
πyµ

J4µ

(
e2πiµ

)
In the p-identity for J set p = 2, we obtain,

J4µ

(
e2πiµ

)
= 2J2µ

(
eπiµ

)
+ 2J2(µ+1)

(
e

2πi(µ+1)
2

)
which translates into

1
y4µ

J4µ

(
e2πiµ

)
=

1
y2µ

J2µ

(
eπiµ

)
+

1
y2µ

J2µ

(
−eπiµ

)
setting τ = − 1

2µ , and assuming that |h| < 1 so that µ is purely imaginary,

D τ
2
(−i) = Dτ (−i) +

1
y2(µ+1)

J2(µ+1)

(
e

2πi(µ+1)
2

)
This is actually the content of the first identity.

For the second, we use that

J 2µ+1
2

(
eπiµ

)
= J2µ

(
eπiµ

)
− J2µ

(
−eπiµ

)
8



Set τ = − 1
2µ and use

(
1 0
−2 1

)
.

D τ−1
2

(−i) = Dτ (−i)− 1
y2(µ+1)

J2(µ+1)

(
−e

2πi(µ+1)
2

)
Putting things together,

2Dτ (−i) = D τ
2
(−i) + D τ−1

2
(−i)

which proves the other equality.
It turns out that

m(k) = Re
(
−πiµ− πi

∫ µ

i∞
(e(z)− 1) dz

)
where

e(µ) = 1− 4
∞∑

n=1

∑
d n

χ−4(d)d2qn

is an Eisenstein series. Hence the equations can be also deduced from identities of Hecke
operators.

It remains to express the identities in terms of the original parameter k. For this it is
necessary to use Rodriguez-Villegas expression. More precisely,

q = q

(
16
k2

)
= exp

(
−π

2F1

(
1
2 , 1

2 ; 1, 1− 16
k2

)
2F1

(
1
2 , 1

2 ; 1, 16
k2

) )

Then the second degree modular equation implies for h real, |h| < 1,

q2

((
2h

1 + h2

)2
)

= q
(
h4
)
.

The substitution h → ih allows us to deduce

−q

((
2h

1 + h2

)2
)

= q

((
2ih

1− h2

)2
)

.

Then the equation with J becomes

m

(
q

((
2h

1 + h2

)2
))

+ m

(
q

((
2ih

1− h2

)2
))

= m
(
q
(
h4
))

.

Finally,

m

(
2
(

h +
1
h

))
+ m

(
2
(

ih +
1
ih

))
= m

(
4
h2

)
.

The identity with h = 1√
2
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If we set h = 1√
2

in the first identity, we obtain

m(8) = m
(
3
√

2
)

+ m
(
i
√

2
)

We prove that
3m
(
3
√

2
)

= 5m
(
i
√

2
)

Consider the function f =
√

2Y−X
2 ∈ R(E3

√
2) and 1− f . Their divisors are(√

2Y −X

2

)
= (2P ) + 2(P + Q)− 3O,

(
1−

√
2Y −X

2

)
= (P ) + (Q) + (3P + Q)− 3O,

Where Q =
(
− 1

h2 , 0
)

is an element of order 2. The diamond operation yields

(f) � (1− f) = 6(P )− 10(P + Q).

But (f) � (1− f) is trivial in K-theory, then

6(P ) ∼ 10(P + Q).

It turns out that E3
√

2 and Ei
√

2 are isomorphic,

φ : E3
√

2 → Ei
√

2 (X, Y ) → (−X, iY )

ri
√

2({x, y}) = r3
√

2({x ◦ φ, y ◦ φ})

But
(x ◦ φ) � (y ◦ φ) = 8(P + Q)

This implies
6r3

√
2 ({x, y}) = 10ri

√
2({x, y})

and
3m(3

√
2) = 5m(i

√
2).

Consequently,

m(8) =
8
5
m(3

√
2)

m(2) =
2
5
m(3

√
2)

Other families

Other identities discovered by Rogers that we can also interpret in terms of regulators
are:
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• For the Hesse family h(a3) = m
(
x3 + y3 + 1− 3xy

a

)
(studied by Rodriguez-Villegas)

h(u3) =
2∑

j=0

h

1−

(
1− ξj

3u

1 + 2ξj
3u

)3
 |u| small

• More complicated equations for examples studied by Stienstra:

m
(
(x + 1)(y + 1)(x + y)− xy

t

)
and Zagier and Stienstra:

m
(
(x + y + 1)(x + 1)(y + 1)− xy

t

)
References

[1] S. J.Bloch, Higher regulators, algebraic K-theory, and zeta functions of elliptic curves.
CRM Monograph Series, 11. American Mathematical Society, Providence, RI , 2000.
x+97 pp.

[2] D. W. Boyd, Speculations concerning the range of Mahler’s measure, Canad. Math.
Bull. 24 (1981), 453–469.

[3] D. W. Boyd, Mahler’s measure and special values of L-functions, Experiment. Math. 7
(1998), 37–82.
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