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Mahler measure and Lehmer’s question

Looking for large primes, Pierce [11] proposed the following idea in 1918.
Consider P € Z[z] monic, and write

Then, let us look at

The «; are integers over Z. By applying Galois theory, it is easy to see that A, € Z. Note
that if P(z) = x — 2, we get the sequence A,, = 2" — 1. Thus, we recover the example of
Mersenne numbers. The idea is to look for primes among the factors of A,. The prime
divisors of such integers must satisfy some congruence conditions that are quite restrictive,
hence they are easier to factorize than a randomly given number of the same size.

In order to minimize the number of trial divisions, the sequence A,, should grow slowly.

Lehmer [10] studied Aﬁzl, observed that

lim
n—oo |am — 1|

la" Tt —1] | |a| if|a] >1
U1 iflal <1

and suggested the following definition.

Definition 1 Given P € C[z], such that

P(x) = aH(:U — o),

%

define the measure > of P as
M(P) = |a| ] [ max{1, |os[}. (1)
%
The logarithmic measure is defined as’

m(P) = log M(P) = log |a| + Zlog+ ;). (2)

'mlalin@math.ubc.ca— http://www.math.ubc.ca/ mlalin

2The name Mahler came later after the person who successfully extended this definition to the several-
variable case.

3log™ « = logmax{1, z} for z € Rx



When does M (P) =1 for P € Z[x]? We have

Lemma 2 (Kronecker) Let P = [[,(x — «;) € Zz], if || < 1, then the «; are zero or
roots of the unity.

By Kronecker’s Lemma, P € Z[x], P # 0, then M(P) = 1 if and only if P is the
product of powers of  and cyclotomic polynomials. This statement characterizes integral
polynomials whose Mahler measure is 1.

Lehmer found the example

m(z' 4 2% — 2" — 2% — 2% — 2t — 23+ 2 + 1) = log(1.176280818 ... .) = 0.162357612. ..

and asked the following (Lehmer’s question, 1933):

Is there a constant C' > 1 such that for every polynomial P € Z[x| with M (P) > 1, then
M(P)>C?

Lehmer’s question remains open nowadays. His 10-degree polynomial remains the best
possible result.

The use of this polynomial has led to the discovery of the prime number 1,794, 327, 140, 357

but bigger primes were discovered with the use of other polynomials.

Mahler measure of several-variable polynomials

Definition 3 For P € Clxy,...,zy], the (logarithmic) Mahler measure is defined by

dml

1 1 ' ‘ 1
m(P) := log |P(e2™01 .. e2™0)| 46, ... db, = - /lo P(xy,...,xn)|— ...
()= [ [ ozl ) oy o L, B P

(3)
Because of Jensen’s equality fol log [€*™0 — a| df = log™ |a| = logmax{1,|a|}, we recover
the one-varible case.

It is possible to prove that this integral is not singular and that m(P) always exists.

Some properties

Proposition 4 For P,Q € Clx1,...,z,]
m(P - Q) =m(P) +m(Q). (4)

It is also true that m(P) > 0 if P has integral coefficients.
Mahler measure is related to heights. Indeed, if « is an algebraic number, and P, is its
minimal polynomial over Q, then

where h is the logarithmic Weil height. This identity also extends to several-variable
polynomials and heights in hypersurfaces.
Let us also mention the following result:

dx,,




Theorem 5 (Boyd-Lawton) For P € Clx1, ..., xy,]

lim ... lim m(P(z,2",...,2")) = m(P(z1,...,z,)). (5)

ko—o00 kn—o00
In particular Lehmer’s problem in several variables reduces to the one-variable case.

Examples

For the several-variable case, it seems that there is no simpler general formula than
the integral defining the measure. However, many examples have been found relating the
Mahler measure of polynomials in two variables to special values of L-functions in quadratic
characters, L-functions on elliptic curves and dilogarithms.

e Smyth [13]
3V3
m(z +y+1) = 7—L(x-3,2) = L'(x-3,-1), (6)
where
ooX (n) 1 if n=1mod3
L(x—3,s) = Z _35 and x_3(n)=1< —1 if n=-1mod3
" 0 if n=0mod3
e Smyth [1]
7
1) = —-¢(3).
ma+y+ 1) = 5 5C(3) @

e Boyd [2], Deninger [5], Rodriguez-Villegas [12]

1 1 L/ (Ej, 0
m(x++y+—l~c> VB0 ey
x y By,
1 1 )
mlz4+-+y+-—4) = 2L/(x_4,—1)
z y
1 1 ,
m x+;+y+§—4\f2 = L/(4,0)

Where By, is a rational number, and Fj is the elliptic curve with corresponds to the
zero set of the polynomial. When k = 4 the curve has genus zero. When k = 4v/2
the elliptic curve is

A y? =23 — 44z + 112,
which has complex multiplication.

e Condon (2003):

e D’Andrea & L. (2003):

_ 55 3)

2 —a)? — (1 —2)(1 —
wm (21— ay)? — (1= a)(1 —y)) = =



e Boyd & L. (2005):

L(x_4,2) 21
mia? + 1+ (2 + Dy + (@~ 1)2) = 20D By
Theorem 6 We have the following identities: *
Forn>1:
72m 1+ L - L~ 2o z
1421 14 xo,
1 - (2n)!(22 1 —1)
— mzsn,h@?,...,@n—z)% 5 2 =2he (2h 4 1).
h=1
Forn > 0:
o i (14 L— o 1= 2ot z
1421 1+ zop11
1 n
= i snon(12,...,(2n — 1)?)(2h + 11222021, (4 28 +2).
" h=0

¢ is the Riemann zeta function,

oo n (%1) ifn odd ,
L(x-4,8) ==Y X_;S(), X-4(n) =
n=1

0 if n even
Also,
1 if =0,
sl(alj...,ak): Zi1<...<il iy -+ - Q) if 0<I<Ek,
0 if k<l
are the elementary symmetric polynomials, i.e.,
k k
H(l‘ +a;) = Z si(az, ,ak)xk_l
=1 =0

For concreteness, we list the first values for each family in the following table:

4In order to simplify notation, we describe the polynomials as rational functions, writing 1+ };—i

(11)

z instead

of 1+ x4 (1 —x)z, and so on. The Mahler measure does not change since the denominators are product of

cyclotomic polynomials.



wem (14 (1) (522) =) e

wim (14 (352) . (52) 2) 62¢(5) + 4= ¢(3)
om (14 (52) . (B2) 2) 381¢(7) + 627%C(5) + B¢ (3)
o (14 (52 (52) 2) 2044¢(9) + 50872¢(7) + 8871 ¢(5) 4 167°¢(3)

) z) 24L(x-1,4) + L(x-4,2)

}‘ﬁ) 2) 160L (x4, 6) + 2072 L(x_4,4) + 37 L(x_4, 2)

(
(
(
wn (14 (1) <) 2L(x-1.2)
(
(
(

)| 9P
%971'414()(_4, 4) + %776L(X—47 2)

There are similar but more complicated results with

m<1+1:+ (1;2)(1;§Z>(1+y)z)
(o () () e (- () - () )

Integrals and Polylogarithms

and

The following definitions and notations may be found in Goncharov’s works, [6, 7]:

Definition 7 Multiple polylogarithms are defined as the power series

k1, .ko km

Li (2 D) = T A T
NYyeery W \ L1y ooy ddm ) - — knlan knm

1 B9~ ... Rm

O<ki<ko<..<km

which are convergent for |x;| < 1. The length of a polylogarithm function is the number m
and its weight is the number w =ny + ... 4+ ny,.

Definition 8 Hyperlogarithms are defined as the iterated integrals

Ly (@1 oot Q1) =

5



/ m+l ¢ dt dt dt dt dt dt dt dt
o—o... o o ...0
0 t—a; t t t—ax t t t—am t t

ni n2 Nm

where n; are integers, a; are compler numbers, and

/bkﬂ dt dt / dty dty,
O...0 = e .
0 t— bl t— bk 0<t1 <. <t <bpiy tl - bl tk - bk

The value of the integral above only depends on the homotopy class of the path con-
necting 0 and a;,4+1 on C\ {a1,...,am}.
It is easy to see (for instance, in [7]) that,

. az as a a 1
Ly (@1t am s amy1) = (—1)"Lin,.. (al’ag’”"a ml, :+ ) ,
m— m
Ling o (15 xm) = (=1)™Tny o ((z1 - - xm)_l U x;nl 1),

which gives an analytic continuation of multiple polylogarithms. Observe that we re-
cover the special value of the Riemann zeta function ((k) for £ > 2 as Lig(1), as well as

L(x-a, k) = =5 (Lij(i) — Lig(~1)).

Lemma 9 We have the following length-one identities:

1 j dx 1. 1 .
; loghe—— = (D)1= gy ) CU+ D), (12)
1
. dx ;. .
| ogemy = LG + ) (13)

PROOF. The idea is to translate the integral into hyperlogarithms. We use the fact
Lds _ _

that fm s = —logw.l]

An important integral

We will need to compute the integral fOOO ( zlog® z dz

@2 ra) (2150 The following Lemma will help:

Lemma 10 We have the following integral:

/°° % dx n(a®t — b~
o (

= — for 0<a<l. (14)
22+ a?)(x? +b2)  2cos IF(b? —a?)

PROOF. We write the integral as a difference of two integrals:

/°° x® dx _/OO 1 1 % dx (15)
o (@2+a?)(22+0b2)  Jo \@2+a? 224+0b2) b2 —a?
and use residues in order to evaluate the integral.l]

By continuity, the formula in the statement is true for « = 1, in fact the integral
converges for a < 3.

Next, we will define some polynomials that will be used in the formula for [;° (IQTZ%C%'



Definition 11 Let Py(z) € Q[z], k > 0, be defined recursively as follows:

k+1 k+1 .

T 1 i+ (k+1

p@ =t o (oM R (16)
j>1(odd)

For instance, the first Py(x) are: Py(z) =z, Pi(z) = %, Py(z) = % + 3, P3(z) = %4 + %,

etc.

Lemma 12 The following properties are true

~

.deg P, =k+1.

Every monomial of Py(x) has degree odd (even) for k even (odd ).
P,(0) =0.

Py (i) =0 forl > 0.

(20 + 1) Py(x) = £ Poga ().

6. 2Py _1(x) = B%Pgl(m) mod z.

Gvo e e

The above properties can be easily proved by induction. These polynomials are related to
Bernoulli polynomials.

Proposition 13 We have:

) P, (2loga) _ p (2logh
P e G B R

PROOF. Differentiate and play with the recurrence. [

Description of the general method

We will prove our main result by first examining a general situation. Let P, € C[x]
such that its coefficients depend polynomially on a parameter o € C. We replace a by

(ﬁiﬁ) (izj&) and obtain a new polynomial P € C[x,z1,...,%,). By definition of

Mahler measure, it is easy to see that

Jp—— doy - day
)= s fou (Pt o

0;.

We perform a change of variables to polar coordinates, x; = el

1 ™ ™
S P dé; ... db,.
(2m)n /_7r /_Wm< intan(?)n_tan(%n)) 1

Set x; = tan (%) We get,

1 > > dxq dx
™ J_ oo 7 +1 xn +1

7




/ / ) dxq dx,
Py, o, Pl

Making one more change, 1 = *1,...,Zpn—1 =T1...Tp—1,Tn = T1...Ty!
/ / :IZ1 di’l :i’g dig i’n 1 di’n 1 di‘n
1”xn ~ . 2
T o R I S R A o

We need to compute this integral. In most of our cases, the Mahler measure of P,
depends only on the absolute value of a.

By iterating Proposition 13, the above integral can be written as a linear combination,
with coefficients that are rational numbers and powers of 7 in such a way that the weights
are homogeneous, of integrals of the form

o0 - dx
/0 m (P;) log’ T

It is easy to see that j is even iff n is odd and the corresponding sign in that case is
2 +77 .

We are going to compute these coefficients.

Let us establish some convenient notation:

Definition 14 Let a, j, € Q be defined forn >1 and h=0,...,n—1 by
> > Tap dTop Ton—1 dTan—1 dxy
e m (Pr;) —5 L a2 555
0 0 Ty, +1 23, 1+, 27+
2n—2h _ dx
- Zan w1 (5) / m (Py)log? 1o " (18)
0 xs—1

Let b, 5, € Q be deﬁnedfornZO and h=0,...,n by

/OO N /OO m (P Tont+1 dTon1 2opn dzo, dxy

2 2 R R
Ty +1 23, +a5,, 2] +25

_anh< >2n 2h/0 (Px)lothmedfl. (19)

We claim:
Lemma 15

an,hw% = Zanh 1 (Pop—1 (x) — Pop—1 (1)) (20)
h=0

n+1

Y anpipaz?t Tt = Z bn, 1 Pon () (21)
h=1 h=0



PROOF. First observe that

anh< )Qn QhA (P)]og . del

2n 2h dy dx
—Zanh 1 / / ylog 1yﬁm (22)

But

/OO ylogzh_lydy ( )Qh Pop—1 (210gac) — Py, (i)
o (WPHa?)y?-1) \2
by applying Proposition 13 for a = x and b = i.

The right side of equation (22) becomes

n T\ 2n [ 2log x ) dx
= ;an,h—l (5) /0 m(Px) <P2h—1 < - > — Py (1)> m

As a consequence, equation (22) translates into the polynomial identity (20). Equation
(21) is proved in a similar way.
O

Proposition 16
() sa(@s 2022 = S0P Veun(1? . 2n—1?)
n— LR 21 — 1 n— (R ’

2n+ 1) (=1)ls,(12,...,(2n = 1)?) = Z(—nh(?hgl)snh(227...,(2n)2).

PROOF. These equalities are easy to prove if we think of the symmetric functions as
coefficients of certain polynomials, as in equation (11).

In order to prove the first equality, multiply by 2% on both sides and add forl = 1,...,n
Then compare the polynomials.

O

Theorem 17 We have:

il 2 +22) ... (22 n — 2)?
ot = 22 o2 o

form>1and h=0,...,n—1, and

Zn:bn,hfﬂ% _ (22 4+12) ... (22 + (2n — 1)?) (24)

form>0and h=0,...,n.
In other words,

Sp—1— 2 n — 2
Uy = n—1 h(2(27n_71()2' 2) )’ (25)

sp_n(12,...,(2n —1)?)
(2n)! '




PROOF. For2n+1=1,n =0 and the integral becomes
ee dx
/ m (Py)
0

2 +1

SO 1)070 =1.
For 2n =2, n =1 and we have

R d d o 1 d
/ / m (Pz) :Z . 2 ¥ 2 :/ m (Py) 0g256 .
0 0 Yy +1x +vy 0 e —1
SOCL170:1.

Then the statement is true for the first two cases.
We proceed by induction. Suppose that

Sn_1-n(22,...,(2n — 2)?)
(2n —1)! '

Qp h =

We have to prove that
b _ Sn—h(127'--7(2n_ 1)2)
mh = (2n)! '

By Lemma 15, it is enough to prove that

D snon(1®. ., 20— 1))z =20 s, n(2%..., (20— 2)%) (Pano1 (2) — Panoa (i)
h=0 h=1

(27)
But it is easy to see that from Proposition 16.
Similarly it is possible to prove.
n n
D saon(2.,@2n))2?M T = 204+ 1) spon(1%.. ., (20— 1)) Py (2),
h=0 h=0
(28)

and using Lemma 15 we conclude the proof. [J

Proof of the Theorem

We managed to express the Mahler measure of P as a linear combination of functions
that depend on the Mahler measure of P,. Assume now that P,(z) =1+ az.

m(1+ az) =log™ |a]
This is the simplest possible case. For the even case we get
1-— 1—
72"m (1 + N Ton ),
14+ a2 14+ 29,
n

_ 92 w22k [0 2h—1 dx
_Qn;amh_l (5) ; log™ x log x$2_

1

10



n
_ Z sn—n(2?,...,(2n — 2>2)22hﬂ_2n—2h /Oo log?" z dz ‘
—~ (2n —1)! | z? —1

Now set y = &

x’

B Zn: snn(2%,...,(2n — 2)2)2% Mm—2h /11 on 4y
= T og?hy .
P (2n —1)! 0 1—92

If we apply Lemma 9, we obtain

I
NE

2 _9)\2
Sn—h(Z (,2n 7, (12)7? 2) )22hﬂ_2n72h(2h)! <1 — 22h1+1> C(Qh + 1)

T

1

. = Sn—h(227 ) (2n B 2)2) (2h)!(22h+1 — 1) 2n—2h
_h:1 2n — 1) 5 T C(2h+1).

The odd case is similar. [J

References

[1] D. W. Boyd, Speculations concerning the range of Mahler’s measure, Canad. Math.
Bull. 24 (1981), 453-4609.

[2] D. W. Boyd, Mahler’s measure and special values of L-functions, Ezperiment. Math. 7
(1998), 37-82.

[3] Boyd D. W., Rodriguez Villegas F.: Mahler’s measure and the dilogarithm (I), Canad.
J. Math. 54 (2002), no. 3, pp. 468 — 492.

[4] C. D’Andrea, M. Lalin, On The Mahler measure of resultants in small dimensions. (in
preparation).

[5] C. Deninger, Deligne periods of mixed motives, K-theory and the entropy of certain
Z™-actions, J. Amer. Math. Soc. 10 (1997), no. 2, 259-281.

[6] A. B. Goncharov, Polylogarithms in arithmetic and geometry, Proc. ICM-94 Zurich
(1995), 374-387.

[7] A. B. Goncharov, Multiple polylogarithms and mixed Tate motives (preprint, March
2001). math.AG /0103059

[8] M. N. Lalin, Some examples of Mahler measures as multiple polylogarithms, J. Number
Theory 103 (2003) 85-108.

[9] M. N. Lalin, Mahler measure of some n-variable polynomial families, J. Number Theory
116 (2006) 102-139.

[10] D. H. Lehmer, Factorization of certain cyclotomic functions, Annals of Math. 34 no.
2 (1933).

11



[11] T. Pierce, The numerical factors of the arithmetic funtions [[;" (1), Ann. of Math.
18 (1916-17).

[12] F. Rodriguez-Villegas, Modular Mahler measures I, Topics in number theory (Univer-
sity Park, PA 1997), 17-48, Math. Appl., 467, Kluwer Acad. Publ. Dordrecht, 1999.

[13] C. J. Smyth, On measures of polynomials in several variables, Bull. Austral. Math.
Soc. Ser. A 23 (1981), 49-63. Corrigendum (with G. Myerson): Bull. Austral. Math.
Soc. 26 (1982), 317-319.

12



