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Mahler Measure and Lehmer’s question

Looking for large primes, Pierce [15] proposed the following idea in 1918.
Consider P ∈ Z[x] monic, and write

P (x) =
∏

i

(x− αi).

Then, let us look at
∆n =

∏

i

(αn
i − 1).

The αi are integers over Z. By applying Galois theory, it is easy to see that ∆n ∈ Z. Note
that if P (x) = x − 2, we get the sequence ∆n = 2n − 1. Thus, we recover the example of
Mersenne numbers. The idea is to look for primes among the factors of ∆n. The prime
divisors of such integers must satisfy some congruence conditions that are quite restrictive,
hence they are easier to factorize than a randomly given number.

In order to minimize the number of trial divisions, the sequence ∆n should grow slowly.
Lehmer [13] studied ∆n+1

∆n
, observed that

lim
n→∞

|αn+1 − 1|
|αn − 1| =

{ |α| if |α| > 1
1 if |α| < 1

and suggested the following definition.

Definition 1 Given P ∈ C[x], such that

P (x) = a
∏

i

(x− αi),

define the Mahler measure 2 of P as

M(P ) = |a|
∏

i

max{1, |αi|}. (1)

The logarithmic Mahler measure is defined as3

m(P ) = log M(P ) = log |a|+
∑

i

log+ |αi|. (2)

When does M(P ) = 1 for P ∈ Z[x]? We have
1mlalin@msri.org– http://www.math.ubc.ca/~mlalin
2The name Mahler came later after the person who successfully extended this definition to the several-

variable case.
3log+ x = log max{1, x} for x ∈ R≥0
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Lemma 2 (Kronecker) Let P =
∏

i(x − αi) ∈ Z[x], if |αi| ≤ 1, then the αi are zero or
roots of the unity.

By Kronecker’s Lemma, P ∈ Z[x], P 6= 0, then M(P ) = 1 if and only if P is the
product of powers of x and cyclotomic polynomials. This statement characterizes integral
polynomials whose Mahler measure is 1.

Lehmer found the example

m(x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1) = log(1.176280818 . . .) = 0.162357612 . . .

and asked the following (Lehmer’s question, 1933):
Is there a constant C > 1 such that for every polynomial P ∈ Z[x] with M(P ) > 1, then

M(P ) ≥ C?
Lehmer’s question remains open nowadays. His 10-degree polynomial remains the best

possible result.
The use of this polynomial has led to the discovery of the prime number

√
∆379 =

1, 794, 327, 140, 357 but bigger primes were discovered with the use of other polynomials
(with x3 − x− 1, ∆127 = 3, 233, 514, 251, 032, 733).

Here are some results in the direction of Lehmer’s question.

• Dobrowolski [9] proved in 1979 that if P is monic, irreducible and noncyclotomic, and
has degree d then

M(P ) > 1 + c

(
log log d

log d

)3

.

This result has been improved by many people, but the nature remains the same.

• Breusch [5] in 1951 proved that if P is monic, irreducible, nonreciprocal,

M(P ) ≥ 1.324717... = real root of x3 − x− 1

(rediscovered by Smyth in 1971)

Mahler Measure in several variables

Definition 3 For P ∈ C[x1, . . . , xn], the (logarithmic) Mahler measure is defined by

m(P ) :=
∫ 1

0
. . .

∫ 1

0
log |P (e2πiθ1 , . . . , e2πiθn)| dθ1 . . . dθn (3)

=
1

(2πi)n

∫

Tn

log |P (x1, . . . , xn)| dx1

x1
. . .

dxn

xn
. (4)

where Tn = {(x1, . . . , xn) ∈ Cn | |x1| = . . . = |xn| = 1}.
It is possible to prove that this integral is not singular and that m(P ) always exists.
Because of Jensen’s formula:

∫ 1

0
log |e2πiθ − α| dθ = log+ |α|. (5)

We recover the formula for the one-variable case.

Some properties
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Proposition 4 For P, Q ∈ C[x1, . . . , xn]

m(P ·Q) = m(P ) + m(Q). (6)

It is also true that m(P ) ≥ 0 if P has integral coefficients.
Mahler measure is related to heights. Indeed, if α is an algebraic number, and Pα is its

minimal polynomial over Q, then

m(Pα) = [Q(α) : Q] h(α),

where h is the logarithmic Weil height. Recall that the Weil height is defined as

h(α) =
∑

v

log+ |α|v

where α ∈ K, Kv is the completion of K at the place v and

| · |v = || · ||
dv
d

v

where || · ||v restricts to the usual p-adic value in Q.
This identity also extends to several-variable polynomials and heights in hypersurfaces.
Indeed the motivation for Mahler to define the measure for multivariable polynomials

was to establish certain inequalities between heights of products of polynomials which are
crucial in transcendence theory. They are

L(P ) ≤
s∏

l=1

L(Pl) ≤ 2m1+...+mnL(P )

H(P ) ≤
s∏

l=1

H(Pl) ≤ 2m1+...+mnH(P )

(they can be proved, for instance, by showing that M(P ) ≤ L(P ) ≤ 2m1+...+mnM(P )).
Let us also mention the following result:

Theorem 5 (Boyd–Lawton) For P ∈ C[x1, . . . , xn]

lim
k2→∞

. . . lim
kn→∞

m(P (x, xk2 , . . . , xkn)) = m(P (x1, . . . , xn)). (7)

In particular Lehmer’s problem in several variables reduces to the one-variable case.

Examples

For one-variable polynomials, the Mahler measure has to do with the roots of the
polynomial. However, it is very hard to compute explicit formulas for examples in several
variables. The first and simplest ones were computed by Smyth:

• Smyth [17]

m(x + y + 1) =
3
√

3
4π

L(χ−3, 2) = L′(χ−3,−1), (8)

where

L(χ−3, s) =
∞∑

n=1

χ−3(n)
ns

and χ−3(n) =





1 if n ≡ 1 mod 3
−1 if n ≡ −1 mod 3

0 if n ≡ 0 mod 3
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• Smyth [1]

m(x + y + z + 1) =
7

2π2
ζ(3). (9)

• Boyd [2], Deninger [8], Rodriguez-Villegas [16] studied cases of the following

m

(
x +

1
x

+ y +
1
y
− k

)
?=

L′(Ek, 0)
Bk

k ∈ N

m

(
x +

1
x

+ y +
1
y
− 4

)
= 2L′(χ−4,−1)

m

(
x +

1
x

+ y +
1
y
− 4

√
2
)

= L′(A, 0)

The question mark stands for a numerical result (discovered by Boyd), Bk is a rational
number, and Ek is the elliptic curve wich corresponds to the zero set of the polynomial.
When k = 4 the curve has genus zero. When k = 4

√
2 the elliptic curve is

A : y2 = x3 − 44x + 112,

which has complex multiplication (this case was proved by Rodriguez-Villegas).

Mahler measure and hyperbolic volumes

A generalization of Smyth’s first result was due to Cassaigne and Maillot [14]: for
a, b, c ∈ C∗,

πm(a + bx + cy) =





D
(∣∣a

b

∣∣ eiγ
)

+ α log |a|+ β log |b|+ γ log |c| 4

π log max{|a|, |b|, |c|} not4
(10)

where 4 stands for the statement that |a|, |b|, and |c| are the lengths of the sides of a
triangle, and α, β, and γ are the angles opposite to the sides of lengths |a|, |b|, and |c|
respectively. The term with the Bloch-Wigner dilogarithm

D(x) := Im(Li2(x)) + arg(1− x) log |x|

can be interpreted as the volume of the ideal hyperbolic tetrahedron which has the triangle
as basis and the fourth vertex is infinity. See figure 1. The five-term relation

D(x) + D(1− xy) + D(y) + D

(
1− y

1− xy

)
+ D

(
1− x

1− xy

)
+ D

(
1− y

1− xy

)
. (11)

guarantees the symmetry of the formula.
Boyd [1], [2] and Boyd and Rodriguez Villegas [4] found several examples where the

Mahler measure of the A-polynomial of an orientable, complete, one-cusped, hyperbolic
manifold M is related to the volume of the manifold. Boyd and Rodriguez Villegas found
identities of the kind

πm(A) = Vol(M)
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Figure 1: The main term in Cassaigne – Maillot formula is the volume of the ideal hyperbolic
tetrahedron over the triangle.

The A-polynomial (A(x, y) ∈ Q[x, x−1, y, y−1]) is an invariant from the space of rep-
resentations ρ : π1(M) → SL2(C), more precisely, it is the minimal, nontrivial algebraic
relation between two parameters x and y which have to do with ρ(λ) and ρ(µ), where
λ, µ ∈ π1(∂M) are the longitude and the meridian of the boundary torus.

An algebraic integration for Mahler measure

The appearance of the L-functions in Mahler measures formulas is a common phe-
nomenon. Deninger [8] interpreted the Mahler measure as a Deligne period of a mixed
motive. More specifically, in two variables, and under certain conditions, he proved that

m(P ) = reg(ξi),

where reg is the determinant of the regulator matrix, which we are evaluating in some class
in an appropriate group in K-theory.

Rodriguez-Villegas [16] made explicit the relationship between Mahler measure and
regulators by computing the regulator for the two-variable case, and using this machinery
to explain the formulas for two variables.

For example, let us start with Smyth’s example, P (x, y) = y + x− 1. Then its Mahler
measure is

m(P ) =
1

(2πi)2

∫

T2

log |y + x− 1| dx

x

dy

y
.

By Jensen’s equality,

m(P ) =
1

2πi

∫

T1

log+ |1− x| dx

x
=

1
2πi

∫

γ
log |y| dx

x
= − 1

2π

∫

γ
η(x, y)

where γ = {P (x, y) = 0} ∩ {|x| = 1, |y| ≥ 1} and

η(x, y) = log |x| d arg y − log |y| d arg x.

This is a closed differential form defined in C = {P (x, y) = 0} minus the sets of zeros and
poles of x and y. It is multiplicative and antisymmetric. Moreover

η(x, 1− x) = dD(x).
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If we use Stokes Theorem, we get

m(P ) = − 1
2π

D(∂γ).

Now we parametrize

γ : x = e2πiθ y(γ(θ)) = 1− e2πiθ, θ ∈ [1/6 ; 5/6] ∂γ = [ξ̄6]− [ξ6]

γy (  )

y = 1 − x| x | = 1

ξ6

Then we obtain

2πm(x + y + 1) = D(ξ6)−D(ξ̄6) = 2D(ξ6) =
3
√

3
2

L(χ−3, 2).

In general, given P (x, y) ∈ C[x, y]

m(P ) = m(P ∗)− 1
2π

∫

γ
η(x, y),

• If η(x, y) is exact, and ∂γ 6= 0 and we use Stokes Theorem. We obtain an element in
K3(∂γ) ⊂ K3(Q̄). This leads to dilogarithms and then to zeta functions of number
fields by Theorems of Borel, Zagier, and others.

• If ∂γ = ∅, then {x, y} ∈ K2(C). We have η(x, y) is not exact. We get L-series of a
curve and examples of Beilinson’s conjectures.

Examples in three variables We have developed [12] a method for studying the three

variable case. Here are some examples in three variables that can be also computed using
regulators.

• Condon [6]:

π2m

(
z −

(
1− x

1 + x

)
(1 + y)

)
=

28
5

ζ(3),

• D’Andrea & L. [7]:

π2m
(
z(1− xy)2 − (1− x)(1− y)

)
=

4
√

5ζQ(
√

5)(3)

ζ(3)
,

• Boyd & L. (2005)

m(x2 + x + 1 + (x + 1)y + z) =
√

3
4π

L(χ−3, 2) +
19
6π2

ζ(3).
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• L. [11]

π3m

(
1 +

(
1− x1

1 + x1

)(
1− x2

1 + x2

)(
1− x3

1 + x3

)
z

)
= 24L(χ−4, 4) + π2L(χ−4, 2)(12)

π4m

(
1 +

(
1− x1

1 + x1

)
. . .

(
1− x4

1 + x4

)
z

)
= 62ζ(5) +

14
3

π2ζ(3) (13)

π4m

(
1 + x +

(
1− x1

1 + x1

)(
1− x2

1 + x2

)
(1 + y)z

)
= 93ζ(5) (14)

(15)
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