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Mahler measure and Lehmer’s question

Looking for large primes, Pierce [11] proposed the following idea in 1918.
Consider P ∈ Z[x] monic, and write

P (x) =
∏

i

(x− αi).

Then, let us look at
∆n =

∏

i

(αn
i − 1).

The αi are integers over Z. By applying Galois theory, it is easy to see that ∆n ∈ Z. Note
that if P (x) = x − 2, we get the sequence ∆n = 2n − 1. Thus, we recover the example of
Mersenne numbers. The idea is to look for primes among the factors of ∆n. The prime
divisors of such integers must satisfy some congruence conditions that are quite restrictive,
hence they are easier to factorize than a randomly given number of the same size.

In order to minimize the number of trial divisions, the sequence ∆n should grow slowly.
Lehmer [10] studied ∆n+1

∆n
, observed that

lim
n→∞

|αn+1 − 1|
|αn − 1| =

{ |α| if |α| > 1
1 if |α| < 1

and suggested the following definition.

Definition 1 Given P ∈ C[x], such that

P (x) = a
∏

i

(x− αi),

define the measure 2 of P as

M(P ) = |a|
∏

i

max{1, |αi|}. (1)

The logarithmic measure is defined as3

m(P ) = log M(P ) = log |a|+
∑

i

log+ |αi|. (2)

1mlalin@math.ubc.ca– http://www.math.ubc.ca/~mlalin
2The name Mahler came later after the person who successfully extended this definition to the several-

variable case.
3log+ x = log max{1, x} for x ∈ R≥0
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When does M(P ) = 1 for P ∈ Z[x]? We have

Lemma 2 (Kronecker) Let P =
∏

i(x − αi) ∈ Z[x], if |αi| ≤ 1, then the αi are zero or
roots of the unity.

By Kronecker’s Lemma, P ∈ Z[x], P 6= 0, then M(P ) = 1 if and only if P is the
product of powers of x and cyclotomic polynomials. This statement characterizes integral
polynomials whose Mahler measure is 1.

Lehmer found the example

m(x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1) = log(1.176280818 . . .) = 0.162357612 . . .

and asked the following (Lehmer’s question, 1933):
Is there a constant C > 1 such that for every polynomial P ∈ Z[x] with M(P ) > 1, then

M(P ) ≥ C?
Lehmer’s question remains open nowadays. His 10-degree polynomial remains the best

possible result.
The use of this polynomial has led to the discovery of the prime number 1, 794, 327, 140, 357

but bigger primes were discovered with the use of other polynomials.

Mahler measure of several-variable polynomials

Definition 3 For P ∈ C[x1, . . . , xn], the (logarithmic) Mahler measure is defined by

m(P ) :=
∫ 1

0
. . .

∫ 1

0
log |P (e2πiθ1 , . . . , e2πiθn)| dθ1 . . . dθn =

1
(2πi)n

∫

Tn

log |P (x1, . . . , xn)| dx1

x1
. . .

dxn

xn

(3)
Because of Jensen’s equality

∫ 1
0 log |e2πiθ − α| dθ = log+ |α| = log max{1, |α|}, we recover

the one-varible case.

It is possible to prove that this integral is not singular and that m(P ) always exists.

Some properties

Proposition 4 For P, Q ∈ C[x1, . . . , xn]

m(P ·Q) = m(P ) + m(Q). (4)

It is also true that m(P ) ≥ 0 if P has integral coefficients.
Mahler measure is related to heights. Indeed, if α is an algebraic number, and Pα is its

minimal polynomial over Q, then

m(Pα) = [Q(α) : Q] h(α),

where h is the logarithmic Weil height. This identity also extends to several-variable
polynomials and heights in hypersurfaces.

Let us also mention the following result:
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Theorem 5 (Boyd–Lawton) For P ∈ C[x1, . . . , xn]

lim
k2→∞

. . . lim
kn→∞

m(P (x, xk2 , . . . , xkn)) = m(P (x1, . . . , xn)). (5)

In particular Lehmer’s problem in several variables reduces to the one-variable case.

Examples

For the several-variable case, it seems that there is no simpler general formula than
the integral defining the measure. However, many examples have been found relating the
Mahler measure of polynomials in two variables to special values of L-functions in quadratic
characters, L-functions on elliptic curves and dilogarithms.

• Smyth [13]

m(x + y + 1) =
3
√

3
4π

L(χ−3, 2) = L′(χ−3,−1), (6)

where

L(χ−3, s) =
∞∑

n=1

χ−3(n)
ns

and χ−3(n) =





1 if n ≡ 1 mod 3
−1 if n ≡ −1 mod 3

0 if n ≡ 0 mod 3

• Smyth [1]

m(x + y + z + 1) =
7

2π2
ζ(3). (7)

• Boyd [2], Deninger [5], Rodriguez-Villegas [12]

m

(
x +

1
x

+ y +
1
y
− k

)
?=

L′(Ek, 0)
Bk

k ∈ N

m

(
x +

1
x

+ y +
1
y
− 4

)
= 2L′(χ−4,−1)

m

(
x +

1
x

+ y +
1
y
− 4

√
2
)

= L′(A, 0)

Where Bk is a rational number, and Ek is the elliptic curve with corresponds to the
zero set of the polynomial. When k = 4 the curve has genus zero. When k = 4

√
2

the elliptic curve is
A : y2 = x3 − 44x + 112,

which has complex multiplication.

• Condon (2003):

π2m

(
z −

(
1− x

1 + x

)
(1 + y)

)
=

28
5

ζ(3)

• D’Andrea & L. (2003):

π2m
(
z(1− xy)2 − (1− x)(1− y)

)
=

4
√

5ζQ(
√

5)(3)

ζ(3)
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• Boyd & L. (2005):

m(x2 + 1 + (x + 1)y + (x− 1)z) =
L(χ−4, 2)

π
+

21
8π2

ζ(3)

Theorem 6 We have the following identities: 4

For n ≥ 1:

π2nm

(
1 +

(
1− x1

1 + x1

)
. . .

(
1− x2n

1 + x2n

)
z

)

=
1

(2n− 1)!

n∑

h=1

sn−h(22, . . . , (2n− 2)2)
(2h)!(22h+1 − 1)

2
π2n−2hζ(2h + 1).

(8)

For n ≥ 0:

π2n+1m

(
1 +

(
1− x1

1 + x1

)
. . .

(
1− x2n+1

1 + x2n+1

)
z

)

=
1

(2n)!

n∑

h=0

sn−h(12, . . . , (2n− 1)2)(2h + 1)!22h+1π2n−2hL(χ−4, 2h + 2).

(9)

ζ is the Riemann zeta function,

L(χ−4, s) :=
∞∑

n=1

χ−4(n)
ns

, χ−4(n) =





(−1
n

)
if n odd ,

0 if n even

Also,

sl(a1, . . . , ak) =





1 if l = 0,∑
i1<...<il

ai1 . . . ail if 0 < l ≤ k,

0 if k < l

(10)

are the elementary symmetric polynomials, i.e.,

k∏

i=1

(x + ai) =
k∑

l=0

sl(a1, . . . , ak)xk−l. (11)

For concreteness, we list the first values for each family in the following table:
4In order to simplify notation, we describe the polynomials as rational functions, writing 1+ 1−x

1+x
z instead

of 1 + x + (1− x)z, and so on. The Mahler measure does not change since the denominators are product of
cyclotomic polynomials.
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π2m
(
1 +

(
1−x1
1+x1

)(
1−x2
1+x2

)
z
)

7 ζ(3)

π4m
(
1 +

(
1−x1
1+x1

)
. . .

(
1−x4
1+x4

)
z
)

62ζ(5) + 14π2

3 ζ(3)

π6m
(
1 +

(
1−x1
1+x1

)
. . .

(
1−x6
1+x6

)
z
)

381ζ(7) + 62π2ζ(5) + 56π4

15 ζ(3)

π8m
(
1 +

(
1−x1
1+x1

)
. . .

(
1−x8
1+x8

)
z
)

2044ζ(9) + 508π2ζ(7) + 868π4

15 ζ(5) + 16π6

5 ζ(3)

πm
(
1 +

(
1−x1
1+x1

)
z
)

2L(χ−4, 2)

π3m
(
1 +

(
1−x1
1+x1

)
. . .

(
1−x3
1+x3

)
z
)

24L(χ−4, 4) + π2L(χ−4, 2)

π5m
(
1 +

(
1−x1
1+x1

)
. . .

(
1−x5
1+x5

)
z
)

160L(χ−4, 6) + 20π2L(χ−4, 4) + 3π4

4 L(χ−4, 2)

π7m
(
1 +

(
1−x1
1+x1

)
. . .

(
1−x7
1+x7

)
z
)

896L(χ−4, 8) + 560
3 π2L(χ−4, 6) +

259
15 π4L(χ−4, 4) + 5

8π6L(χ−4, 2)

There are similar but more complicated results with

m

(
1 + x +

(
1− x1

1 + x1

)
. . .

(
1− xn

1 + xn

)
(1 + y)z

)

and

m

(
1 +

(
1− x1

1 + x1

)
. . .

(
1− xn

1 + xn

)
x +

(
1−

(
1− x1

1 + x1

)
. . .

(
1− xn

1 + xn

))
y

)

Integrals and Polylogarithms

The following definitions and notations may be found in Goncharov’s works, [6, 7]:

Definition 7 Multiple polylogarithms are defined as the power series

Lin1,...,nm(x1, . . . , xm) :=
∑

0<k1<k2<...<km

xk1
1 xk2

2 . . . xkm
m

kn1
1 kn2

2 . . . knm
m

which are convergent for |xi| < 1. The length of a polylogarithm function is the number m
and its weight is the number w = n1 + . . . + nm.

Definition 8 Hyperlogarithms are defined as the iterated integrals

In1,...,nm(a1 : . . . : am : am+1) :=
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∫ am+1

0

dt

t− a1
◦ dt

t
◦ . . . ◦ dt

t︸ ︷︷ ︸
n1

◦ dt

t− a2
◦ dt

t
◦ . . . ◦ dt

t︸ ︷︷ ︸
n2

◦ . . . ◦ dt

t− am
◦ dt

t
◦ . . . ◦ dt

t︸ ︷︷ ︸
nm

where ni are integers, ai are complex numbers, and
∫ bk+1

0

dt

t− b1
◦ . . . ◦ dt

t− bk
=

∫

0≤t1≤...≤tk≤bk+1

dt1
t1 − b1

. . .
dtk

tk − bk
.

The value of the integral above only depends on the homotopy class of the path con-
necting 0 and am+1 on C \ {a1, . . . , am}.

It is easy to see (for instance, in [7]) that,

In1,...,nm(a1 : . . . : am : am+1) = (−1)mLin1,...,nm

(
a2

a1
,
a3

a2
, . . . ,

am

am−1
,
am+1

am

)
,

Lin1,...,nm(x1, . . . , xm) = (−1)mIn1,...,nm((x1 . . . xm)−1 : . . . : x−1
m : 1),

which gives an analytic continuation of multiple polylogarithms. Observe that we re-
cover the special value of the Riemann zeta function ζ(k) for k ≥ 2 as Lik(1), as well as
L(χ−4, k) = − i

2(Lik(i)− Lik(−i)).

Lemma 9 We have the following length-one identities:
∫ 1

0
logj x

dx

x2 − 1
= (−1)j+1j!

(
1− 1

2j+1

)
ζ(j + 1), (12)

∫ 1

0
logj x

dx

x2 + 1
= (−1)jj!L(χ−4, j + 1), (13)

PROOF. The idea is to translate the integral into hyperlogarithms. We use the fact
that

∫ 1
x

ds
s = − log x.¤

An important integral

We will need to compute the integral
∫∞
0

x logk x dx
(x2+a2)(x2+b2)

. The following Lemma will help:

Lemma 10 We have the following integral:
∫ ∞

0

xα dx

(x2 + a2)(x2 + b2)
=

π(aα−1 − bα−1)
2 cos πα

2 (b2 − a2)
for 0 < α < 1. (14)

PROOF. We write the integral as a difference of two integrals:
∫ ∞

0

xα dx

(x2 + a2)(x2 + b2)
=

∫ ∞

0

(
1

x2 + a2
− 1

x2 + b2

)
xα dx

b2 − a2
. (15)

and use residues in order to evaluate the integral.¤
By continuity, the formula in the statement is true for α = 1, in fact the integral

converges for α < 3.
Next, we will define some polynomials that will be used in the formula for

∫∞
0

x logk x dx
(x2+a2)(x2+b2)

.
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Definition 11 Let Pk(x) ∈ Q[x], k ≥ 0, be defined recursively as follows:

Pk(x) =
xk+1

k + 1
+

1
k + 1

k+1∑

j>1 (odd)

(−1)
j+1
2

(
k + 1

j

)
Pk+1−j(x). (16)

For instance, the first Pk(x) are: P0(x) = x, P1(x) = x2

2 , P2(x) = x3

3 + x
3 , P3(x) = x4

4 + x2

2 ,
etc.

Lemma 12 The following properties are true

1. deg Pk = k + 1.

2. Every monomial of Pk(x) has degree odd (even) for k even (odd ).

3. Pk(0) = 0.

4. P2l(i) = 0 for l > 0.

5. (2l + 1)P2l(x) = ∂
∂xP2l+1(x).

6. 2lP2l−1(x) ≡ ∂
∂xP2l(x)modx.

The above properties can be easily proved by induction. These polynomials are related to
Bernoulli polynomials.

Proposition 13 We have:

∫ ∞

0

x logk x dx

(x2 + a2)(x2 + b2)
=

(π

2

)k+1 Pk

(
2 log a

π

)
− Pk

(
2 log b

π

)

a2 − b2
. (17)

PROOF. Differentiate and play with the recurrence. ¤

Description of the general method

We will prove our main result by first examining a general situation. Let Pα ∈ C[x]
such that its coefficients depend polynomially on a parameter α ∈ C. We replace α by(

x1−1
x1+1

)
. . .

(
xn−1
xn+1

)
and obtain a new polynomial P̃ ∈ C[x, x1, . . . , xn]. By definition of

Mahler measure, it is easy to see that

m(P̃ ) =
1

(2πi)n

∫

Tn

m

(
P�x1−1

x1+1

�
...
�

xn−1
xn+1

�) dx1

x1
. . .

dxn

xn
.

We perform a change of variables to polar coordinates, xj = eiθj :

=
1

(2π)n

∫ π

−π
. . .

∫ π

−π
m

(
P

in tan
�

θ1
2

�
... tan( θn

2 )

)
dθ1 . . . dθn.

Set xi = tan
(

θi
2

)
. We get,

=
1
πn

∫ ∞

−∞
. . .

∫ ∞

−∞
m (Pinx1...xn)

dx1

x2
1 + 1

. . .
dxn

x2
n + 1
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=
2n

πn

∫ ∞

0
. . .

∫ ∞

0
m (Pinx1...xn)

dx1

x2
1 + 1

. . .
dxn

x2
n + 1

.

Making one more change, x̂1 = x1, . . . , x̂n−1 = x1 . . . xn−1, x̂n = x1 . . . xn:

=
2n

πn

∫ ∞

0
. . .

∫ ∞

0
m (Pinx̂n)

x̂1 dx̂1

x̂2
1 + 1

x̂2 dx̂2

x̂2
2 + x̂2

1

. . .
x̂n−1 dx̂n−1

x̂2
n−1 + x̂2

n−2

dx̂n

x̂2
n + x̂2

n−1

.

We need to compute this integral. In most of our cases, the Mahler measure of Pα

depends only on the absolute value of α.
By iterating Proposition 13, the above integral can be written as a linear combination,

with coefficients that are rational numbers and powers of π in such a way that the weights
are homogeneous, of integrals of the form

∫ ∞

0
m (Px) logj x

dx

x2 ± 1
.

It is easy to see that j is even iff n is odd and the corresponding sign in that case is
”+”.

We are going to compute these coefficients.
Let us establish some convenient notation:

Definition 14 Let an,h ∈ Q be defined for n ≥ 1 and h = 0, . . . , n− 1 by
∫ ∞

0
. . .

∫ ∞

0
m (Px1)

x2n dx2n

x2
2n + 1

x2n−1 dx2n−1

x2
2n−1 + x2

2n

. . .
dx1

x2
1 + x2

2

=
n∑

h=1

an,h−1

(π

2

)2n−2h
∫ ∞

0
m (Px) log2h−1 x

dx

x2 − 1
. (18)

Let bn,h ∈ Q be defined for n ≥ 0 and h = 0, . . . , n by
∫ ∞

0
. . .

∫ ∞

0
m (Px1)

x2n+1 dx2n+1

x2
2n+1 + 1

x2n dx2n

x2
2n + x2

2n+1

. . .
dx1

x2
1 + x2

2

=
n∑

h=0

bn,h

(π

2

)2n−2h
∫ ∞

0
m (Px) log2h x

dx

x2 + 1
. (19)

We claim:

Lemma 15

n∑

h=0

bn,hx2h =
n∑

h=1

an,h−1 (P2h−1 (x)− P2h−1 (i)) (20)

n+1∑

h=1

an+1,h−1x
2h−1 =

n∑

h=0

bn,hP2h (x) (21)
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PROOF. First observe that
n∑

h=0

bn,h

(π

2

)2n−2h
∫ ∞

0
m (Px) log2h x

dx

x2 + 1

=
n∑

h=1

an,h−1

(π

2

)2n−2h
∫ ∞

0

∫ ∞

0
m (Px) y log2h−1 y

dy

y2 − 1
dx

x2 + y2
. (22)

But
∫ ∞

0

y log2h−1 y dy

(y2 + x2)(y2 − 1)
=

(π

2

)2h P2h−1

(
2 log x

π

)
− P2h−1 (i)

x2 + 1
by applying Proposition 13 for a = x and b = i.

The right side of equation (22) becomes

=
n∑

h=1

an,h−1

(π

2

)2n
∫ ∞

0
m (Px)

(
P2h−1

(
2 log x

π

)
− P2h−1 (i)

)
dx

x2 + 1
.

As a consequence, equation (22) translates into the polynomial identity (20). Equation
(21) is proved in a similar way.

¤

Proposition 16

2n(−1)lsn−l(22, . . . , (2n− 2)2) =
n∑

h=l

(−1)h

(
2h

2l − 1

)
sn−h(12, . . . , (2n− 1)2),

(2n + 1)(−1)lsn−l(12, . . . , (2n− 1)2) =
n∑

h=l

(−1)h

(
2h + 1

2l

)
sn−h(22, . . . , (2n)2).

PROOF. These equalities are easy to prove if we think of the symmetric functions as
coefficients of certain polynomials, as in equation (11).

In order to prove the first equality, multiply by x2l on both sides and add for l = 1, . . . , n.
Then compare the polynomials.

¤

Theorem 17 We have:
n−1∑

h=0

an,hx2h =
(x2 + 22) . . . (x2 + (2n− 2)2)

(2n− 1)!
(23)

for n ≥ 1 and h = 0, . . . , n− 1, and
n∑

h=0

bn,hx2h =
(x2 + 12) . . . (x2 + (2n− 1)2)

(2n)!
(24)

for n ≥ 0 and h = 0, . . . , n.
In other words,

an,h =
sn−1−h(22, . . . , (2n− 2)2)

(2n− 1)!
, (25)

bn,h =
sn−h(12, . . . , (2n− 1)2)

(2n)!
. (26)

9



PROOF. For 2n + 1 = 1, n = 0 and the integral becomes
∫ ∞

0
m (Px)

dx

x2 + 1

so b0,0 = 1.
For 2n = 2, n = 1 and we have

∫ ∞

0

∫ ∞

0
m (Px)

y dy

y2 + 1
dx

x2 + y2
=

∫ ∞

0
m (Px)

log x dx

x2 − 1

so a1,0 = 1.
Then the statement is true for the first two cases.
We proceed by induction. Suppose that

an,h =
sn−1−h(22, . . . , (2n− 2)2)

(2n− 1)!
.

We have to prove that

bn,h =
sn−h(12, . . . , (2n− 1)2)

(2n)!
.

By Lemma 15, it is enough to prove that

n∑

h=0

sn−h(12, . . . , (2n− 1)2)x2h = 2n
n∑

h=1

sn−h(22, . . . , (2n− 2)2) (P2h−1 (x)− P2h−1 (i)) .

(27)

But it is easy to see that from Proposition 16.
Similarly it is possible to prove.

n∑

h=0

sn−h(22, . . . , (2n)2)x2h+1 = (2n + 1)
n∑

h=0

sn−h(12, . . . , (2n− 1)2)P2h (x) ,

(28)

and using Lemma 15 we conclude the proof. ¤

Proof of the Theorem

We managed to express the Mahler measure of P̃ as a linear combination of functions
that depend on the Mahler measure of Pα. Assume now that Pα(z) = 1 + αz.

m(1 + αz) = log+ |α|

This is the simplest possible case. For the even case we get

π2nm

(
1 +

(
1− x1

1 + x1

)
. . .

(
1− x2n

1 + x2n

)
z

)

= 22n
n∑

h=1

an,h−1

(π

2

)2n−2h
∫ ∞

0
log+ x log2h−1 x

dx

x2 − 1

10



=
n∑

h=1

sn−h(22, . . . , (2n− 2)2)
(2n− 1)!

22hπ2n−2h

∫ ∞

1
log2h x

dx

x2 − 1
.

Now set y = 1
x ,

=
n∑

h=1

sn−h(22, . . . , (2n− 2)2)
(2n− 1)!

22hπ2n−2h

∫ 1

0
log2h y

dy

1− y2
.

If we apply Lemma 9, we obtain

=
n∑

h=1

sn−h(22, . . . , (2n− 2)2)
(2n− 1)!

22hπ2n−2h(2h)!
(

1− 1
22h+1

)
ζ(2h + 1)

=
n∑

h=1

sn−h(22, . . . , (2n− 2)2)
(2n− 1)!

(2h)!(22h+1 − 1)
2

π2n−2hζ(2h + 1).

The odd case is similar. ¤
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