Mahler measure under variations of the base group

(joint with Oliver T. Dasbach) Matilde N. Lalín

UBC-PIMS, MPIM, U of A mlalin@math.ubc.ca
http://www.math.ubc.ca/~mlalin

July 11th, 2007

Mahler measure of several variable polynomials

$P \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, the (logarithmic) Mahler measure is :

$$
\begin{aligned}
m(P) & =\int_{0}^{1} \ldots \int_{0}^{1} \log \left|P\left(\mathrm{e}^{2 \pi \mathrm{i} \theta_{1}}, \ldots, \mathrm{e}^{2 \pi \mathrm{i} \theta_{n}}\right)\right| \mathrm{d} \theta_{1} \ldots \mathrm{~d} \theta_{n} \\
& =\frac{1}{(2 \pi \mathrm{i})^{n}} \int_{\mathbb{T}^{n}} \log \left|P\left(x_{1}, \ldots, x_{n}\right)\right| \frac{\mathrm{d} x_{1}}{x_{1}} \ldots \frac{\mathrm{~d} x_{n}}{x_{n}}
\end{aligned}
$$

By Jensen's formula,
$m\left(a \prod\left(x-\alpha_{i}\right)\right)=\log |a|+\sum \log \max \left\{1,\left|\alpha_{i}\right|\right\}$.

Mahler measure of several variable polynomials

$P \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, the (logarithmic) Mahler measure is :

$$
\begin{aligned}
m(P) & =\int_{0}^{1} \ldots \int_{0}^{1} \log \left|P\left(\mathrm{e}^{2 \pi \mathrm{i} \theta_{1}}, \ldots, \mathrm{e}^{2 \pi \mathrm{i} \theta_{n}}\right)\right| \mathrm{d} \theta_{1} \ldots \mathrm{~d} \theta_{n} \\
& =\frac{1}{(2 \pi \mathrm{i})^{n}} \int_{\mathbb{T}^{n}} \log \left|P\left(x_{1}, \ldots, x_{n}\right)\right| \frac{\mathrm{d} x_{1}}{x_{1}} \ldots \frac{\mathrm{~d} x_{n}}{x_{n}}
\end{aligned}
$$

By Jensen's formula,

$$
m\left(a \prod\left(x-\alpha_{i}\right)\right)=\log |a|+\sum \log \max \left\{1,\left|\alpha_{i}\right|\right\}
$$

Lehmer's question

Lehmer (1933)

$$
m\left(x^{10}+x^{9}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1\right)
$$

$=\log (1.176280818 \ldots)=0.162357612 \ldots$
Does there exist $\quad C>0, \quad$ for all $\quad P(x) \in \mathbb{Z}[x]$

$$
m(P)=0 \quad \text { or } \quad m(P)>C ? ?
$$

Is the above polynomial the best possible?

Examples in several variables

Smyth (1981)

$$
\begin{gathered}
m(1+x+y)=\frac{3 \sqrt{3}}{4 \pi} \mathrm{~L}\left(\chi_{-3}, 2\right)=\mathrm{L}^{\prime}\left(\chi_{-3},-1\right) \\
m(1+x+y+z)=\frac{7}{2 \pi^{2}} \zeta(3)
\end{gathered}
$$

Boyd, Deninger, Rodriguez-Villegas (1997)

$$
m\left(x+\frac{1}{x}+y+\frac{1}{y}-k\right) \stackrel{?}{=} \frac{L^{\prime}\left(E_{k}, 0\right)}{B_{k}} \quad k \in \mathbb{N}, \quad k \neq 4
$$

E_{k} determined by $x+\frac{1}{x}+y+\frac{1}{y}-k=0$.

Boyd, Deninger, Rodriguez-Villegas (1997)

$$
m\left(x+\frac{1}{x}+y+\frac{1}{y}-k\right) \stackrel{?}{=} \frac{\mathrm{L}^{\prime}\left(E_{k}, 0\right)}{B_{k}} \quad k \in \mathbb{N}, \quad k \neq 4
$$

E_{k} determined by $x+\frac{1}{x}+y+\frac{1}{y}-k=0$.

$$
m\left(x+\frac{1}{x}+y+\frac{1}{y}-4 \sqrt{2}\right)=\mathrm{L}^{\prime}\left(E_{4 \sqrt{2}}, 0\right)
$$

The general technique

Rodriguez-Villegas (1997)

$$
\begin{gathered}
P_{\lambda}(x, y)=1-\lambda P(x, y) \quad P(x, y)=x+\frac{1}{x}+y+\frac{1}{y} \\
P(x, y)=\overline{P\left(x^{-1}, y^{-1}\right)} \\
m(P, \lambda):=m\left(P_{\lambda}\right)
\end{gathered}
$$

The general technique

Rodriguez-Villegas (1997)

$$
\begin{gathered}
P_{\lambda}(x, y)=1-\lambda P(x, y) \quad P(x, y)=x+\frac{1}{x}+y+\frac{1}{y} \\
P(x, y)=\overline{P\left(x^{-1}, y^{-1}\right)} \\
m(P, \lambda):=m\left(P_{\lambda}\right) \\
m(P, \lambda)=\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \log |1-\lambda P(x, y)| \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y} .
\end{gathered}
$$

Note

$$
\begin{gathered}
|\lambda P(x, y)|<1, \quad \lambda \text { small, } \quad x, y \in \mathbb{T}^{2} \\
\tilde{m}(P, \lambda)=\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \log (1-\lambda P(x, y)) \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y} \\
\frac{\mathrm{~d} \tilde{m}(P, \lambda)}{\mathrm{d} \lambda}=-\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \frac{P(x, y)}{1-\lambda P(x, y)} \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y}
\end{gathered}
$$

Let

$$
u(P, \lambda)=\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \frac{1}{1-\lambda P(x, y)} \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y}
$$

Where

Let

$$
\begin{aligned}
& u(P, \lambda)=\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \frac{1}{1-\lambda P(x, y)} \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y} \\
= & \sum_{n=0}^{\infty} \lambda^{n} \frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} P(x, y)^{n} \frac{\mathrm{~d} x}{x} \frac{\mathrm{~d} y}{y}=\sum_{n=0}^{\infty} a_{n} \lambda^{n}
\end{aligned}
$$

Where

$$
\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} P(x, y)^{n} \frac{\mathrm{~d} x}{x} \frac{\mathrm{~d} y}{y}=\left[P(x, y)^{n}\right]_{0}=a_{n}
$$

$$
\begin{gathered}
\tilde{m}(P, \lambda)=\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \log (1-\lambda P(x, y)) \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y} \\
=-\int_{0}^{\lambda}(u(P, t)-1) \frac{\mathrm{d} t}{t}=-\sum_{n=1}^{\infty} \frac{a_{n} \lambda^{n}}{n}
\end{gathered}
$$

In the case $P=x+\frac{1}{x}+y+\frac{1}{y}$,

$$
\begin{gathered}
\tilde{m}(P, \lambda)=\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \log (1-\lambda P(x, y)) \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y} \\
=-\int_{0}^{\lambda}(u(P, t)-1) \frac{\mathrm{d} t}{t}=-\sum_{n=1}^{\infty} \frac{a_{n} \lambda^{n}}{n}
\end{gathered}
$$

In the case $P=x+\frac{1}{x}+y+\frac{1}{y}$,

$$
\begin{gathered}
a_{n}=0 \quad n \quad \text { odd } \\
a_{2 m}=\binom{2 m}{m}^{2}
\end{gathered}
$$

Definition

$\mathbb{F}_{x_{1}, \ldots, x_{l}}$ free group in x_{1}, \ldots, x_{l},
$N \triangleleft \mathbb{F}_{x_{1}, \ldots, x_{l}}, \Gamma=\mathbb{F}_{x_{1}, \ldots, x_{l}} / N$

$$
\begin{gathered}
Q=Q\left(x_{1}, \ldots, x_{l}\right)=\sum_{g \in \Gamma} c_{g} g \in \mathbb{C} \Gamma \\
Q^{*}=\sum_{g \in \Gamma} \overline{c_{g}} g^{-1} \in \mathbb{C} \Gamma \text { reciprocal } .
\end{gathered}
$$

$P=P\left(x_{1}, \ldots, x_{l}\right) \in \mathbb{C} \Gamma, P=P^{*},|\lambda|^{-1}>$ length of P,

Definition

$\mathbb{F}_{x_{1}, \ldots, x_{l}}$ free group in x_{1}, \ldots, x_{l},
$N \triangleleft \mathbb{F}_{x_{1}, \ldots, x_{l}}, \Gamma=\mathbb{F}_{x_{1}, \ldots, x_{l}} / N$

$$
\begin{gathered}
Q=Q\left(x_{1}, \ldots, x_{l}\right)=\sum_{g \in \Gamma} c_{g} g \in \mathbb{C} \Gamma \\
Q^{*}=\sum_{g \in \Gamma} \overline{c_{g}} g^{-1} \in \mathbb{C} \Gamma \text { reciprocal. }
\end{gathered}
$$

$P=P\left(x_{1}, \ldots, x_{l}\right) \in \mathbb{C} \Gamma, P=P^{*},|\lambda|^{-1}>$ length of P,

$$
\begin{aligned}
& m_{\Gamma}(P, \lambda)=-\sum_{n=1}^{\infty} \frac{a_{n} \lambda^{n}}{n}, \\
& a_{n}=\left[P\left(x_{1}, \ldots, x_{l}\right)^{n}\right]_{0} .
\end{aligned}
$$

We also write

$$
u_{\Gamma}(P, \lambda)=\sum_{n=0}^{\infty} a_{n} \lambda^{n}
$$

for the generating function of the a_{n}.

for λ real and positive and $1 / \lambda$ larger than the length of $Q Q^{*}$.

We also write

$$
u_{\Gamma}(P, \lambda)=\sum_{n=0}^{\infty} a_{n} \lambda^{n}
$$

for the generating function of the a_{n}.
$Q\left(x_{1}, \ldots, x_{l}\right) \in \mathbb{C} \Gamma$

$$
Q Q^{*}=\frac{1}{\lambda}\left(1-\left(1-\lambda Q Q^{*}\right)\right)
$$

for λ real and positive and $1 / \lambda$ larger than the length of $Q Q^{*}$.

$$
m_{\Gamma}(Q)=-\frac{\log \lambda}{2}-\sum_{n=1}^{\infty} \frac{b_{n}}{2 n}, \quad b_{n}=\left[\left(1-\lambda Q Q^{*}\right)^{n}\right]_{0} .
$$

Volume of hyperbolic knots

K knot: smooth embedding $S^{1} \subset S^{3}$.

$$
\Gamma=\pi_{1}\left(S^{3} \backslash K\right)=\left\langle x_{1}, \ldots, x_{g} \mid r_{1}, \ldots, r_{g-1}\right\rangle
$$

For any group 「, let

Derivation: mapping $\mathbb{Z} \Gamma \rightarrow \mathbb{Z} \Gamma$

- $D(u+v)=D u+D v$.
- $D(u \cdot v)=D(u) \epsilon(v)+u D(v)$

Volume of hyperbolic knots

K knot: smooth embedding $S^{1} \subset S^{3}$.

$$
\Gamma=\pi_{1}\left(S^{3} \backslash K\right)=\left\langle x_{1}, \ldots, x_{g} \mid r_{1}, \ldots, r_{g-1}\right\rangle
$$

For any group Γ, let

$$
\epsilon: \mathbb{Z} \Gamma \rightarrow \mathbb{Z} \quad \sum_{g} c_{g} g \rightarrow \sum_{g} c_{g} .
$$

Derivation: mapping $\mathbb{Z} \Gamma \rightarrow \mathbb{Z} \Gamma$

- $D(u+v)=D u+D v$.
- $D(u \cdot v)=D(u) \epsilon(v)+u D(v)$

Fox (1953) $\left\{x_{1}, \ldots\right\}$ generators, there is $\frac{\partial}{\partial x_{i}}$ such that

$$
\frac{\partial x_{j}}{\partial x_{i}}=\delta_{i, j}
$$

Back to knots,
Let

$$
F=\left(\begin{array}{ccc}
\frac{\partial r_{1}}{\partial x_{1}} & \cdots & \frac{\partial r_{1}}{\partial x_{g}} \\
\vdots & \ddots & \vdots \\
\frac{\partial r_{g-1}}{\partial x_{1}} & \cdots & \frac{\partial r_{g-1}}{\partial x_{g}}
\end{array}\right) \in M^{(g-1) \times g}(\mathbb{C} \Gamma)
$$

Fox matrix.
Delete a column $F \rightsquigarrow A \in M^{(g-1) \times(g-1)}(\mathbb{C} \Gamma)$.

Theorem (Lück, 2002)
Suppose K is a hyperbolic knot. Then, for c sufficiently large

$$
\frac{1}{3 \pi} \operatorname{Vol}\left(S^{3} \backslash K\right)=2(g-1) \ln (c)-\sum_{n=1}^{\infty} \frac{1}{n} \operatorname{tr}_{\mathbb{C} \Gamma}\left(\left(1-c^{-2} A A^{*}\right)^{n}\right)
$$

$A \in M^{g} \mathbb{C}\left[t, t^{-1}\right]$ the right-hand side is $2 m(\operatorname{det}(A))$.

Cayley Graphs

Γ of order m

$$
\alpha: \Gamma \rightarrow \mathbb{C} \quad \alpha(g)=\overline{\alpha\left(g^{-1}\right)} \quad \forall g \in \Gamma
$$

Weighted Cayley graph:

- Vertices g_{1}, \ldots, g_{m}.
- (directed) Edge between g_{i} and g_{j} has weight $\alpha\left(g_{i}^{-1} g_{j}\right)$.

$$
A(\Gamma, \alpha)=\left\{\alpha\left(g_{i} g_{j}^{-1}\right)\right\}_{i, j}
$$

Weighted adjacency matrix

Let $\chi_{1}, \ldots, \chi_{h}$ be the irreducible characters of Γ of degrees n_{1}, \ldots, n_{h}. Theorem (Babai, 1979)

The spectrum of $A(\Gamma, \alpha)$ can be arranged as

$$
\mathcal{S}=\left\{\sigma_{i, j}: i=1, \ldots, h ; j=1, \ldots, n_{i}\right\} .
$$

such that $\sigma_{i, j}$ has multiplicity n_{i} and

$$
\sigma_{i, 1}^{t}+\cdots+\sigma_{i, n_{i}}^{t}=\sum_{g_{1}, \ldots, g_{t} \in \Gamma}\left(\prod_{s=1}^{t} \alpha\left(g_{s}\right)\right) \chi_{i}\left(\prod_{s=1}^{t} g_{s}\right) .
$$

The Mahler measure over finite groups

$$
P=\sum_{i}\left(\delta_{i} S_{i}+\overline{\delta_{i}} S_{i}^{-1}\right)+\sum_{j} \eta_{j} T_{j} \in \mathbb{C} \Gamma
$$

$S_{i} \neq S_{i}^{-1}, T_{j}=T_{j}^{-1}, \delta_{i} \in \mathbb{C}, \eta_{j} \in \mathbb{R}$, and $S_{i}, T_{j} \in \Gamma$,
Assume monomials generate Γ.
Theorem
For Γ finite

$$
m_{\Gamma}(P, \lambda)=\frac{1}{|\Gamma|} \log \operatorname{det}(I-\lambda A)
$$

A is the adjacency matrix of the Cayley graph (with weights) and $\frac{1}{\lambda}>\rho(A)$.

Analytic continuation for $m_{\Gamma}(P, \lambda)$ to $\mathbb{C} \backslash \operatorname{Spec}(A)$.

Abelian Groups

Γ finite abelian group

$$
\Gamma=\mathbb{Z} / m_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{l} \mathbb{Z}
$$

Corollary

$$
m_{\Gamma}(P, \lambda)=\frac{1}{|\Gamma|} \log \left(\prod_{j_{1}, \ldots, j_{l}}\left(1-\lambda P\left(\xi_{m_{1}}^{j_{1}}, \ldots, \xi_{m_{l}}^{j_{l}}\right)\right)\right)
$$

where ξ_{k} is a primitive root of unity.

Theorem
For small λ,

$$
\lim _{m_{1}, \ldots, m_{l} \rightarrow \infty} m_{\mathbb{Z} / m_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{l} \mathbb{Z}}(P, \lambda)=m_{\mathbb{Z}}(P, \lambda) .
$$

Where the limit is with m_{1}, \ldots, m_{l} going to infinity independently.

Dihedral groups

$$
\Gamma=D_{m}=\left\langle\rho, \sigma \mid \rho^{m}, \sigma^{2}, \sigma \rho \sigma \rho\right\rangle
$$

Theorem
Let $P \in \mathbb{C}\left[D_{m}\right]$ be reciprocal. Then

$$
\left[P^{n}\right]_{0}=\frac{1}{2 m} \sum_{j=1}^{m}\left(P^{n}\left(\xi_{m}^{j}, 1\right)+P^{n}\left(\xi_{m}^{j},-1\right)\right)
$$

where P^{n} is expressed as a sum of monomials $\rho^{k}, \sigma \rho^{k}$ before being evaluated.

For $\Gamma=\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}=\left\langle x, y \mid x^{m}, y^{2},[x, y]\right\rangle$,

$$
\left[P^{n}\right]_{0}=\frac{1}{2 m} \sum_{j=1}^{m}\left(P\left(\xi_{m}^{j}, 1\right)^{n}+P\left(\xi_{m}^{j},-1\right)^{n}\right)
$$

Compare D_{m} and $\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ with $x=\rho$ and $y=\sigma$ in D_{m}.

with real coefficients and reciprocal in $\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ (therefore it is also reciprocal in D_{m}). Then

$$
m_{\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}}(P, \lambda)=m_{D_{m}}(P, \lambda) .
$$

For $\Gamma=\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}=\left\langle x, y \mid x^{m}, y^{2},[x, y]\right\rangle$,

$$
\left[P^{n}\right]_{0}=\frac{1}{2 m} \sum_{j=1}^{m}\left(P\left(\xi_{m}^{j}, 1\right)^{n}+P\left(\xi_{m}^{j},-1\right)^{n}\right)
$$

Compare D_{m} and $\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ with $x=\rho$ and $y=\sigma$ in D_{m}.
Theorem
Let

$$
P=\sum_{k=0}^{m-1} \alpha_{k} x^{k}+\sum_{k=0}^{m-1} \beta_{k} y x^{k}
$$

with real coefficients and reciprocal in $\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ (therefore it is also reciprocal in D_{m}). Then

$$
m_{\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}}(P, \lambda)=m_{D_{m}}(P, \lambda) .
$$

Corollary

Let $P \in \mathbb{R}[\mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}]$ be reciprocal. Then

$$
m_{\mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}}(P, \lambda)=m_{D_{\infty}}(P, \lambda),
$$

where $D_{\infty}=\left\langle\rho, \sigma \mid \sigma^{2}, \sigma \rho \sigma \rho\right\rangle$.

Quotient approximations of the Mahler measure

Γ_{m} are quotients of Γ :
Theorem
Let $P \in \Gamma$ reciprocal.

- For $\Gamma=D_{\infty}, \Gamma_{m}=D_{m}$,

$$
\lim _{m \rightarrow \infty} m_{D_{m}}(P, \lambda)=m_{D_{\infty}}(P, \lambda) .
$$

- For $\Gamma=P S L_{2}(\mathbb{Z})=\left\langle x, y \mid x^{2}, y^{3}\right\rangle, \Gamma_{m}=\left\langle x, y \mid x^{2}, y^{3},(x y)^{m}\right\rangle$,

$$
\lim _{m \rightarrow \infty} m_{\Gamma_{m}}(P, \lambda)=m_{P S L_{2}(\mathbb{Z})}(P, \lambda)
$$

- For $\Gamma=\mathbb{Z} * \mathbb{Z}=\langle x, y\rangle, \Gamma_{m}=\left\langle x, y \mid[x, y]^{m}\right\rangle$,

$$
\lim _{m \rightarrow \infty} m_{\Gamma_{m}}(P, \lambda)=m_{\mathbb{Z} * \mathbb{Z}}(P, \lambda)
$$

$x+x^{-1}+y+y^{-1}$ revisited

Now $P=x+x^{-1}+y+y^{-1}$.

$$
\begin{gathered}
u_{\mathbb{Z} \times \mathbb{Z}}(P, \lambda)=\sum_{n=0}^{\infty}\binom{2 n}{n}^{2} \lambda^{2 n}=F\left(\frac{1}{2}, \frac{1}{2} ; 1,16 \lambda^{2}\right) \\
u_{\mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}}(P, \lambda)=\sum_{n=0}^{\infty}\binom{4 n}{2 n} \lambda^{2 n} \\
u_{\mathbb{Z} * \mathbb{Z}}(P, \lambda)=\frac{3}{1+2 \sqrt{1-12 \lambda^{2}}}
\end{gathered}
$$

Arbitrary number of variables

For $P_{1, l}=x_{1}+x_{1}^{-1}+\cdots+x_{l}+x_{l}^{-1}$,

$$
u_{\mathbb{F}_{l}}\left(P_{1, l}, \lambda\right)=g_{2 \prime}(\lambda) .
$$

where

$$
g_{d}(\lambda)=\frac{2(d-1)}{d-2+d \sqrt{1-4(d-1) \lambda^{2}}} .
$$

is the generating function of the circuits of a d-regular tree (Bartholdi, 1999).

In particular,
$m_{\mathbb{F}_{l}}\left(P_{1, l,}, \lambda\right)=m_{\mathbb{F}_{2 /-1}}\left(P_{2,2 l}, \lambda\right)$.

Arbitrary number of variables

For $P_{1, I}=x_{1}+x_{1}^{-1}+\cdots+x_{I}+x_{I}^{-1}$,

$$
u_{\mathbb{F}_{l}}\left(P_{1, I}, \lambda\right)=g_{2 /}(\lambda) .
$$

where

$$
g_{d}(\lambda)=\frac{2(d-1)}{d-2+d \sqrt{1-4(d-1) \lambda^{2}}} .
$$

is the generating function of the circuits of a d-regular tree (Bartholdi, 1999).

For $P_{2, I}=\left(1+x_{1}+\cdots+x_{I-1}\right)\left(1+x_{1}^{-1}+\cdots+x_{I-1}^{-1}\right)$,

$$
u_{\mathbb{F}_{l-1}}\left(P_{2, l}, \lambda\right)=g_{l}(\lambda)
$$

In particular,

$$
m_{\mathbb{F}_{l}}\left(P_{1, l}, \lambda\right)=m_{\mathbb{F}_{2 l-1}}\left(P_{2,2 l}, \lambda\right) .
$$

Abelian case.
For $P_{1, I}=x_{1}+x_{1}^{-1}+\cdots+x_{I}+x_{I}^{-1}$,

$$
\left[P_{1, l}^{n}\right]_{0}=\sum_{a_{1}+\cdots+a_{l}=n} \frac{(2 n)!}{\left(a_{1}!\right)^{2} \cdots\left(a_{!}!\right)^{2}},
$$

Abelian case.
For $P_{1, I}=x_{1}+x_{1}^{-1}+\cdots+x_{I}+x_{I}^{-1}$,

$$
\left[P_{1, l}^{n}\right]_{0}=\sum_{a_{1}+\cdots+a_{l}=n} \frac{(2 n)!}{\left(a_{1}!\right)^{2} \cdots\left(a_{l}!\right)^{2}},
$$

For $P_{2, I}=\left(1+x_{1}+\cdots+x_{I-1}\right)\left(1+x_{1}^{-1}+\cdots+x_{I-1}^{-1}\right)$,

$$
\begin{gathered}
{\left[P_{2,1}^{n}\right]_{0}=\sum_{a_{1}+\cdots+a_{l}=n}\left(\frac{n!}{a_{1}!\ldots a_{l}!}\right)^{2}} \\
{\left[P_{1,1}^{2 n}\right]_{0}=\binom{2 n}{n}\left[P_{2,1}^{n}\right]_{0}}
\end{gathered}
$$

Lück-Fuglede-Kadison determinant

Very general picture

- 「 discrete group.
- $I^{2}(\Gamma)$ Hilbert space
- $\mathcal{N}(\Gamma)$ algebra of Γ-equivariant bounded operators $I^{2}(\Gamma) \rightarrow I^{2}(\Gamma)$.
- M finite-dimensional Hilbert $\mathcal{N}(\Gamma)$-module.
- $A: M \rightarrow M$ selfadjoint, Lück-Fuglede-Kadison determinant:

$$
\operatorname{det}(A):=\exp \left(\int_{0}^{\infty} \log (\lambda) \mathrm{d} F\right)
$$

where F is the spectral density function.
For any $T, \operatorname{det}(T):=\operatorname{det}\left(T T^{*}\right)^{\frac{1}{2}}$.

If T is invertible, the classical Fuglede-Kadison determinant:

$$
\operatorname{det}(T)=\exp \left(\frac{1}{2} \operatorname{tr}\left(\log \left(T T^{*}\right)\right)\right)
$$

where $\operatorname{tr}(A)=\langle A(e), e\rangle$.

- 「 finite.

$$
\mathbb{C} \Gamma=I^{2}(\Gamma)=\mathcal{N}(\Gamma)
$$

$$
T: U \rightarrow V
$$

$0<\lambda_{1} \leq, \ldots, \leq \lambda_{r}$ eigenvalues of $T T^{*}$. Then

$$
\operatorname{det}(T)=\left(\prod_{i=1}^{r} \lambda_{i}\right)^{\frac{1}{2|\Gamma|}}
$$

- 「 $=\mathbb{Z}^{n}$

Fourier transform:

$$
\begin{aligned}
I^{2}\left(\mathbb{Z}^{n}\right) & \cong L^{2}\left(\mathbb{T}^{n}\right) \\
\mathcal{N}\left(\mathbb{Z}^{n}\right) & \cong L^{\infty}\left(\mathbb{T}^{n}\right)
\end{aligned}
$$

$$
f \in L^{\infty}\left(\mathbb{T}^{n}\right) \rightsquigarrow M_{f}: L^{2}\left(\mathbb{T}^{n}\right) \rightarrow L^{2}\left(\mathbb{T}^{n}\right) \text {, where } M_{f}(g)=g \cdot f .
$$

$$
\operatorname{det}(f)=\exp \left(\int_{\mathbb{T}^{n}} \log |f(z)| \chi_{\left\{u \in S^{1} \mid f(u) \neq 0\right\}} \operatorname{dvol}_{z}\right)
$$

Further Study: recurrence for coefficients

- \mathbb{Z}^{\prime}

$$
u(\lambda)=\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \frac{1}{1-\lambda P(x, y)} \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y},
$$

and

$$
u^{\prime}(\lambda)=\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \frac{P(x, y)}{(1-\lambda P(x, y))^{2}} \frac{\mathrm{~d} x}{x} \frac{\mathrm{~d} y}{y},
$$

and $u^{\prime \prime}(\lambda)$ has a similar form.
$u, u^{\prime}, u^{\prime \prime}$ periods of a holomorphic differential in the curve defined by
$1=\lambda P(x, y)$.By
Griffiths (1969)

$$
A(\lambda) u^{\prime \prime}+B(\lambda) u^{\prime}+C(\lambda) u=0
$$

Recurrence of the coefficients.

- \mathbb{F}_{l} Haiman (1993): $u(\lambda)$ is algebraic. Algebraic functions in non-commuting variables.
- What happens in "between"? Is there a recurrence for the coefficients?

Further study: Tree entropy and Volume Conjecture

$m\left(P, \frac{1}{1(P)}\right)$ related to $h(G)$
where G is the Cayley graph and h is the tree entropy

$$
h(G):=\log \operatorname{deg}_{G}(o)-\sum_{n=1}^{\infty} \frac{p_{n}(o, G)}{n},
$$

- o fixed vertex
- $p_{n}(o, G)$ is the probability that a simple random walk started at o on G is again at o after n steps.

Lyons (2005)

G_{n} are finite graphs that tend to a fixed transitive infinite graph G, then

$$
h(G)=\lim _{n \rightarrow \infty} \frac{\log \tau\left(G_{n}\right)}{\left|V\left(G_{n}\right)\right|}
$$

where $\tau(G)$ is the complexity, i.e., the number of spanning trees.
Compare to
Conjecture ((Volume Conjecture) Kashaev, H. Murakami, J. Murakami (1997))

Let K be a hyperbolic knot, and $J_{n}(K, q)$ its normalized colored Jones polynomial. Then

$$
\frac{1}{2 \pi} \operatorname{Vol}\left(S^{3} \backslash K\right)=\lim _{n \rightarrow \infty} \frac{\log \left|J_{n}\left(K, \mathrm{e}^{\frac{2 \pi i}{n}}\right)\right|}{n}
$$

