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Abstract. We use shuffle and stuffle relations to give a simple proof of a reduction formula for length-two

multiple polylogarithms evaluated in complex parameters of absolute value 1 in terms of a finite sum of

products of length-one polylogarithms. This result was originally due to Nakamura and recently reproved
by Panzer by different methods. This generalises results of Borwein and Girgensohn for alternating Euler

sums and for multiple zeta values twisted by fourth roots of unity by the first author. We also explore
implications for other colored multiple zeta values and present some applications to Mahler measure and

Feynman diagrams.

1. Introduction

The study of multiple zeta values and their generalisations, multiple polylogarithms, has been attracting
great interest for several years. For n1, . . . , nm positive integers, one can define the multiple polylogarithm
as the complex function given by the power series

Lin1,...,nm
(w1, . . . , wm) :=

∑
0<j1<···<jm

wj11 · · ·wjmm
jn1
1 · · · j

nm
m

,

which is absolutely convergent for |wi| ≤ 1 for i = 1, . . . ,m − 1 and |wm| ≤ 1 (respectively |wm| < 1) if
nm > 1 (resp. nm = 1). This function can also be extended to a multi-valued meromorphic function on Cm.
The number m is called the length (or depth) of the polylogarithm, and the number n1 + · · ·+ nm is called
the weight.

For example, when m = 1 and n1 = 1, we obtain the Taylor series of the logarithm around 1,

Li1(w) =

∞∑
j=1

wj

j
= − log(1− w).

Special values of multiple polylogarithms when wi = 1 for i = 1, . . . ,m are called multiple zeta values.
Indeed, the simplest possible example yields the Riemann zeta function

Lin(1) =

∞∑
j=1

1

jn
= ζ(n).

Multiple zeta values have been studied in different contexts. We refer the reader to the excellent website
by Hoffman [Ho] with a compilation of references in the subject.

When the wi are chosen to be roots of unity of order N , one obtains multiple zeta values twisted by roots
of unity (also called colored multiple zeta values, Euler sums, or Zagier sums). We will say that such values
have order N to indicate the order of the roots of unity involved. Much like ordinary multiple zeta values,
colored multiple zeta values are also often related to special values of functions of number theoretic interest.
For instance, taking m = 1 and w1 = −1, we get the Riemann zeta function again,

Lin(−1) =
(
21−n − 1

)
ζ(n).

2010 Mathematics Subject Classification. Primary 11G55; Secondary 11M06, 11R06.
Key words and phrases. colored multiple zeta values, Euler sums, cyclotomic multiple polylogarithms, alternating multiple

zeta values, special values of ζ(s) and Dirichlet L-functions, double Lerch values.
This work was supported by the Natural Sciences and Engineering Research Council of Canada [Discovery Grant 355412-
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Taking w = ±i, we obtain a relationship with a Dirichlet L-function

Im(Lin(i)) =
Lin(i)− Lin(−i)

2i
=

1

2i

∞∑
j=1

ij(1− (−1)j)

jn

=
1

2i

∑
j odd

2ij

jn
=

∞∑
j=0

(−1)j

(2j + 1)n

= L(χ−4, n).

Here L denotes the Dirichlet L-function in the character of conductor 4, given by

L(χ−4, s) :=

∞∑
j=1

χ−4(j)

js
, χ−4(j) =


1 j ≡ 1 mod 4,

−1 j ≡ −1 mod 4,

0 j even.

Similarly, one can see that

Re(Lin(i)) =
Lin(i) + Lin(−i)

2
= (21−2n − 2−n)ζ(n).

Generally speaking there are known functional equations among multiple polylogarithms (for instance,
shuffle and stuffle relations) which yield further relationships among colored multiple zeta values. A major
problem consists of finding the dimension of the Q-vector space spanned by colored multiple zeta values of
a given weight and order. This has recently been established for multiple zeta values by Brown [Br12] and
Zagier [Za12] from an original conjecture of Hoffman [Ho97].

Euler [Eu76] was the first to study the case m = 2 and showed the following result.

Theorem 1. For positive integers r, s such that k = r + s is odd and r is even,

ζ(r, s) = −1

2

((
k

r

)
+ 1

)
ζ(k) +

∑
a+b=k
a,b≥2
a odd

((
a− 1

r − 1

)
+

(
a− 1

s− 1

))
ζ(a)ζ(b),

where ζ(r, s) = Lir,s(1, 1),

Thus, Euler’s result shows that some multiple polylogarithms of length two evaluated at w1 = w2 = 1
can be written in terms of sums of products of polylogarithms of length one.

The following generalisation of Theorem 1 is due to Borwein and Girgensohn (see (75) in [BBB97] and
[BBG04] for more details).

Theorem 2. For ρ, σ = ±1 and r, s positive integers such that k = r + s is odd, we have

Lir,s(ρ, σ) =
1

2
(−Lik(ρσ) + (1 + (−1)s)Lir(ρ)Lis(σ))

+
(−1)s

2

((
k − 1

r − 1

)
Lik(ρ) +

(
k − 1

s− 1

)
Lik(σ)

)
− (−1)s

k−1∑
m=1
m odd

((
m− 1

r − 1

)
Lim(ρ) +

(
m− 1

s− 1

)
Lim(σ)

)
Lik−m(ρσ).

There are several directions one can explore to generalise this result further. The most obvious ones would
be to try larger lengths or orders higher than 2.

In this note, we will treat the higher order case. More precisely, our first goal is to provide a new proof
to the following result.
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Theorem 3. Let r, s be positive integers, k = r+ s, and let u, v be complex numbers such that |u| = |v| = 1.
In addition, we assume that v 6= 1 if s = 1. Let

Rek =

{
Re k odd,

i Im k even.

Then,

2Rek(Lir,s(u, v)) =(−1)kLik(uv) + (−1)k+1Lir(u)Lis(v) + (−1)r−1Lir(u)Lis(v)

+ (−1)r−1
((

k − 1

r − 1

)
Lik(u) +

(
k − 1

s− 1

)
Lik(v)

)
+

k−1∑
m=1

((
m− 1

r − 1

)
Lim(u) +

(
m− 1

s− 1

)
(−1)k+mLim(v)

)
× ((−1)rLik−m(uv) + (−1)s+mLik−m(uv)).

In the formula above as well as in the formula of Theorem 2 we may occasionally have nonconvergent terms
such as Li1(1). When this is the case, nonconvergent terms cancel and the formulas are to be interpreted by
ignoring such terms (or assigning them an arbitrary value by the process known as regularisation).

Theorem 3 was first proved by Nakamura as Proposition 2.1 in [Na12]1. The result was deduced from
a more general statement involving a functional relation of a Lerch type Tornheim double zeta function.
Nakamura gives a very elegant proof using elementary combinatorial facts and the analytic continuation of
the Torheim series. A more general result (without restricting to |u| = |v| = 1) was recently recovered again
by Panzer as Equation (3.2) in [Pa17] in a more general setting. Panzer formulated and proved a beautiful
parity theorem for multiple polylogarithms. The parity theorem predicts that under certain parity conditions
on the weight and length, a multiple zeta value will reduce to combinations of lower length multiple zeta
values. Panzer used differentiation and shuffle relations to prove some reductions of polylogarithms to certain
evaluations of Bernoulli polynomials and then found explicit reductions for length 2 and 3.

For our proof, we use the generating polynomials of the shuffle and stuffle relations for polylogarithms of
a fixed weight. We were inspired by the ideas from page 44 in [BZ11] where they consider the multiple zeta
case.

It is immediate to see Theorem 2 as a consequence of Theorem 3. We may specialize in other roots of
unity in order to get other corollaries.

We remark that in the formula above we only need that u, v are complex numbers of absolute value one,
not necessarily roots of unity. Such values are known as double Lerch values and were already studied by
Arakawa and Kaneko [AK08] and Nakamura [Na08a, Na08b].

Our motivation for highlighting Theorem 3 is that it finds several applications in different areas that
require lowering the length of polylogarithms. Thus, the second goal of this article consists on exploring
consequences of Theorem 3, particularly in the realm of Mahler measure.

Given a nonzero multivariable rational function P ∈ C(x1, . . . , xn), its (logarithmic) Mahler measure is
defined by

m(P ) :=
1

(2πi)n

∫
Tn

log |P (x1, . . . , xn)|dx1
x1
· · · dxn

xn
,

where Tn = {(z1, . . . , zn) ∈ Cn | |z1| = · · · = |zn| = 1}.
This construction was originally considered in the context of searching for large prime numbers and of

classical heights of polynomials. Later it was found to yield special values of the Riemann zeta function
and L-functions of number theoretic interest as well as values of polylogarithms and other special functions.
These phenomena have been partially explained in terms of Beilinson’s conjectures via relationships with
regulators by Deninger [Den97] (see also the works of Boyd [Boy97] and Rodriguez-Villegas [R-V97] for more
insights on these aspects). In this setting it is easier to understand special values of polylogarithms of length
1 than those of higher length in terms of the regulator. Therefore, it is desirable to obtain formulas for Mahler

1The statement of Proposition 2.1 in [Na12] has a minor typo which we correct here in Theorem 3.
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measure and higher Mahler measure where the value is expressed in terms of length 1 polylogarithms. It is
in this context that Theorem 3 finds an important application. For example we can write

m

(
1 + x+

(
1− x1
1 + x1

)
· · ·
(

1− x2n+1

1 + x2n+1

)
(1 + y)z

)
=

n∑
h=0

sn−h(12, 32, . . . , (2n− 1)2)

(2n)!

(
2

π

)2h+3

×
h∑
`=0

(
2h+ 1

2`

)
(2h+ 3− 2`)!

2(2h+ 1)
(−1)`B2`π

2`L(χ−4, 2h+ 4− 2`)),(1)

where the sl(a1, . . . , ak) coefficients are given by

sl(a1, . . . , ak) =


1 if l = 0,∑
i1<···<il ai1 · · · ail if 0 < l ≤ k,

0 if k < l,

The Mahler measure of 1 +x+
(

1−x1

1+x1

)
· · ·
(

1−x2n+1

1+x2n+1

)
(1 +y)z was first computed in [La06a], but the formula

given there involves polylogarithms of length 2 evaluated at fourth roots of unity. Theorem 3 allows us to
write formula (1) solely in terms of Dirichlet L-functions. The new formulation was announced in [LL16]
without proof. We provide here the details leading to this formula.

Theorem 3 has applications beyond Mahler measure. As another example, we present a simplification of
some of the sums

Vs,r =
∑

0<j<`

(−1)` cos(2πj/3)

jr`s

in terms of the Riemann zeta-function and Dirichlet L-functions. This type sum appears in connection to
Feynman diagrams [Br99].

This paper is organised as follows. In Section 2 we state the definitions of polylogarithms, hyperlogarithms
and their relevant properties such as the shuffle and stuffle relations. We prove our result in Section 3. We
discuss some particular cases (including Feynman diagrams) in Section 4 and focus on applications to Mahler
measure in Section 5. Finally, we discuss further directions in Section 6. We intend for this paper to be
relatively self contained. To this end, we have included several facts that are well-known to the experts.

2. Polylogarithms and hyperlogarithms

Let w1, . . . , wm be complex variables and n1, . . . , nm be positive integers. Recall from the introduction
that we defined the multiple polylogarithm as

Lin1···nm
(w1, . . . , wm) :=

∑
0<j1<···<jm

wj11 · · ·wjmm
jn1
1 · · · j

nm
m

.

As we mentioned before, the series above is absolutely convergent for |wi| ≤ 1 for i = 1, . . . ,m − 1 and
|wm| ≤ 1 (respectively |wm| < 1) if nm > 1 (resp. nm = 1). Moreover, for nm = 1, the series converges as
long as wm 6= 1.

Multiple polylogarithms have meromorphic continuation to the complex plane. The hyperlogarithm is
defined by the following iterated integral.

In1···nm
(a1 : · · · : am+1) :=∫ am+1

0

dt

t− a1
◦ dt
t
◦ · · · ◦ dt

t︸ ︷︷ ︸
n1

◦ dt

t− a2
◦ dt
t
◦ · · · ◦ dt

t︸ ︷︷ ︸
n2

◦ · · · ◦ dt

t− am
◦ dt
t
◦ · · · ◦ dt

t︸ ︷︷ ︸
nm

,

where ∫ bh+1

0

dt

t− b1
◦ · · · ◦ dt

t− bh
=

∫
0≤t1≤···≤th≤bh+1

dt1
t1 − b1

· · · dth
th − bh

.
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The path of integration should be interpreted as any path connecting 0 and bh+1 in C \ {b1, . . . , bh}. The
integral depends on the homotopy class of this path.

Multiple polylogarithms and hyperlogarithms are related by the following identities (see [Go95]):

In1···nm
(a1 : · · · : am+1) = (−1)mLin1···nm

(
a2
a1
,
a3
a2
· · · , am+1

am

)
,

Lin1···nm(w1, . . . , wm) = (−1)mIn1···nm((w1 · · ·wm)−1 : · · · : w−1m : 1).

Polylogarithms satisfy the shuffle and stuffle relations. Roughly speaking, the stuffle product is the result
of multiplying two or more multiple polylogarithms when they are expressed in terms of series, while the
shuffle product is the result of doing this multiplication at the level of the integrals, or more precisely,
hyperlogarithms. For the purpose of this paper we only need to multiply two polylogarithms of length one,
and therefore we will only describe these two cases.

When the corresponding power series converge, the stuffle product of Lir(u) and Lis(v) is constructed
from the power series as follows

Lir(u) ∗ Lis(v) :=

 ∞∑
j=1

uj

jr

( ∞∑
`=1

v`

`s

)

=
∑

0<j<`

ujv`

jr`s
+
∑

0<j<`

vju`

js`r
+

∞∑
j=1

(uv)j

jr+s

=Lir,s(u, v) + Lis,r(v, u) + Lir+s(uv).(2)

The shuffle product of Lir(u) and Lis(v) is constructed from the corresponding hyperlogarithm integrals
as follows

Lir(u)xLis(v) :=

−∫ 1

0

dt

t− u−1
◦ dt
t
◦ · · · ◦ dt

t︸ ︷︷ ︸
r


− ∫ 1

0

dt

t− v−1
◦ dt
t
◦ · · · ◦ dt

t︸ ︷︷ ︸
s


=

r−1∑
h=0

(
s− 1 + h

s− 1

)∫ 1

0

dt

t− u−1
◦ dt
t
◦ · · · ◦ dt

t︸ ︷︷ ︸
r−h

◦ dt

t− v−1
◦ dt
t
◦ · · · ◦ dt

t︸ ︷︷ ︸
s+h

+

s−1∑
h=0

(
r − 1 + h

r − 1

)∫ 1

0

dt

t− v−1
◦ dt
t
◦ · · · ◦ dt

t︸ ︷︷ ︸
s−h

◦ dt

t− u−1
◦ dt
t
◦ · · · ◦ dt

t︸ ︷︷ ︸
r+h

=

r−1∑
h=0

(
s− 1 + h

s− 1

)
Ir−h,s+h(u−1 : v−1 : 1) +

s−1∑
h=0

(
r − 1 + h

r − 1

)
Is−h,r+h(v−1 : u−1 : 1)

=

r−1∑
h=0

(
s− 1 + h

s− 1

)
Lir−h,s+h(uv−1, v) +

s−1∑
h=0

(
r − 1 + h

r − 1

)
Lis−h,r+h(u−1v, u)

=

r+s−1∑
m=1

[(
m− 1

s− 1

)
Lir+s−m,m(uv−1, v) +

(
m− 1

r − 1

)
Lir+s−m,m(u−1v, u)

]
.(3)

At the same time, we remark that Lir(u) ∗ Lis(v) and Lir(u)xLis(v) are both simply equal to Lir(u)Lis(v).

3. The main result

The goal of this section is to prove Theorem 3. For this, we will adapt the ideas from page 44 in [BZ11] to
the more general case of polylogarithms. The strategy for the proof is to combine all the shuffle and stuffle
relations together for a fixed total weight k. In order to do this we need to be able to take any positive value
for r and s.
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From now on, we work under the conditions of Theorem 3. In particular we assume that |u| = |v| = 1,
which allows us to write u−1 = u and v−1 = v.

Now observe that all the series involved in (2) and (3) converge as long as r, s > 1 or u 6= 1 (respectively
v 6= 1) for r = 1 (resp. s = 1). Theorem 3 already has the condition that v 6= 1 for s = 1. Before proceeding
with the proof of Theorem 3 we need to clarify what happens when u = 1 and r = 1. If we were to write
Equations (2) and (3) with r = 1, u = 1, we would get the following

Li1(1) ∗ Lis(v) =Li1,s(1, v) + Lis,1(v, 1) + Li1+s(v),

Li1(1)xLis(v) =Li1,s(v, v) + Lis,1(v, 1) +

s∑
m=2

Lis+1−m,m(v, 1).

It should be noted that the equations above have no mathematical meaning because neither of the terms
Li1(1) nor Lis,1(v, 1) converge. We claim that we can give any arbitrary value to Li1(1) and let that define
the value of Lis,1(v, 1) by means of any of the above equations. This process is called regularisation and it
depends on the consistency of the two equations above. In order for this reasoning to work, we need to prove
the following result.

Proposition 4. Let s be a positive integer and v a complex number with |v| = 1. Further assume that v 6= 1
if s = 1. Then

s∑
m=2

Lis+1−m,m(v, 1) = Li1,s(1, v) + Li1+s(v)− Li1,s(v, v).

We remark that this equation is a polylogarithmic version of a particular case of the Sum Theorem due
to Granville ([Gr97], Proposition, page 1) and Zagier:

ζ(k) =
∑

s1+···+sd=k
si≥1,sd≥2

ζ(s1, . . . , sd).

Proof. We will adapt Granville’s idea to our case. We start by developing
s∑

m=2

Lis+1−m,m(v, 1) =
∑

0<j<`

vj
∑

m+n=s+1
1<m,0<n

1

jn`m
.(4)

The inner sum in the right-hand side is the coefficient of xs+1 in the power series(∑
1<m

(x
`

)m)(∑
0<n

(
x

j

)n)
=

(
x2/`2

1− x/`

)(
x/j

1− x/j

)
=

x3/`

(j − x)(`− x)

=
x3

`(`− j)

(
1

j − x
− 1

`− x

)
.

Thus the sum in the right-hand side of (4) becomes∑
0<j<`

vj

`(`− j)

(
1

js−1
− 1

`s−1

)
=
∑

0<j<`

vj

`(`− j)js−1
−
∑

0<j<`

vj

`s(`− j)
.(5)

Notice that

(6)
∑

0<j<`

vj

`(`− j)js−1
=
∑
0<j,h

vj

js−1h(h+ j)

and ∑
0<h

1

h(h+ j)
=

1

j

∑
0<h

(
1

h
− 1

h+ j

)
=

1

j

j∑
h=1

1

h
=

1

j2
+

j−1∑
h=1

1

hj
.
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By replacing in (6) and (5), we obtain

s∑
m=2

Lis+1−m,m(v, 1) =
∑
0<j

vj

js+1
+
∑

0<h<j

vj

hjs
−

∑
0<`−j<`

v`−jv`

(`− j)`s

=Lis+1(v) + Li1,s(1, v)− Li1,s(v, v).

This concludes the proof of Proposition 4. �

Because of Proposition 4, we can assign any value to Li1(1) and deduce from there a consistent value for
Lis,1(v, 1). The same is true for Lir,1(u, 1). But we must still exclude the case of Li1,1(1, 1), as this term can
not be defined consistently with the shuffle and stuffle relations. For the purpose of Theorem 3, this case is
already excluded for the conditions that we impose on s and v.

We are now ready to prove our main result.

Proof of Theorem 3. We fix k and we consider the following two families of two-variable polynomials that
are indexed by all the possible pairs {u, v}:

Pu,v(x, y) =
∑
r+s=k
r,s≥1

Lir(u)Lis(v)xr−1ys−1,

Qu,v(x, y) =
∑

m+n=k
m,n≥1

Lim,n(u, v)xm−1yn−1.

The first family is symmetric with respect to exchanging the variables and the indexes at the same time.

(7) Pu,v(x, y) = Pv,u(y, x).

It will be convenient to define the complex conjugate for a polynomial T (x, y) =
∑
aj,`x

jy` ∈ C[x, y]

as conjugating each coefficient in the following way T (x, y) =
∑
aj,`x

jy`. The real and imaginary parts of
T (x, y) will be defined similarly.

With this notation in mind, we have

(8) Pu,v(x, y) = Pu,v(x, y), Qu,v(x, y) = Qu,v(x, y).

Changing the signs of both variables at the same time allows us to capture the parity of the weight k in
both polynomial families.

(9) Pu,v(−x,−y) = (−1)kPu,v(x, y), Qu,v(−x,−y) = (−1)kQu,v(x, y).

After recording all the basic properties of Pu,v(x, y) and Qu,v(x, y), we proceed to use these two polynomial
families to express the stuffle and shuffle relations. The stuffle relations (2) become

(10) Pu,v(x, y) = Qu,v(x, y) +Qv,u(y, x) + Lik(uv)
xk−1 − yk−1

x− y
.

The shuffle relations (3) become

(11) Pu,v(x, y) = Quv,v(x, x+ y) +Qvu,u(y, x+ y).

From (11) we have the following:

Puv,v(x, y − x) =Qu,v(x, y) +Qu,uv(y − x, y),

Pv,u(y,−x) =Quv,u(y, y − x) +Quv,v(−x, y − x),

Pu,uv(y − x,−y) =Qv,uv(y − x,−x) +Qv,u(−y,−x).
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Adding the three equations above, we obtain

Puv,v(x, y − x) + Pv,u(y,−x) + Pu,uv(y − x,−y)

=Qu,v(x, y) + (Qu,uv(y − x, y) +Quv,u(y, y − x))

+ (Quv,v(−x, y − x) +Qv,uv(y − x,−x)) +Qv,u(−y,−x).

Now we use (10) inside the above parentheses and for Pu,v(−x,−y) in order to replace the termQv,u(−y,−x)
in the right-hand side above.

Puv,v(x, y − x) + Pv,u(y,−x) + Pu,uv(y − x,−y)

=Qu,v(x, y) +

(
Pu,uv(y − x, y) + Lik(v)

(y − x)k−1 − yk−1

x

)
+

(
Puv,v(−x, y − x) + Lik(u)

(−x)k−1 − (y − x)k−1

y

)
+

(
Pu,v(−x,−y)−Qu,v(−x,−y) + Lik(uv)

(−x)k−1 − (−y)k−1

x− y

)
.

Rearranging and using the symmetric relation (7), this yields,

Qu,v(x, y)−Qu,v(−x,−y) =Pu,v(−x, y) + Pu,uv(y − x,−y) + Pv,uv(y − x, x)

− (Pu,v(−x,−y) + Pu,uv(y − x, y) + Pv,uv(y − x,−x))

−
(

Lik(uv)
(−x)k−1 − (−y)k−1

x− y
+ Lik(v)

(y − x)k−1 − yk−1

x

+Lik(u)
(−x)k−1 − (y − x)k−1

y

)
.

Using (8) and (9),

Qu,v(x, y) + (−1)k+1Qu,v(x, y) =Pu,v(−x, y) + Pu,uv(y − x,−y) + Pv,uv(y − x, x)

+ (−1)k+1(Pu,v(x, y) + Pu,uv(x− y,−y) + Pv,uv(x− y, x))

+ (−1)k
(

Lik(uv)
xk−1 − yk−1

x− y
+ Lik(v)

(x− y)k−1 − (−y)k−1

x

+Lik(u)
(x− y)k−1 − xk−1

−y

)
.

Recall from the statement of Theorem 3 that we defined Rek to be equal to Re for k odd and to i Im for
k even. Then we deduce:

(12) 2Rek(Qu,v(x, y)) = Ru,v(x, y) +Ru,uv(x− y,−y) +Rv,uv(x− y, x),

where

Ru,v(x, y) = (−1)k+1Pu,v(x, y) + Pu,v(−x, y) + (−1)kLik(uv)
xk−1 − yk−1

x− y
.
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We now fix the pair r, s such that r + s = k. We have to determine the coefficient of xr−1ys−1 in each of
the terms in the right-hand side of (12). Let [·]a,b denote the coefficient of xayb. Thus,

[Ru,v(x, y)]r−1,s−1 =(−1)k+1Lir(u)Lis(v) + (−1)r−1Lir(u)Lis(v) + (−1)kLik(uv)

[Ru,uv(x− y,−y)]r−1,s−1 =(−1)r
k−1∑
m=1

(
m− 1

r − 1

)
Lim(u)Lik−m(uv)

+ (−1)s
k−1∑
m=1

(
m− 1

r − 1

)
(−1)mLim(u)Lik−m(uv)

+ (−1)r−1
(
k − 1

s− 1

)
Lik(v)

[Rv,uv(x− y, x)]r−1,s−1 =(−1)r
k−1∑
m=1

(
m− 1

s− 1

)
Lim(v)Lik−m(uv)

+ (−1)s
k−1∑
m=1

(
m− 1

s− 1

)
(−1)mLim(v)Lik−m(uv)

+ (−1)r−1
(
k − 1

r − 1

)
Lik(u).

By putting everything together, we recover the statement of Theorem 3.
�

4. Some particular cases

In this section we consider some particular cases of Theorem 3 that have specific applications beyond the
world of multiple zetas and polylogarithms.

Our first result comes from considering u, v = ±i. It is a generalisation of a result in [La06b] and can be
used to simplify some Mahler measure formulas [La06a, LL16]. The specific connection with Mahler measure
will be explained in Section 5.

Corollary 5. Let r, s be positive integers such that k = r + s is even. Then

∑
0≤j<`

(−1)j+`

(2j + 1)r`s
=− (1 + (−1)s)

2
(1− 21−s)ζ(s)L(χ−4, r) + (−1)s2s−1

(
k − 1

r − 1

)
L(χ−4, k)

− (−1)s2s
k−1∑
m=1
m even

(
m− 1

s− 1

)
(1− 2−k+m)ζ(k −m)L(χ−4,m)

− (−1)s2s
k−1∑
m=1
m even

(
m− 1

r − 1

)
2−k+mζ(k −m)L(χ−4,m).

Proof. We may write the double series as a sum of imaginary parts of polylogarithms.

i

2s−2

∑
0≤j<`

(−1)j+`

(2j + 1)r`s
= 2iIm(Lir,s(i, i)) + 2iIm(Lir,s(i,−i)).

9



Given the above equation, it suffices to fix u = i and consider v = ±i in Theorem 3. For v = i, Theorem
3 gives

2Rek(Lir,s(i, i)) =(−1)kLik(−1) + (−1)k+1Lir(−i)Lis(−i) + (−1)r−1Lir(−i)Lis(i)(13)

+ (−1)r−1
((

k − 1

r − 1

)
Lik(−i) +

(
k − 1

s− 1

)
Lik(i)

)
+

k−1∑
m=1

((
m− 1

r − 1

)
Lim(−i) +

(
m− 1

s− 1

)
(−1)k+mLim(i)

)
× ((−1)rLik−m(−1) + (−1)s+mLik−m(−1)).

Now consider the case of v = −i.

2Rek(Lir,s(i,−i)) =(−1)kLik(1) + (−1)k+1Lir(−i)Lis(i) + (−1)r−1Lir(−i)Lis(−i)(14)

+ (−1)r−1
((

k − 1

r − 1

)
Lik(−i) +

(
k − 1

s− 1

)
Lik(−i)

)
+

k−1∑
m=1

((
m− 1

r − 1

)
Lim(−i) +

(
m− 1

s− 1

)
(−1)k+mLim(−i)

)
× ((−1)rLik−m(1) + (−1)s+mLik−m(1)).

We will need to restrict to the case of k even so that Rek = Im. Adding (13) and (14) yields

i

2s−2

∑
0≤j<`

(−1)j+`

(2j + 1)r`s
=(Lik(1) + Lik(−1))− (1 + (−1)s)Lir(−i)(Lis(i) + Lis(−i))

+ (−1)s−12

(
k − 1

r − 1

)
Lik(−i) + (−1)s−1

(
k − 1

s− 1

)
(Lik(i) + Lik(−i))

+ (−1)s2

k−1∑
m=1
m even

(
m− 1

s− 1

)
(Lik−m(1)Lim(−i) + Lik−m(−1)Lim(i))

+ (−1)s2

k−1∑
m=1
m even

(
m− 1

r − 1

)
Lim(−i)(Lik−m(1) + Lik−m(−1)).

The formula above can be greatly simplified. Recall the following formulas that were mentioned earlier
in the introduction:

(15) Lin(1) = ζ(n), Lin(−1) =
(
21−n − 1

)
ζ(n),

and

(16) Lin(i) = (21−2n − 2−n)ζ(n) + iL(χ−4, n).
10



We proceed to replace the length-one polylogarithms by the Riemann zeta function and the Dirichlet
L-function in χ−4. We obtain

i

2s−2

∑
0≤j<`

(−1)j+`

(2j + 1)r`s
=21−kζ(k)− (1 + (−1)s)

(
(21−2r − 2−r)ζ(r)− iL(χ−4, r)

)
2(21−2s − 2−s)ζ(s)

(17)

+ (−1)s−12

(
k − 1

r − 1

)(
(21−2k − 2−k)ζ(k)− iL(χ−4, k)

)
+ (−1)s−1

(
k − 1

s− 1

)
2(21−2k − 2−k)ζ(k)

+ (−1)s2

k−1∑
m=1
m even

(
m− 1

s− 1

)
ζ(k −m)

(
(21−2m − 2−m)ζ(m)− iL(χ−4,m)

)

+ (−1)s2

k−1∑
m=1
m even

(
m− 1

s− 1

)
(21−k+m − 1)ζ(k −m)

(
(21−2m − 2−m)ζ(m) + iL(χ−4,m)

)

+ (−1)s2

k−1∑
m=1
m even

(
m− 1

r − 1

)(
(21−2m − 2−m)ζ(m)− iL(χ−4,m)

)
21−k+mζ(k −m).

Since the left-hand side is purely imaginary, the same must be true for the right-hand side. Thus, we
ignore the real terms in the equation and we get

i

2s−2

∑
0≤j<`

(−1)j+`

(2j + 1)r`s
=(1 + (−1)s)2(21−2s − 2−s)ζ(s)iL(χ−4, r) + (−1)s2

(
k − 1

r − 1

)
iL(χ−4, k)

+ (−1)s22
k−1∑
m=1
m even

(
m− 1

s− 1

)
(2−k+m − 1)ζ(k −m)iL(χ−4,m)

− (−1)s22
k−1∑
m=1
m even

(
m− 1

r − 1

)
2−k+mζ(k −m)iL(χ−4,m).

Dividing in both sides by i
2s−2 we recover the desired result.

�

We remark that since the right-hand side of (17) must be purely imaginary, we must have that

0 =21−kζ(k) + (−1)s−12

(
k

s

)
(21−2k − 2−k)ζ(k)

− (1 + (−1)s)2(21−2r − 2−r)(21−2s − 2−s)ζ(r)ζ(s)

+ (−1)s22−k
k−1∑
m=1
m even

((
m− 1

r − 1

)
+

(
m− 1

s− 1

))
(21−m − 1)ζ(m)ζ(k −m).

By using Euler’s identity

(18) ζ(2j) =
(−1)j+1(2π)2j

2(2j)!
B2j ,

11



we conclude that for r, s positive integers and k = r + s even,

0 =Bk + (−1)s−1
(
k

s

)
(21−k − 1)Bk

+
(1 + (−1)s)

2

(
k

s

)
(21−r − 1)(21−s − 1)BrBs

+ (−1)s−1
k−1∑
m=1
m even

((
m− 1

r − 1

)
+

(
m− 1

s− 1

))(
k

m

)
(21−m − 1)BmBk−m.

(19)

In the formula above, if r and s are even, it is correct to replace Euler’s identity (18) for ζ(r) and for ζ(s).
If they are both odd, the corresponding term in the second line vanishes since 1 + (−1)s = 0. Thus, the
equality remains valid. Equation (19) can be independently proved by setting x = 1/2 in [Ni23, Eq. (8), p.
75] (see also [Ap76, Eq. (19b), p. 276]).

A similar sum can also be computed by means of Theorem 3.

Corollary 6. Let r, s be positive integers such that k = r + s is odd. Then

∑
0≤j<`

(−1)j+`

(2j + 1)r(2`+ 1)s
=

1

2
(2−k − 1)ζ(k) +

1 + (−1)r

2
L(χ−4, r)L(χ−4, s)

+ (−1)r2−k
k−1∑
m=1
m odd

((
m− 1

r − 1

)
+

(
m− 1

s− 1

))
(21−m − 1)(2k−m − 1)ζ(m)ζ(k −m).

Proof. This double alternating series may also be written in terms of polylogarithms:

∑
0≤j<`

(−1)j+`

(2j + 1)r(2`+ 1)s
=

1

2k
Lir,s(−1,−1)− Re(Lir,s(i, i)).

We return to Equation (13), this time for k odd since we need the real part Re(Lir,s(i, i)), and we combine
this with Theorem 2 using ρ = σ = −1. We obtain

∑
0≤j<`

(−1)j+`

(2j + 1)r(2`+ 1)s
=− 2−k−1Lik(1) + (1 + (−1)s)2−k−1Lir(−1)Lis(−1)

+ (−1)s2−k−1
(
k

s

)
Lik(−1)

− (−1)s2−k
k−1∑
m=1
m odd

((
m− 1

r − 1

)
+

(
m− 1

s− 1

))
Lim(−1)Lik−m(1)

+
1

2
Lik(−1)− 1

2
Lir(−i)Lis(−i) +

(−1)r

2
Lir(−i)Lis(i)

+
(−1)r

2

((
k − 1

r − 1

)
Lik(−i) +

(
k − 1

s− 1

)
Lik(i)

)
− (−1)r

k−1∑
m=1
m odd

((
m− 1

r − 1

)
Lim(−i) +

(
m− 1

s− 1

)
Lim(i)

)
Lik−m(−1).
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With the aid of Formulas (15) and (16), we replace the length-one polylogarithms in the above equation
by the Riemann zeta function and the Dirichlet L-function in χ−4.

∑
0≤j<`

(−1)j+`

(2j + 1)r(2`+ 1)s
=− 2−k−1ζ(k) + (1 + (−1)s)2−k−1(21−r − 1)ζ(r)(21−s − 1)ζ(s)

(20)

+ (−1)s2−k−1
(
k

s

)
(21−k − 1)ζ(k)

− (−1)s2−k
k−1∑
m=1
m odd

((
m− 1

r − 1

)
+

(
m− 1

s− 1

))
(21−m − 1)ζ(m)ζ(k −m)

+
1

2
(21−k − 1)ζ(k)− 1

2
((21−2r − 2−r)ζ(r)− iL(χ−4, r))((2

1−2s − 2−s)ζ(s)− iL(χ−4, s))

+
(−1)r

2
((21−2r − 2−r)ζ(r)− iL(χ−4, r))((2

1−2s − 2−s)ζ(s) + iL(χ−4, s))

+
(−1)r

2

((
k − 1

r − 1

)
((21−2k − 2−k)ζ(k)− iL(χ−4, k)) +

(
k − 1

s− 1

)
((21−2k − 2−k)ζ(k) + iL(χ−4, k))

)
− (−1)r

k−1∑
m=1
m odd

(
m− 1

r − 1

)
((21−2m − 2−m)ζ(m)− iL(χ−4,m))(21−k+m − 1)ζ(k −m)

− (−1)r
k−1∑
m=1
m odd

(
m− 1

s− 1

)
((21−2m − 2−m)ζ(m) + iL(χ−4,m))(21−k+m − 1)ζ(k −m).

Since the left-hand side is real, the same must be true for the right-hand side. Therefore we take the real
terms and simplify as much as possible.∑
0≤j<`

(−1)j+`

(2j + 1)r(2`+ 1)s
=

1

2
(2−k − 1)ζ(k) +

1 + (−1)r

2
L(χ−4, r)L(χ−4, s)

+ (−1)r2−k
k−1∑
m=1
m odd

((
m− 1

r − 1

)
+

(
m− 1

s− 1

))
(21−m − 1)(2k−m − 1)ζ(m)ζ(k −m).

This recovers the result. �

Going back to display (20), we have that the imaginary part of the right-hand side must be zero. This
yields

0 =
1 + (−1)r

2
L(χ−4, s)(2

1−2r − 2−r)ζ(r) +
1− (−1)r

2
L(χ−4, r)(2

1−2s − 2−s)ζ(s)

− (−1)r

2

((
k − 1

r − 1

)
−
(
k − 1

s− 1

))
L(χ−4, k)

+ (−1)r
k−1∑
m=1
m odd

((
m− 1

r − 1

)
−
(
m− 1

s− 1

))
L(χ−4,m)(21−k+m − 1)ζ(k −m).

Odd values of the Dirichlet L function in χ−4 are given by Euler numbers

(21) L(χ−4, 2j + 1) = (−1)j
E2j

2(2j)!

(π
2

)2j+1

.
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By replacing (21) as well as Euler’s identity (18) for ζ(2j) in the previous equation we obtain

0 =
1 + (−1)r

2

(
k − 1

s− 1

)
(2− 2r)Es−1Br +

1− (−1)r

2

(
k − 1

r − 1

)
(2− 2s)Er−1Bs

+ (−1)r
((

k − 1

r − 1

)
−
(
k − 1

s− 1

))
Ek−1

+ (−1)r
k−1∑
m=1
m odd

((
m− 1

r − 1

)
−
(
m− 1

s− 1

))(
k − 1

m− 1

)
22k−2m(21−k+m − 1)Em−1Bk−m.

In the computation above, since k is odd, exactly one between r and s is even and the other is odd. It is
correct to replace Identities (18) and (21) for ζ(r), ζ(s), L(χ−4, r) and L(χ−4, s) in the first line. Indeed the
term with the wrong parity vanishes according to the parity of r due to the factors 1 + (−1)r and 1− (−1)r.
Thus, the equality remains valid. We are not aware of a reference for this formula, but we expect that it can
be proved independently by considering relationships between Euler polynomials and Bernoulli numbers, in
a similar fashion as Equation (19).

The following result will be useful in Section 5.

Corollary 7. Let r, s be positive integers such that k = r + s is even. Then∑
0<j≤`

(−1)j+`

jr(2`+ 1)s
=− (1− (−1)r)

2
(1− 21−r)ζ(r)L(χ−4, s)− (−1)r2r−1

(
k − 1

s− 1

)
L(χ−4, k)

+ (−1)r2r
k−1∑
m=1
m even

(
m− 1

r − 1

)
(1− 2−k+m)ζ(k −m)L(χ−4,m)

+ (−1)r2r
k−1∑
m=1
m even

(
m− 1

s− 1

)
2−k+mζ(k −m)L(χ−4,m).

Proof. Notice that

(21−s − 1)ζ(s)L(χ−4, r) =

( ∞∑
`=1

(−1)`

`s

) ∞∑
j=0

(−1)j

(2j + 1)r


=
∑

0≤j<`

(−1)j+`

(2j + 1)r`s
+
∑

0<`≤j

(−1)j+`

(2j + 1)r`s
.

Switching j and ` in the last sum, we get∑
0<j≤`

(−1)j+`

js(2`+ 1)r
= (21−s − 1)ζ(s)L(χ−4, r)−

∑
0≤j<`

(−1)j+`

(2j + 1)r`s

and the result follows from Corollary 5 and switching r with s. �

For the next application we are going to look at some polylogarithms arising from evaluations of Feynman
diagrams (see [Br99]). Before proceeding any further, we recall the definition of the Dirichlet L-function in
the character of conductor 3, given by

L(χ−3, s) :=

∞∑
j=1

χ−3(j)

js
, χ−3(j) =


1 j ≡ 1 mod 3,

−1 j ≡ −1 mod 3,

0 3 | j.

We can prove the following result.
14



Corollary 8. Let

Vs,r =
∑

0<j<`

(−1)` cos(2πj/3)

jr`s
.

Then, we have

V2,1 = −41

36
ζ(3) +

π2

18
log 3 +

π

2
√

3
L(χ−3, 2).

Let r be even, s odd, and s > 1. Then,

Vs,r =− (21−k − 1)(31−k − 1)

4
ζ(k)−

((
k − 1

r − 1

)
31−k − 1

4
ζ(k) +

(
k − 1

s− 1

)
21−k − 1

2
ζ(k)

)
− 3

4

k−1∑
m=1
m even

(
m− 1

r − 1

)
(21−k+m + 1)L(χ−3,m)L(χ−3, k −m)

+

k−1∑
m=1
m odd

((
m− 1

r − 1

)
31−m − 1

4
ζ(m) +

(
m− 1

s− 1

)
21−m − 1

2
ζ(m)

)
× (21−k+m − 1)(31−k+m − 1)ζ(k −m).

We remark that the case of V2,1 is Formula (163) in [Br99]. We will see that Theorem 3 applies in this
case as long as k = r + s is odd. The additional conditions on r and s are only there to simplify the final
formula.

Proof. Let ω3 = −1+
√
3i

2 be the third root of unity. Then we can write

∑
0<j<`

(−1)` cos(2πj/3)

jr`s
= Re(Lir,s(ω3,−1)).

We set u = ω3 and v = −1. Assume also that k is odd so that Rek corresponds to Re. By Theorem 3,

2Re(Lir,s(ω3,−1)) =− Lik(−ω3) + Lir(ω3)Lis(−1) + (−1)r−1Lir(ω3)Lis(−1)(22)

+ (−1)r−1
((

k − 1

r − 1

)
Lik(ω3) +

(
k − 1

s− 1

)
Lik(−1)

)
+

k−1∑
m=1

((
m− 1

r − 1

)
Lim(ω3) +

(
m− 1

s− 1

)
(−1)1+mLim(−1)

)
× ((−1)rLik−m(−ω3) + (−1)r+1+mLik−m(−ω3)).

In order to simplify the above equality, we need to express polylogarithms of length one in third and sixth
roots of unity in terms of ζ(n), L(χ−3, n) and elementary functions. For n ≥ 2 we have

Lin(ω3) =
31−n − 1

2
ζ(n) + i

√
3

2
L(χ−3, n),

Lin(−ω3) =
(21−n − 1)(31−n − 1)

2
ζ(n)− i

√
3(21−n + 1)

2
L(χ−3, n).

For n = 1, we have,

Li1(ω3) = − log 3

2
+ i

π

6
, Li1(−ω3) = −iπ

3
.
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We now replace the above equalities in (22). First assume that r = 1, s = 2. Then,

2Re(Li1,2(ω3,−1)) =− Li3(−ω3) + 2Li1(ω3)Li2(−1) + Li3(ω3) + 2Li3(−1)

− Li1(ω3)(Li2(−ω3) + Li2(−ω3))

+ (Li2(ω3)− Li2(−1))(−Li1(−ω3) + Li1(−ω3))

=− 41

18
ζ(3) +

π2

9
log 3 +

π√
3
L(χ−3, 2)

and we recover the formula for V2,1.
Now assume that r is even, s odd, and s > 1. In particular, we have that k is odd. We obtain

2Re(Lir,s(ω3,−1)) =− (21−k − 1)(31−k − 1)

2
ζ(k)−

((
k − 1

r − 1

)
31−k − 1

2
ζ(k) +

(
k − 1

s− 1

)
(21−k − 1)ζ(k)

)
− 3

2

k−1∑
m=1
m even

(
m− 1

r − 1

)
(21−k+m + 1)L(χ−3,m)L(χ−3, k −m)

+

k−1∑
m=1
m odd

((
m− 1

r − 1

)
31−m − 1

2
ζ(m) +

(
m− 1

s− 1

)
(21−m − 1)ζ(m)

)
× (21−k+m − 1)(31−k+m − 1)ζ(k −m).

This concludes the proof of the formula for Vs,r. �

5. Applications to Mahler measure

We present in this section two applications of Corollary 5 and Corollary 7 to Mahler measure. These
applications were the main motivation for [La06b] and this paper.

5.1. A Mahler measure example. Our most important application comes from Formula (4) in Theorem
1 in [La06a] which claims

m

(
1 + x+

(
1− x1
1 + x1

)
· · ·
(

1− x2n+1

1 + x2n+1

)
(1 + y)z

)
=

n∑
h=0

sn−h(12, 32, . . . , (2n− 1)2)

(2n)!

(
2

π

)2h+3

× 1

4

(
i(2h)!L3,2h+1(i, i) + (2h+ 1)!π2L(χ−4, 2h+ 2)

)
.(23)

Here the sl(a1, . . . , ak) coefficients are given by

sl(a1, . . . , ak) =


1 if l = 0,∑
i1<···<il ai1 · · · ail if 0 < l ≤ k,

0 if k < l,
16



and L3,2h+1(i, i) is a combination of multiple polylogarithms that arises when computing a certain type of
iterated integral. It is given as follows.

Lr,s(i, i) :=2(Lir,s(i, i)− Lir,s(−i, i) + Lir,s(i,−i)− Lir,s(−i,−i))

=2
∑

0<j<`

iji` − (−i)ji` + ij(−i)` − (−i)j(−i)`

jr`s

=2
∑

0<j<`

ij+`(1 + (−1)j+1 + (−1)` + (−1)`+j+1)

jr`s

=2
∑

0<j<`
j odd
` even

4ij+`

jr`s

=2
∑

0<2j+1<2`

4i2j+2`+1

(2j + 1)r(2`)s

=
i

2s−3

∑
0≤j<`

(−1)j+`

(2j + 1)r`s
.

Therefore, we have

L3,2h+1(i, i) =
i

22h−2

∑
0≤j<`

(−1)j+`

(2j + 1)3`2h+1
.

The main result of [La06b] allowed the first named author to compute this sum for h = 0 and simplify the
first case of formula (1), which first appeared in [La03]. In this way, a closed formula in terms of the Riemann
zeta function and the Dirichlet L-function in the character of conductor 4 was obtained for n = 0.

Since 3 + 2h+ 1 is even, we can now use Corollary 5 to compute L3,2h+1(i, i) for any h. We obtain

−iL3,2h+1(i, i) =− 2(2h+ 3)(2h+ 2)L(χ−4, 2h+ 4)

+ (2h+ 1)π2L(χ−4, 2h+ 2)

+ 8

h∑
n=1

(
2h+ 3− 2n

2

)
ζ(2n)

22n
L(χ−4, 2h+ 4− 2n).

Combining the result above with (23) yields the following formula as presented without proof in [LL16].

m

(
1 + x+

(
1− x1
1 + x1

)
· · ·
(

1− x2n+1

1 + x2n+1

)
(1 + y)z

)
=

n∑
h=0

sn−h(12, 32, . . . , (2n− 1)2)

(2n)!

(
2

π

)2h+3

×
h∑
`=0

(
2h+ 1

2`

)
(2h+ 3− 2`)!

2(2h+ 1)
(−1)`B2`π

2`L(χ−4, 2h+ 4− 2`)).

5.2. A Higher Mahler measure example. For k a positive integer, the k-higher Mahler measure is a
generalisation consisting of taking the k-th power of the logarithm inside the integral:

mk(P ) :=
1

(2πi)n

∫
Tn

logk |P (x1, . . . , xn)|dx1
x1
· · · dxn

xn
.

This construction also yields special values of L-functions, although the connection with Beilinson’s con-
jectures is much less clear and therefore, there is a particular interest in generating examples that may
eventually lead to a general theory involving not just the Mahler measure, but its higher counterpart as well.
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The authors of this paper showed the following result in [LL16].

m3

(
z +

(
1− x1
1 + x1

)
· · ·
(

1− x2n+1

1 + x2n+1

))
=

n∑
h=0

sn−h(12, 32, . . . , (2n− 1)2)

(2n)!

(
2

π

)2h+1

×
(

3i(2h)!L−1,2,2h+1(1, i, i)− 3

2
i(2h+ 1)!L−2,2h+2(i, i) + (2h+ 3)!L(χ−4, 2h+ 4)

)
.(24)

On the right hand side of (24) we find, once again, combinations of multiple polylogarithms:

L−n1,...,nm
(z1, . . . , zm) =

∑
(σ1,...,σm)∈{0,1}m

(−1)σmLin1,...,nm
((−1)σ1z1, . . . , (−1)σmzm).

In particular, we have

L−2,2h+2(i, i) =Li2,2h+2(i, i)− Li2,2h+2(i,−i) + Li2,2h+2(−i, i)− Li2,2h+2(−i,−i)

=i
∑

0<j≤`

(−1)j+`

j2(2`+ 1)2h+2
.

Since 2 + 2h+ 2 is even, we can use Corollary 7 to get

−iL−2,2h+2(i, i) =− (2h+ 3)(2h+ 2)L(χ−4, 2h+ 4)

+ ζ(2)L(χ−4, 2h+ 2)

+ 4

h+1∑
n=1

(22n − 1)(2h+ 3− 2n)
ζ(2n)

22n
L(χ−4, 2h+ 4− 2n).

This allows us to simplify the formula in the following way.

m3

(
z +

(
1− x1
1 + x1

)
· · ·
(

1− x2n+1

1 + x2n+1

))
=

n∑
h=0

sn−h(12, 32, . . . , (2n− 1)2)

(2n)!

(
2

π

)2h+1

×
(

3i(2h)!L−1,2,2h+1(1, i, i)− 1

2
(2h+ 3)!L(χ−4, 2h+ 4) +

1

4
(2h+ 1)!π2L(χ−4, 2h+ 2)

+3
h+1∑
`=1

(
2h+ 2

2`

)
(2h+ 3− 2`)!

2h+ 2
(22` − 1)(−1)`−1B2`π

2`L(χ−4, 2h+ 4− 2`)

)
.

Unfortunately, we do not have a method for further simplification of the term L−1,2,2h+1(1, i, i) of length
3.

6. Final remarks

There are several directions where this work could be continued. The most obvious one is the generalisation
of Theorem 3 to the reduction of multiple polylogarithms of higher length. This general aspect seems to be
quite involved from the combinatorial point of view. A derived question in this direction is the extension of
Proposition 4 to higher length and arbitrary parameters of absolute value one.

Another possible question is the reduction of the opposite parity in Theorem 3, namely, the real part for
weight even and the imaginary part for weight odd. There are several results for specific lower weight where
Euler sums have been reduced to combinations of length-one polylogarithms, such as the following formula
from [BBG04], where there is a reduction of the real part for even weight (equal to 4).

Li1,3(1,−1) = 2Li4

(
1

2

)
+

7 log 2

4
ζ(3)− π4

48
− log2 2

12
π2 +

log4 2

12
.
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It would be very interesting to find a more general context for these formulas which also have applications
to Mahler measure [La16].

Finally, one could continue to explore the consequences of Theorem 3 for roots of unity and further
implications in other areas such as Feynman diagrams and Mahler measure.
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