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Abstract. The concept of θ-congruent numbers was introduced by Fujiwara [Fu97], who showed
that for primes p ≡ 5, 7, 19 (mod 24), p is not a π/3-congruent number. In this paper we show the
existence of two infinite families of composite non-π/3-congruent numbers and non-2π/3-congruent
numbers, obtained from products of primes which are congruent to 5 modulo 24 and to 13 modulo
24 respectively. This is achieved by generalizing a result obtained by Serf [Se91] based on descent
on certain elliptic curves, and by extending a method of Iskra [Is96] involving the classical (or π/2-)
congruent numbers.

1. Introduction

A natural number is said to be a congruent number if it occurs as the area of a right triangle
which has rational side lengths. The congruent number problem consists of deciding whether a given
natural number n is congruent. It has been generalized in several directions (see the work of Top
and Yui [TY08] for a survey on the topic). In particular, Fujiwara [Fu97] generalized the concept of
congruent numbers to include triangles other than right triangles as well.

Definition 1.1 (θ-congruent number). Let 0 < θ < π be a real number such that cos(θ) is rational,

say, cos(θ) =
s

r
, where s, r ∈ Z, |s| ≤ r and gcd(s, r) = 1. A natural number n is said to be a

θ-congruent number if n
√
r2 − s2 occurs as the area of a triangle with rational sides and containing

the angle θ.

By means of the cosine theorem, n is θ-congruent if and only if there exist a, b, c rationals such
that {

c2 = a2 + b2 − 2ab(s/r),
2nr = ab.

We remark that classical congruent numbers satisfy the definition above by chosing θ = π/2. In
this case, Nagel [Na29] proved, for example, that primes of the form p ≡ 3 (mod 8) are non-congruent
while Monsky [Mo90], extending results of Heegner [He52], proved that primes of the form p ≡ 5, 7
(mod 8) are congruent. Similar results are known for products of a few prime factors such as 2p, pq,
etc, (see for instance the paper of Serf [Se91]).

If we consider the question of composite numbers with arbitrary many prime factors, we find the
following result.

Theorem 1.2 (Iskra, [Is96]). Let p1, . . . , p` be distinct primes such that pi ≡ 3 (mod 8) and
(
pj
pi

)
=

−1 for j < i. Then the product n = p1 · · · p` is a non-congruent number.

Some generalizations and extensions of Iskra’s result can be found in [RSY13, RSY15].
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The complete characterization of congruent numbers was given by Tunnell [Tu83] (see also [Ko93]
for many details) and it relies on the Birch and Swinnerton-Dyer conjecture.

After θ = π/2, the next natural values to consider are θ = π/3, 2π/3, since they are the only other
0 < θ < π that are rational multiples of π and such that cos(θ) is rational. In this realm, Fujiwara
[Fu97] proved that a prime p is not π/3-congruent if p ≡ 5, 7, 19 (mod 24). In addition, Kan [Ka00]
proved that a prime p is not 2π/3-congruent if p ≡ 7, 11, 13 (mod 24) and further proved that the
primes p ≡ 23 (mod 24) are π/3 and 2π/3-congruent. In these cases, complete characterizations
analogous to Tunnell’s results were given conditionally on the Birch and Swinnerton-Dyer conjecture
by Yoshida [Yo01, Yo02].

Our goal is to prove two results for products of arbitrarily many primes that are analogous to the
result of Iskra [Is96].

Theorem 1.3. Let p1, . . . , p2`+1 be distinct primes such that pi ≡ 5 (mod 24) and
(
pj
pi

)
= −1 for

j < i. Then the product n = p1 · · · p2`+1 is a non-π/3-congruent number.

Theorem 1.4. Let p1, . . . , p2` be distinct primes with ` > 0 such that pi ≡ 13 (mod 24) and
(
pj
pi

)
=

−1 for j < i. Then the product n = 2p1 · · · p2` is a non-2π/3-congruent number.

Our proofs are relatively elementary, building upon a generalization of the work of Serf [Se91]
for classical congruent numbers. This generalization, stated in Theorem 2.6, is interesting in its own
right due to its potential applications to other values of θ and families of composite numbers different
from the ones considered in Theorems 1.3 and 1.4.

2. 2-descent on En,θ

The classical congruent number problem has been related to a condition on the arithmetics of
certain elliptic curves. The same is true for its generalization.

Proposition 2.1 (Fujiwara, [Fu97]). Let n be a natural integer such that n 6= 1, 2, 3, 6. The following
are equivalent.

(1) n is θ-congruent.
(2) The elliptic curve En,θ given by:

En,θ : y2 = x
(
x− n(r − s)

)(
x+ n(r + s)

)
has positive rank over the rationals.

For n - 6, the elliptic curve En,θ has torsion Z/2Z⊕Z/2Z = {O, (n(r−s), 0), (0, 0), (−n(r+s), 0)}.
Fujiwara [Fu02] further investigated the cases of n | 6. Depending on certain conditions on r and s,
the torsion in these cases may be Z/2Z⊕Z/2`Z with ` = 1, 2, 3, 4, as predicted by Mazur’s Theorem.

We will show that for some particular values of n - 6 and θ, the rank of En,θ will always be 0 which
implies, by Proposition 2.1, that n cannot be θ-congruent. We will need two statements, which are
generalizations of theorems in Serf [Se91]. The first one corresponds to Theorem 3.1 in [Se91] and
can be obtained with the help of Proposition 1.4, Chapter X in Silverman [Si86].

Before proceeding, we establish some notation. Let MQ be the set of all places of Q. For a finite
place p, let vp be the valuation defined by p.

Let ∆n,θ be the discriminant of En,θ. Then

∆n,θ = 43n6r2(r2 − s2)2.
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Theorem 2.2 (Complete 2-descent for En,θ over Q – Proposition 1.4, Chapter X in [Si86]). Let n be
a square-free natural number. Let p1, p2, . . . , pk denote the odd primes that divide ∆n,θ, and consider

S = {∞, 2, p1, p2, . . . , pk} ⊂MQ.

Let

Q(S, 2) = {a ∈ Q∗/Q∗2 | vp(a) ≡ 0 (mod 2) ∀p ∈MQ \ S}.
(1) There exists an injective homomorphism such that

φ : En,θ(Q)/2En,θ(Q) ↪→ Q(S, 2)×Q(S, 2)

P = (x, y) 7→


(x, x− n(r − s)) if x 6= 0, n(r − s),(
r+s
s−r ,−n(r − s)

)
if x = 0,(

n(r − s), 2r
r−s

)
if x = n(r − s),

(1, 1) if x =∞ (i.e P = O).

(2) If (b1, b2) ∈ Q(S, 2)×Q(S, 2) \ Im
{
O, (0, 0), (n(r − s), 0)

}
, then (b1, b2) ∈ Im(φ) if and only

if there exists a solution (z1, z2, z3) ∈ Q∗ ×Q∗ ×Q to the system of equations

(2.1)

{
b1z

2
1 − b2z22 = n(r − s),

b1z
2
1 − b1b2z23 = −n(r + s).

In this case, (b1, b2) = φ(P ), where P = (x, y) = (b1z
2
1 , b1b2z1z2z3).

As mentioned before, when n - 6, the torsion subgroup of En,θ(Q) is Z/2Z ⊕ Z/2Z. By the
Mordell–Weil Theorem,

En,θ(Q)/2En,θ(Q) ∼= (Z/2Z)ρ+2,

where ρ is the rank ofEn,θ(Q). Thus ρ > 0 iff there is an element (b1, b2) ∈ Im(φ)\Im
{
O, (0, 0), (n(r − s), 0)

}
iff the System (2.1) has a nontrivial solution in Q∗ ×Q∗ ×Q.

Remark 2.3. If we also exclude the image of (−n(r+s), 0) (given by (−n(r+s),−2nr)) as a possibility
for (b1, b2), we obtain that the rank of En,θ is strictly positive if and only if there exists a solution
(z1, z2, z3) ∈ Q∗ ×Q∗ ×Q∗ to the system of equations (2.1).

Remark 2.4. By subtracting the first equation from the second equation in (2.1) we obtain

(2.2) b2z
2
2 − b1b2z23 = −2nr,

which must also be verified.

Remark 2.5. A system of representatives of classes in Q(S, 2) is given by

R = {(−1)α2βpε11 · · · p
εk
k |α, β, ε1, . . . , εk ∈ {0, 1}}.

The next statement in this section is a generalization of Theorem 3.3 in Serf [Se91] giving suf-
ficient conditions for n not to be a θ-congruent number for arbitrary θ. Part of this result will be
crucially used to prove Theorems 1.3 and 1.4. However, as remarked in the Introduction, this result
is interesting on its own.

Theorem 2.6 (Unsolvability Conditions). Let n = p1p2 · · · p`, with p1, p2, . . . , p` primes. For p ∈
{p1, p2 . . . p`}, denote n′ = n/p, b′1 = b1/p (if p | b1) and b′2 = b2/p (if p | b2). Then the system of
equations (2.1) has no solution (z1, z2, z3) under the following conditions.



4 VINCENT GIRARD, MATILDE N. LALÍN, AND SIVASANKAR C. NAIR

General unsolvability condition.

I) If b1b2 < 0.

Unsolvability conditions modulo 2.

II.1) If 2 - n, 2 | b1 and 2 - (r + s).
II.1’) If 2 - n, (v2(b1), v2(b2)) = (0, 1), r ≡ 2 (mod 4), and b1 ≡ 1 (mod 4).

For II.2) we suppose that 2 | n.

• If (v2(b1), v2(b2)) = (0, 0) and any one of the following is satisfied
II.2.a) 2 - (r + s) and b1 ≡ 3 (mod 4),

II.2.a’) 2 | r and b1 6≡ 1 (mod 8).
• If (v2(b1), v2(b2)) = (0, 1) and any one of the following is satisfied
II.2.b) 2 - r and b1 ≡ 1 (mod 4),

II.2.b’) r ≡ 2 (mod 4) and b1 6≡ 5 (mod 8),
II.2.b”) 4 | r and b1 6≡ 1 (mod 8).
• If (v2(b1), v2(b2)) = (1, 0) and any one of the following is satisfied
II.2.c) 2 - (r + s) and n′b′1(r + s) ≡ 1 (mod 4),

II.2.c’) 2 | r and n′b′1(r − s) 6≡ 1 (mod 8).
• If (v2(b1), v2(b2)) = (1, 1) and any one of the following is satisfied

II.2.d) 2 | s and n′b′1(r + s) ≡ 3 (mod 4),
II.2.d’) 2 | r and n′b′1(r + s) 6≡ 7 (mod 8).

Unsolvability conditions modulo p for p ∈ {p1, . . . , p`}.
• If (vp(b1), vp(b2)) = (0, 0) and any one of the following is satisfied

III.a) p - r and

(
b1
p

)
= −1,

III.a’) p - (r + s) and

(
b2
p

)
= −1,

III.a”) p - (r − s) and

(
b1b2
p

)
= −1.

• If (vp(b1), vp(b2)) = (0, 1) and any one of the following is satisfied

III.b) p | r and

(
b1
p

)
= −1,

III.b’) p - (r + s) and

(
n′b1b

′
2(r + s)

p

)
= −1,

III.b”) p - (r − s) and

(
−n′b′2(r − s)

p

)
= −1.

• If (vp(b1), vp(b2)) = (1, 0) and any one of the following is satisfied

III.c) p - r and

(
2n′b′1b2r

p

)
= −1,

III.c’) p | (r + s) and

(
b2
p

)
= −1,

III.c”) p - (r − s) and

(
n′b′1(r − s)

p

)
= −1.

• If (vp(b1), vp(b2)) = (1, 1) and any one of the following is satisfied

III.d) p - r and

(
−2n′b′2r

p

)
= −1,



NON-θ-CONGRUENT NUMBERS WITH ARBITRARILY MANY PRIME FACTORS 5

III.d’) p - (r + s) and

(
−n′b′1(r + s)

p

)
= −1,

III.d”) p | (r − s) and

(
b′1b
′
2

p

)
= −1.

Before proceeding with the proof of Theorem 2.6 we will prove some auxiliary results.

Lemma 2.7. Let (z1, z2, z3) ∈ Q∗ × Q∗ × Q∗ be a solution to the system (2.1). Then there exist
a1, a2, a3 ∈ Z and m, d positive integers with

z1 =
a1
d
, z2 =

a2
d
, z3 =

a3
md

,

such that
(a1, d) = (a2, d) = (a3, d) = (a3,m) = (m, 2nr(r + s)d) = 1,

m | b1, m | b2, and m | (r − s).

Proof. Write zi = ai
di

for i = 1, 2, 3 as irreducible fractions with di > 0. After clearing denominators,

the first equation in (2.1) becomes

(2.3) b1a
2
1d

2
2 − b2a22d21 = n(r − s)d21d22.

By simple inspection, we conclude that d21 | b1d22 and d22 | b2d21. Since b1, b2 are square-free, we must
have d1 | d2 and d2 | d1 which implies d1 = d2. We set d := d1 = d2. We now look at the second
equation in (2.1). After clearing denominators,

b1a
2
1d

2
3 − b1b2a23d2 = −n(r + s)d2d23.

We then conclude that d2 | b1d23, and since b1 is square-free, d | d3. Thus we write d3 = md. By
dividing by d2, we obtain

b1a
2
1m

2 − b1b2a23 = −n(r + s)d2m2.

From this we conclude that m2 | b1b2 and since the bi are square-free, m | b1 and m | b2. In particular
m is square-free. Let p be a prime dividing (m,n(r + s)d). Then vp(b1a

2
1m

2) = 3 and vp(b1b2a
2
3) = 2,

but vp(n(r + s)d2m2) ≥ 3, which leads to a contradiction. Therefore, (m,n(r + s)d) = 1. Now we
look at Equation (2.2) which yields

b2a
2
2m

2 − b1b2a23 = −2nrd2m2.

Applying the same ideas, (m, 2r) = 1.
Back to Equation (2.3), since m | b1, b2, we have that m | n(r−s)d4, which implies that m | (r−s).

�

Remark 2.8. We rewrite System (2.1) and Equation (2.2) as

b1a
2
1 − b2a22 = n(r − s)d2,(2.4)

b1a
2
1m

2 − b1b2a23 = −n(r + s)d2m2,(2.5)

b2a
2
2m

2 − b1b2a23 = −2nrd2m2.(2.6)

Lemma 2.9. With the previous notation, we have that

(b1, d) = (b2, d) = 1.

Proof. Let p be a prime such that p | (b1, d). By Equation (2.4), we conclude that p | b2 since
(d, a2) = 1. By Equation (2.5), p2 | b1a21m2, but this is a contradiction since (d, a1) = (d,m) = 1 and
b1 is square-free. Analogously, p | (b2, d) also leads to a contradiction. �
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Corollary 2.10. With the previous notation,

b1 | n(r + s)m, b2 | 2nrm.

Proof. Equation (2.5) implies that b1 | n(r + s)d2m2. We conclude that b1 | n(r + s)m because
(b1, d) = 1 and b1 is square-free.

Equation (2.6) implies that b2 | 2nrd2m2. We conclude that b2 | 2nrm because (b2, d) = 1 and b2
square-free. �

Lemma 2.11. With the previous notation,

(a1, a2) | (r − s), (a1, a3) | (r + s), (a2, a3) | 2r.

Proof. Let p be a prime dividing both a1 and a2. By looking at Equation in (2.4), p2 | n(r − s)d2.
Since (ai, d) = 1 and n is square-free, we conclude that p | (r − s). Thus (a1, a2) | (r − s).

The other two statements follow similarly by looking at Equations (2.5) and (2.6). �

We have now all the necessary elements to proceed to the proof of Theorem 2.6.

Proof of Theorem 2.6. I) We have b1b2 < 0. The right-hand sides of Equations (2.5) and (2.6) are
negative. If b1b2 < 0, the left-hand side of one of these two equations is positive, leading to a
contradiction.

II.1) We have 2 - n, 2 | b1, and 2 - (r + s). By Lemma 2.7, 2 - m. By Corollary 2.10, we obtain a
contradiction since 2 | b1 and b1 | n(r + s)m.

II.1’) We have 2 - n, (v2(b1), v2(b2)) = (0, 1), r ≡ 2 (mod 4), and b1 ≡ 1 (mod 4). By Lemma
2.7, 2 - m and by Lemma 2.9, 2 - d. By dividing Equation (2.6) by 2, we obtain b′2(a

2
2m

2 − b1a23) =
−nrd2m2 ≡ 2 (mod 4), which leads to a contradiction for b1 ≡ 1 (mod 4) and b′2 odd.

II.2.a) We have 2 | n, (v2(b1), v2(b2)) = (0, 0), 2 - (r + s) and b1 ≡ 3 (mod 4). By Lemma 2.7,
2 - m. Since 2 - (r + s) and (r, s) = 1, we also have that 2 - (r − s). Suppose that 2 | d. By Lemma
2.7, 2 - a1, a2, a3. By looking at Equation (2.6), since 2 - b2 and 4 | 2nrd2m2, we conclude that
a22m

2 ≡ b1a
2
3 (mod 4), and since b1 ≡ 3 (mod 4) and m, a2, a3 are odd, we get a contradiction.

Now suppose that 2 - d. Equation (2.5) then implies that a21m
2 − b2a23 ≡ 2 (mod 4) since b1 is

odd. The only possible case is with a1, a3 odd and b2 ≡ 3 (mod 4). Thus Equation (2.4) becomes
3a21 − 3a22 ≡ 2 (mod 4) which has no solution.

II.2.a’) We have 2 | n, (v2(b1), v2(b2)) = (0, 0), 2 | r and b1 6≡ 1 (mod 8). By Lemma 2.7, 2 - m.
Since 2 | r, we have that 2 - (r + s). By looking at Equation (2.6), we get that a22 ≡ b1a

2
3 (mod 8)

since b2 is odd. Since b1 6≡ 1 (mod 8), this is only possible if a2, a3 are even. Now we look at Equation
(2.4). Since 2 | a2 and 2 | n, we have that 2 | b1a21. But this implies that a1 is even, since b1 is odd.
By Lemma 2.11, (a1, a2) | (r − s) and we obtain a contradiction since r − s is odd.

II.2.b) We have 2 | n, (v2(b1), v2(b2)) = (0, 1), 2 - r, and b1 ≡ 1 (mod 4). By Lemma 2.7, 2 - m.
Since 2 | b2, Lemma 2.9 implies 2 - d. By dividing Equation (2.6) by 2, b′2(a

2
2m

2−b1a23) = −nrd2m2 ≡ 2
(mod 4). This implies that a22 − a23 ≡ 2 (mod 4), which has no solution.

II.2.b’) We have 2 | n, (v2(b1), v2(b2)) = (0, 1), r ≡ 2 (mod 4), and b1 6≡ 5 (mod 8). By Lemma
2.7, 2 - m. Since 2 | b2, Lemma 2.9 implies 2 - d. Since 2 | r, we have that 2 - (r ± s). By looking
at Equation (2.4), we have b1a

2
1 − b2a22 = n(r − s)d2 ≡ 2 (mod 4) and we conclude that 2 | a1 and

2 - a2. Analogously, by looking at Equation (2.5), 2 - a3. By dividing Equation (2.6) by 2, we obtain
b′2(a

2
2m

2 − b1a23) = −nrd2m2 ≡ 4 (mod 8), leading to a contradiction if b1 6≡ 5 (mod 8).
II.2.b”) We have 2 | n, (v2(b1), v2(b2)) = (0, 1), 4 | r, and b1 6≡ 1 (mod 8). This is proved

analogously to the previous case. At the end, by dividing Equation (2.6) by 2, we obtain b′2(a
2
2m

2 −
b1a

2
3) = −nrd2m2 ≡ 0 (mod 8), leading to a contradiction if b1 6≡ 1 (mod 8).
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II.2.c) We have 2 | n, (v2(b1), v2(b2)) = (1, 0), 2 - (r+ s), and n′b′1(r+ s) ≡ 1 (mod 4). By Lemma
2.7, 2 - m. Since 2 | b1, Lemma 2.9 implies 2 - d. Since 2 - (r + s), then 2 - (r − s). By looking
at Equation (2.4), 2 | a2 and 2 - a1. By dividing Equation (2.5) by 2 and by multiplying by b′1 we
obtain (b′1)

2(a21m
2 − b2a23) = −n′b′1(r + s)d2m2 ≡ −1 (mod 4) leading to 1 − b2a23 ≡ −1 (mod 4), a

contradiction.
II.2.c’) We have 2 | n, (v2(b1), v2(b2)) = (1, 0), 2 | r, and n′b′1(r− s) 6≡ 1 (mod 8). By Lemma 2.7,

2 - m. Since 2 | b1, Lemma 2.9 implies 2 - d. Since 2 | r, then 2 - (r− s). By looking at Equation (2.6)
modulo 8, 4 | a2 and 2 | a3. By dividing Equation (2.4) by 2 and multiplying by b′1, and by looking
modulo 8, we obtain (b′1)

2a21 ≡ n′b′1(r − s)d2 6≡ 1 (mod 8), but this is a contradiction since (b′1a1)
2 is

a square and can only be ≡ 1, 4, 0 (mod 8) but n′b′1(r − s)d2 is odd.
II.2.d) We have 2 | n, (v2(b1), v2(b2)) = (1, 1), 2 | s, and n′b′1(r + s) ≡ 3 (mod 4). By Lemma

2.7, 2 - m. Since 2 | b1, Lemma 2.9 implies 2 - d. Since 2 | s, we have that 2 - r(r ± s). By dividing
Equation (2.6) by 2, b′2(a

2
2m

2 − b1a23) = −nrd2m2 ≡ 2 (mod 4), and this is only possible when 2 | a2
and 2 - a3. Lemma 2.11 implies that 2 - a1, since 2 | a2 and r − s is odd. By dividing Equation (2.5)
by 2 and by multiplying by b′1, we obtain (b′1)

2(a21m
2 − b2a23) = −n′b′1(r + s)d2m2 ≡ 1 (mod 4) and

1− b2 ≡ 1 (mod 4), a contradiction since b2 is even and square-free.
II.2.d’) We have 2 | n, (v2(b1), v2(b2)) = (1, 1), 2 | r and n′b′1(r + s) 6≡ 7 (mod 8). By Lemma 2.7,

2 - m. Since 2 | b1, Lemma 2.9 implies 2 - d. Since 2 | r, then 2 - (r± s). By looking at Equation (2.6)
modulo 8, 2 | a2 and 2 | a3. Lemma 2.11 implies that 2 - a1, since 2 | a2 and r− s is odd. By dividing
Equation (2.5) by 2 and by multiplying by b′1, we have (b′1)

2(a21m
2 − b2a23) = −n′b′1(r + s)d2m2 6≡ 7

(mod 8) leading to a contradiction.

III.a) We have (vp(b1), vp(b2)) = (0, 0), p - r, and

(
b1
p

)
= −1. Multiply Equation (2.6) by b2 and

look modulo p. We get a contradiction unless p | a3 and p | a2. But then Lemma 2.11 implies that
p | 2r, a contradiction.

III.a’) We have (vp(b1), vp(b2)) = (0, 0), p - (r + s), and

(
b2
p

)
= −1. This is proved analogously

to the previous case by multiplying Equation (2.5) by b1.

III.a”) We have (vp(b1), vp(b2)) = (0, 0), p - (r− s), and

(
b1b2
p

)
= −1. This is proved analogously

to the previous case by multiplying Equation (2.4) by b1.

III.b) We have (vp(b1), vp(b2)) = (0, 1), p | r, and

(
b1
p

)
= −1. By Lemma 2.7, p - m. Since p | b2,

Lemma 2.9 implies p - d. By multiplying Equation (2.6) by b′2, by dividing by p, and by looking
modulo p, p | a2, a3. By looking at Equation (2.4), p | a1. By Lemma 2.11, p | (r− s) and since p | r,
then p | s, and we get a contradiction.

III.b’) We have (vp(b1), vp(b2)) = (0, 1), p - (r + s), and

(
n′b1b

′
2(r + s)

p

)
= −1. By Lemma 2.7,

p - m. Since p | b2, Lemma 2.9 implies p - d. By looking at Equation (2.5) modulo p, p | a1. Now
multiply Equation (2.5) by b1b

′
2 and divide by p. We look modulo p and we get a contradiction.

III.b”) We have (vp(b1), vp(b2)) = (0, 1), p - (r − s), and

(
−n′b′2(r − s)

p

)
= −1. This is proved

analogously to the previous case by multiplying Equation (2.4) by b′2 and by dividing it by p.

III.c) We have (vp(b1), vp(b2)) = (1, 0), p - r, and

(
2n′b′1b2r

p

)
= −1. This is proved analogously

to the previous case by multiplying Equation (2.6) by b′1b2 and by dividing it by p.



8 VINCENT GIRARD, MATILDE N. LALÍN, AND SIVASANKAR C. NAIR

III.c’) We have (vp(b1), vp(b2)) = (1, 0), p | (r + s), and

(
b2
p

)
= −1. By Lemma 2.7, p - m.

Since p | b1, Lemma 2.9 implies p - d. By multiplying Equation (2.5) by b′1, by dividing by p, and by
looking modulo p, p | a1, a3. By looking at Equation (2.4), p | a2. By Lemma 2.11, p | (r − s) and
since p | (r + s), then p | r, s and we get a contradiction.

III.c”) We have (vp(b1), vp(b2)) = (1, 0), p - (r − s) and

(
n′b′1(r − s)

p

)
= −1. This is proved

analogously to III.b’) by multiplying Equation (2.4) by b′1 and by dividing it by p.

III.d) We have (vp(b1), vp(b2)) = (1, 1), p - r, and

(
−2n′b′2r

p

)
= −1. This is proved analogously

to the previous case by multiplying Equation (2.6) by b′2 and by dividing it by p.

III.d’) We have (vp(b1), vp(b2)) = (1, 1), p - (r + s), and

(
−n′b′1(r + s)

p

)
= −1. This is proved

analogously to the previous case by multiplying Equation (2.5) by b′1 and by dividing it by p.

III.d”) We have (vp(b1), vp(b2)) = (1, 1), p | (r − s), and

(
b′1b
′
2

p

)
= −1. By Lemma 2.7, p - m.

Since p | b1, Lemma 2.9 implies p - d. By multiplying Equation (2.4) by b′2, by dividing by p, and by
looking modulo p, p | a1, a2. By looking at Equation (2.5), p2 | n(r + s) and then p | (r + s). Since
p | (r − s), then p | r, s and we get a contradiction.

�

3. Proof of the main results

We proceed to the proof of Theorem 1.3. For this, we will use Theorem 2.6 for the particular case
θ = π/3.

Recall that if p | b, we denote b/p by b′.

Proof of Theorem 1.3. We first notice that the condition

(
pj
pi

)
= −1 for i < j can be easily extended

to i 6= j due to the Law of Quadratic Reciprocity, which guarantees that the order of i and j does
not matter when computing the Legendre symbol, since pi, pj ≡ 1 (mod 4). More precisely, for the
selection of primes in the statement, we summarize the following properties.

(1) Since pi ≡ 5 (mod 24), we have(
−1

pi

)
= 1,(

2

pi

)
= −1,(

3

pi

)
= −1,(

pj
pi

)
= −1 for i 6= j.

(2) Since n is a product of an odd number of primes,(
n′

pi

)
= 1 for all i.
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Recall from Remark 2.5 that R := {(−1)α2βpε11 . . . pεkk | α, β, ε1, . . . , εk ∈ {0, 1}} is a system of
representatives for Q(S, 2). From Theorem 2.2, we have to consider the system of equations (2.1) for
(b1, b2) ∈ R× R. The primes to be considered are the given ones p1, . . . , p2`+1 that divide n and the
remaining ones p2`+2, . . . , pk that divide r, (r − s) and (r + s) but do not divide n.

Since θ = π/3, we have that r = 2 and s = 1. Therefore, r − s = 1 and r + s = 3. Then we need
to examine the solvability of (2.1) with b1, b2 elements of

R := {(−1)α2β3γpε11 · · · p
ε2`+1

2`+1 | α, β, γ, ε1, . . . , ε2`+1 ∈ {0, 1}}.
By Lemma 2.7, m | (r − s), and therefore m = 1. By Corollary 2.10 b1 | 3n and b2 | 4n.
We will now group the possibilites of b1 and b2 into four cases depending on the number of primes

that divide them. As seen above, the primes that can divide b1 are 3, p1, p2, . . . , p2`+1 and those that
can divide b2 are 2, p1, p2, . . . , p2`+1. For what it follows, pi denotes a prime of the set {p1, . . . , p2`+1}.
We consider the following cases:

(1) b1 and b2 are both divisible by an odd number of primes (including 3 and 2
respectively).
• Suppose ∃pi such that (vpi(b1), vpi(b2)) = (0, 0). Then,(

b1
pi

)
=

(
b2
pi

)
= −1,

and System (2.1) is unsolvable by Theorem 2.6.III.a.
• Suppose ∃pi such that (vpi(b1), vpi(b2)) = (1, 0). Then,(

b′1
pi

)
= 1,

(
b2
pi

)
= −1 =⇒

(
2n′b′1b2r

pi

)
= −1,

and System (2.1) is unsolvable by Theorem 2.6.III.c.
• Suppose ∃pi such that (vpi(b1), vpi(b2)) = (1, 1). Then,(

b′1
pi

)
=

(
b′2
pi

)
= 1 =⇒

(
−n′b′1(r + s)

pi

)
= −1,

and System (2.1) is unsolvable by Theorem 2.6.III.d’.
Thus, if the system is to be solvable, (vpi(b1), vpi(b2)) = (0, 1) for 1 ≤ i ≤ 2` + 1. Hence,

in this case, we must have that all primes pi dividing n must also divide b2 and must not
divide b1. Since both b1, b2, n are products of an odd number of primes and we have the
extra condition b1b2 > 0 for a solution to exist (by Theorem 2.6.I), we are left with only the
following cases:

(b1, b2) ∈ {(3, n), (−3,−n)}.
Consider (b1, b2) = (3, n). Equation (2.4) can be written as

3a21 = n(a22 + d2).

Since b1 = 3, Lemma 2.9 implies that 3 - d and d2 ≡ 1 (mod 3). Since 3 - n, the right-hand
side of the above equation is never divisible by 3, leading to a contradiction.

Hence, the only possibility in this case is that (b1, b2) = (−3,−n) =
(
r+s
s−r ,−n(r − s)

)
.

(2) b1 is divisible by an odd number of primes and b2 by an even number of primes.
• Suppose ∃pi such that (vpi(b1), vpi(b2)) = (0, 0). Then,(

b1
pi

)
= −1,

(
b2
pi

)
= 1,

and System (2.1) is unsolvable by Theorem 2.6.III.a.
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• Suppose ∃pi such that (vpi(b1), vpi(b2)) = (0, 1). Then,(
b1
pi

)
=

(
b′2
pi

)
= −1 =⇒

(
n′b1b

′
2(r + s)

pi

)
= −1,

and System (2.1) is unsolvable by Theorem 2.6.III.b’.
• Suppose ∃pi such that (vpi(b1), vpi(b2)) = (1, 1). Then,(

b′1
pi

)
= 1,

(
b′2
pi

)
= −1 =⇒

(
−n′b′1(r + s)

pi

)
= −1,

and System (2.1) is unsolvable by Theorem 2.6.III.d’.
Therefore, we obtain that (vpi(b1), vpi(b2)) = (1, 0) for 1 ≤ i ≤ 2` + 1 if the system is to be
solvable. Hence, in this case, all primes pi dividing n must also divide b1 and must not divide
b2. This time we are left with the following cases:

(b1, b2) ∈ {(n, 1), (−n,−1)}.
Consider (b1, b2) = (−n,−1). After some simplification Equation (2.5) becomes

a21 + a23 = 3d2.

By looking at the above equation modulo 3, we conclude that 3 | a1, a3. Looking again at the
right-hand side, 3 | d2. But then we have that 3 | a1 and 3 | d, a contradiction by Lemma 2.7.

We are left with the only possibility, (b1, b2) = (n, 1) =
(
n(r − s), 2r

r−s

)
in Q(S, 2)×Q(S, 2).

(3) b1 is divisible by an even number of primes and b2 by an odd number of primes.
• Suppose ∃pi such that (vpi(b1), vpi(b2)) = (0, 0). Then,(

b1
pi

)
= 1,

(
b2
pi

)
= −1,

and System (2.1) is unsolvable by Theorem 2.6.III.a’.
• Suppose ∃pi such that (vpi(b1), vpi(b2)) = (0, 1). Then,(

b1
pi

)
=

(
b′2
pi

)
= 1 =⇒

(
n′b1b

′
2(r + s)

pi

)
= −1,

and System (2.1) is unsolvable by Theorem 2.6.III.b’.
• Suppose ∃pi such that (vpi(b1), vpi(b2)) = (1, 0). Then,(

b′1
pi

)
=

(
b2
pi

)
= −1 =⇒

(
n′b′1(r − s)

pi

)
= −1,

and System (2.1) is unsolvable by Theorem 2.6.III.c”.
Thus, (vpi(b1), vpi(b2)) = (1, 1) for 1 ≤ i ≤ 2`+ 1, which means all primes pi must divide both
b1 and b2. We have the following possibilities:

(b1, b2) ∈ {(3n, n), (−3n,−n)}.
Consider (b1, b2) = (3n, n). Equation (2.4) becomes

3a21 = a22 + d2.

Since b1 = 3n, Lemma 2.9 implies that 3 - d. Thus d2 ≡ 1 (mod 3) and the right-hand side
of the above equation is never divisible by 3, leading to a contradiction.

Therefore, we are left with the only possibility of (b1, b2) = (−3n,−n) = (−n(r+ s),−2nr)
in Q(S, 2)×Q(S, 2).

(4) Both b1 and b2 are divisible by an even number of primes.
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• Suppose ∃pi such that (vpi(b1), vpi(b2)) = (0, 1). Then,(
b1
pi

)
= 1,

(
b′2
pi

)
= −1 =⇒

(
−n′b′2(r − s)

pi

)
= −1,

and System (2.1) is unsolvable by Theorem 2.6.III.b”.
• Suppose ∃pi such that (vpi(b1), vpi(b2)) = (1, 0). Then,(

b′1
pi

)
= −1,

(
b2
pi

)
= 1 =⇒

(
n′b′1(r − s)

pi

)
= −1,

and System (2.1) is unsolvable by Theorem 2.6.III.c”.
• Suppose ∃pi such that (vpi(b1), vpi(b2)) = (1, 1). Then,(

b′1
pi

)
=

(
b′2
pi

)
= −1 =⇒

(
−2n′b′2r

pi

)
= −1,

and System (2.1) is unsolvable by Theorem 2.6.III.d.
Therefore, (vpi(b1), vpi(b2)) = (0, 0) for 1 ≤ i ≤ 2` + 1, which means none of the primes pi
divide either b1 or b2. We have the following possibilities:

(b1, b2) ∈ {(1, 1), (−1,−1)}.

Consider (b1, b2) = (−1,−1). Replacing these values in Equation (2.5), we have:

a21 + a23 = 3nd2.

By looking at the above equation modulo 3, we conclude that 3 | a1, a3. Looking again at the
right-hand side, 3 | d2. But then we have that 3 | a1 and 3 | d, a contradiction by Lemma 2.7.

Hence we are left with (b1, b2) = (1, 1).

We have shown that the system of equations (2.1) has a solution only when (b1, b2) ∈ {(1, 1), (n, 1), (−3,−n), (−3n,−n)},
which are the images of the torsion points of En,θ. Since the map defined in Theorem 2.2 is injective,
these are the only rational points on En,θ(Q). Thus its rank has to be zero and, by Proposition 2.1,
n is not π/3-congruent.

This concludes the proof of Theorem 1.3. �

We now proceed to the proof of Theorem 1.4. In this case, we will use Theorem 2.6 when θ = 2π/3.

Proof of Theorem 1.4. For the selection of odd primes in the statement, we summarize the following
properties.

(1) Since pi ≡ 13 (mod 24), we have(
−1

pi

)
= 1,(

2

pi

)
= −1,(

3

pi

)
= 1,(

pj
pi

)
= −1 for i 6= j.



12 VINCENT GIRARD, MATILDE N. LALÍN, AND SIVASANKAR C. NAIR

(2) Since n is a product of an odd number of primes (including 2),(
n′

pi

)
= 1 for all i.

Since θ = 2π/3, we have that r = 2 and s = −1. Therefore, r − s = 3 and r + s = 1. Then we
need to examine the solvability of (2.1) with b1, b2 elements of

R := {(−1)α2β3γpε11 · · · p
ε2`
2` | α, β, γ, ε1, . . . , ε2` ∈ {0, 1}}.

By Lemma 2.7, m | (r − s), and therefore m = 1 or m = 3. By Lemma 2.7 and Corollary 2.10,
3 | b1, b2 iff m = 3.

For the time being we will ignore the factor of 3 dividing bi when m = 3. For what it follows, pi
denotes a prime of the set {p1, . . . , p2`}. We consider the following cases:

(1) b1 and b2 are both divisible by an odd number of primes (including 2 but excluding
3).
• Suppose ∃pi such that (vpi(b1), vpi(b2)) = (0, 0). Then System (2.1) is unsolvable by

Theorem 2.6.III.a.
• Suppose ∃pi such that (vpi(b1), vpi(b2)) = (0, 1). Then System (2.1) is unsolvable by

Theorem 2.6.III.b’.
• Suppose ∃pi such that (vpi(b1), vpi(b2)) = (1, 0). Then System (2.1) is unsolvable by

Theorem 2.6.III.c.
Thus, if the system is to be solvable, (vpi(b1), vpi(b2)) = (1, 1) for 1 ≤ i ≤ 2`. This implies

that

(b1, b2) ∈ {(±n,±n), (±3n,±3n)}.
Now consider the unsolvability conditions modulo 2. Since n′ is odd, (n′)2 ≡ 1 (mod 8) and
Theorem 2.6.II.2.d’ gives a contradiction unless (b1, b2) = (−n,−n) = (−n(r + s),−2nr) in
Q(S, 2)×Q(S, 2).

(2) b1 is divisible by an odd number of primes and b2 by an even number of primes.
• Suppose ∃pi such that (vpi(b1), vpi(b2)) = (0, 0). Then System (2.1) is unsolvable by

Theorem 2.6.III.a.
• Suppose ∃pi such that (vpi(b1), vpi(b2)) = (0, 1). Then System (2.1) is unsolvable by

Theorem 2.6.III.b”.
• Suppose ∃pi such that (vpi(b1), vpi(b2)) = (1, 1). Then System (2.1) is unsolvable by

Theorem 2.6.III.d.
Therefore, we obtain that (vpi(b1), vpi(b2)) = (1, 0) for 1 ≤ i ≤ 2`. Hence, in this case,

(b1, b2) ∈ {(±n,±1), (±3n,±3)}.

Applying Theorem 2.6.II.2.c’ gives a contradiction unless (b1, b2) = (3n, 3) =
(
n(r − s), 2r

r−s

)
in Q(S, 2)×Q(S, 2).

(3) b1 is divisible by an even number of primes and b2 by an odd number of primes.
• Suppose ∃pi such that (vpi(b1), vpi(b2)) = (0, 0). Then System (2.1) is unsolvable by

Theorem 2.6.III.a’.
• Suppose ∃pi such that (vpi(b1), vpi(b2)) = (1, 0). Then System (2.1) is unsolvable by

Theorem 2.6.III.c”.
• Suppose ∃pi such that (vpi(b1), vpi(b2)) = (1, 1). Then System (2.1) is unsolvable by

Theorem 2.6.III.d’.
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Thus, (vpi(b1), vpi(b2)) = (0, 1) for 1 ≤ i ≤ 2`, and we have the following possibilities:

(b1, b2) ∈ {(±1,±n), (±3,±3n)}.

Now Theorem 2.6.II.2.b’ gives a contradiction except for (b1, b2) = (−3,−3n) =
(
r+s
s−r ,−n(r − s)

)
in Q(S, 2)×Q(S, 2).

(4) Both b1 and b2 are divisible by an even number of primes.
• Suppose ∃pi such that (vpi(b1), vpi(b2)) = (0, 1). Then System (2.1) is unsolvable by

Theorem 2.6.III.b’.
• Suppose ∃pi such that (vpi(b1), vpi(b2)) = (1, 0). Then System (2.1) is unsolvable by

Theorem 2.6.III.c.
• Suppose ∃pi such that (vpi(b1), vpi(b2)) = (1, 1). Then System (2.1) is unsolvable by

Theorem 2.6.III.d.
Therefore, (vpi(b1), vpi(b2)) = (0, 0) for 1 ≤ i ≤ 2` and

(b1, b2) ∈ {(±1,±1), (±3,±3)}.

Applying Theorem 2.6.II.2.a’ gives a contradiction unless (b1, b2) = (1, 1).

We have shown that the system of equations (2.1) has a solution only when (b1, b2) ∈ {(1, 1), (3n, 3), (−3,−3n), (−n,−n)},
which are the images of the torsion points of En,θ. Since the map defined in Theorem 2.2 is injective,
these are the only rational points on En,θ(Q). Thus its rank has to be zero and, by Proposition 2.1,
n is not 2π/3-congruent.

This concludes the proof of Theorem 1.4. �

As a final note, we can combine Theorem 1.3 with Dirichlet’s Theorem on arithmetic progressions
and the Chinese Remainder Theorem in order to prove the following result.

Corollary 3.1. There exists an infinite sequence of distinct primes such that any product of an odd
number of primes in this sequence cannot be a π/3-congruent number.

Proof. To prove this result, it suffices to show the existence of an infinite sequence of primes pi such

that pi ≡ 5 (mod 24) and

(
pj
pi

)
= −1 for j < i, since the product of any odd number of such primes

is not π/3-congruent by Theorem 1.3.
First notice that by Dirichlet’s Theorem on arithmetic progressions, there are infinitely many

primes congruent to 5 (mod 24). Also notice that by Quadratic Reciprocity,

(
pj
pi

)
=

(
pi
pj

)
.

We construct the set by induction. Suppose that we have already k primes p1, . . . , pk that satisfy
the desired conditions. For each 1 ≤ i ≤ k, let si be an integer that is a quadratic non-residue
modulo pi. By the Chinese Remainder Theorem, we can find an integer x such that x ≡ si (mod pi)
for 1 ≤ i ≤ k and x ≡ 5 (mod 24). Applying Dirichlet’s Theorem, we obtain an infinite sequence of
primes p ≡ x (mod 24p1 · · · pk). We can choose any of them to be pk+1. This process can be repeated
indefinitely.

This concludes the proof of the corollary. �

A similar corollary can be deduced from Theorem 1.4.

4. Conclusion

Several directions of further exploration arise from this work. Theorem 2.6 may be used to obtain
results for n a product of a few primes. For example, one can directly recover known results such
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as the fact that p ≡ 5, 7, 19 (mod 24) are not π/3-congruent and p ≡ 7, 11 (mod 24) are not 2π/3-
congruent. One can further prove that n = 2p is not π/3-congruent for p ≡ 19 (mod 24) and
that n = 2p is not 2π/3-congruent for p ≡ 13, 19 (mod 24). The procedure for these proofs is
straightforward but long.

A natural question to ask is whether similar results to Theorems 1.3 and 1.4 can be found with
different congruence conditions and/or different values of θ. It would be also interesting to explore
other methods for doing analogous constructions in the case of classical non-congruent numbers, such
as the ones considered in [RSY13, RSY15], and see how they can be adapted to other values of θ.
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