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1. Mahler measure

Definition 1 For P ∈ C[x±1
1 , . . . , x±1

n ], the (logarithmic) Mahler measure is defined by

m(P ) =
1

(2πi)n

∫

Tn

log |P (x1, . . . , xn)|dx1

x1
. . .

dxn

xn
(1)

This integral is not singular and m(P ) always exists.
Because of Jensen’s formula:

∫ 1

0
log |e2πiθ − α|dθ = log+ |α| (2)

1we have a simple expression for the Mahler measure of one-variable polynomials:

m(P ) = log |ad| +
d

∑

n=1

log+ |αn| for P (x) = ad

d
∏

n=1

(x − αn)

2. Examples of Mahler measures in several variables

For two and three variables, several examples are known. The first and simplest examples
in two and three variables were given by Smyth [19] and also [1]:

m(1 + x + y) =
1

π
D(ζ6) =

3
√

3

4π
L(χ−3, 2) = L′(χ−3,−1) (3)

m(1 + x + y + z) =
7

2π2
ζ(3) (4)

Condon, [6] in 2003,

m(1 + x + (1 − x)(y + z)) =
28

5π2
ζ(3) (5)

3. Polylogarithms

The examples mentioned above have been computed by elementary integrals involving
polylogarithms.

1log+
x = log max{1, x} for x ∈ R≥0
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Definition 2 The kth polylogarithm is the function defined by the power series

Lik(x) :=
∞

∑

n=1

xn

nk
x ∈ C, |x| < 1 (6)

This function can be continued analytically to C \ [1,∞) via the integral

−
∫

0≤s1≤...sk≤1

ds1

s1 − 1
x

ds2

s2
. . .

dsk

sk

In order to avoid discontinuities, and to extend polylogarithms to the whole complex
plane, several modifications have been proposed. Zagier [22] considers the following version:

Pk(x) := Rek





k
∑

j=0

2jBj

j!
(log |x|)jLik−j(x)



 (7)

where Bj is the jth Bernoulli number, Li0(x) ≡ −1
2 and Rek denotes Re or Im depending

on whether k is odd or even.
This function is one-valued, real analytic in P1(C) \ {0, 1,∞} and continuous in P1(C).

Moreover, Pk satisfy very clean functional equations. The simplest ones are

Pk

(

1

x

)

= (−1)k−1Pk(x) Pk(x̄) = (−1)k−1Pk(x)

there are also lots of functional equations which depend on the index k. For instance, for
k = 2, we have the Bloch–Wigner dilogarithm,

D(x) := Im(Li2(x)) + arg(1 − x) log |x|

which satisfies the well-known five-term relation

D(x) + D(1 − xy) + D(y) + D

(

1 − y

1 − xy

)

+ D

(

1 − x

1 − xy

)

= 0 (8)

4. Mahler measure and hyperbolic volumes

A generalization of Smyth’s first result was due to Cassaigne and Maillot [17]: for a, b, c ∈
C∗,

πm(a + bx + cy) =







D
(∣

∣

a
b

∣

∣ eiγ
)

+ α log |a| + β log |b| + γ log |c| 4

π log max{|a|, |b|, |c|} not 4
(9)

where 4 stands for the statement that |a|, |b|, and |c| are the lengths of the sides of a
triangle, and α, β, and γ are the angles opposite to the sides of lengths |a|, |b|, and |c|
respectively. The term with the dilogarithm can be interpreted as the volume of the ideal
hyperbolic tetrahedron which has the triangle as basis and the fourth vertex is infinity. See
figure 1.

Another example was due to Vandervelde [20]. He studied the polynomials whose
equation can be expressed as

y =
bx + d

ax + c
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Figure 1: The main term in Cassaigne – Maillot formula is the volume of the ideal hyperbolic
tetrahedron over the triangle.

When a, b, c, d ∈ R∗, the Mahler measure of this polynomial is the sum of some logarithms
and two dilogarithm terms, which can be interpreted as the volume of the ideal polyhedra
built over a cyclic quadrilateral of sides |a|, |b|, |c| and |d|.

We have studied the case of

y =
xn − 1

t(xm − 1)
=

xn−1 + . . . + 1

t(xm−1 + . . . + 1)

and obtained a similar result, the Mahler measure is given by a formula whose dilogarithm
terms are the volumes of ideal polyhedra that are constructed over all the possible polygons
with m sides of length |t| and n sides of length 1.

Moreover, this phenomenon is similar to the A-polynomial phenomenon described by
Boyd [3] and Boyd and Rodriguez Villegas [5] as we showed that this polynomial can be
thought as an analogous for an A-polynomial. More specifically, we showed that it may be
obtained a factor of the resultant of certain gluing and completeness equations (conveniently
modified by the deformation parameters) in the similar way as A-polynomials are obtained.

5. More examples of Mahler measures in several variables

We would also like to add that Boyd [2] has computed numerically several examples
involving L-series of elliptic curves, some of them were proved by Rodriguez-Villegas [18].
For instance

m

(

x +
1

x
+ y +

1

y
+ 1

)

?
= L′(E, 0) (10)

where E is the elliptic curve of conductor 15 which is the projective closure of the curve
x + 1

x
+ y + 1

y
+ 1 = 0, and L(E, s) is the L-function of E.

However, for more than three variables, very little is known.

Theorem 3 For n ≥ 1 we have:

π2nm

(

1 +

(

1 − x1

1 + x1

)

. . .

(

1 − x2n

1 + x2n

)

z

)

=
n

∑

h=1

sn−h(22, . . . , (2n − 2)2)

(2n − 1)!
π2n−2h(2h)!

22h+1 − 1

2
ζ(2h + 1) (11)
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For n ≥ 0:

π2n+1m

(

1 +

(

1 − x1

1 + x1

)

. . .

(

1 − x2n+1

1 + x2n+1

)

z

)

=
n

∑

h=0

sn−h(12, . . . , (2n − 1)2)

(2n)!
22h+1π2n−2h(2h + 1)!L(χ−4, 2h + 2) (12)

There are analogous (but more complicated) formulas for

m

(

1 + x +

(

1 − x1

1 + x1

)

. . .

(

1 − xn

1 + xn

)

(1 + y)z

)

m

(

1 +

(

1 − x1

1 + x1

)

. . .

(

1 − xn

1 + xn

)

x +

(

1 −
(

1 − x1

1 + x1

)

. . .

(

1 − xn

1 + xn

))

y

)

Where

sl(a1, . . . , ak) =







1 if l = 0
∑

i1<...<il
ai1 . . . ail if 0 < l ≤ k

0 if k < l

(13)

are the elementary symmetric polynomials, i. e.,

k
∏

i=1

(x + ai) =

k
∑

l=0

sl(a1, . . . , ak)x
k−l (14)

For example,

π3m

(

1 +

(

1 − x1

1 + x1

) (

1 − x2

1 + x2

) (

1 − x3

1 + x3

)

z

)

= 24L(χ−4, 4) + π2L(χ−4, 2) (15)

π4m

(

1 +

(

1 − x1

1 + x1

)

. . .

(

1 − x4

1 + x4

)

z

)

= 62ζ(5) +
14π2

3
ζ(3) (16)

π4m

(

1 + x +

(

1 − x1

1 + x1

) (

1 − x2

1 + x2

)

(1 + y)z

)

= 93ζ(5) (17)

(18)

The idea behind the prove of Theorem 3 is the following. Let Pα ∈ C[x1, . . . , xn] whose
coefficients depend polynomially on a parameter α ∈ C. We replace α by α1−y

1+y
and obtain

a polynomial P̃α ∈ C[x1, . . . , xn, y] (multiplying by 1 + y). The Mahler measure of the
second polynomial is a certain integral of the Mahler measure of the first polynomial.

m(P̃α) =
1

2πi

∫

T1

m
(

P
α 1−y

1+y

) dy

y

Now it is easy to see that if the Mahler measure of the original polynomial depends on
polylogarithms, so does the Mahler measure of the new polynomial.

6. Examples coming from the world of resultants

Let us mention some examples of Mahler measure of resultants (this will be part of a joint
work with D’Andrea [7]).
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Theorem 4

m(Res{0,m,n}) = m(Rest(x + ytm + tn, z + wtm + tn)) = m

(

z − (1 − x)m(1 − y)n−m

(1 − xy)n

)

=
2

π2
(−mP3(ϕ

n) − nP3(−ϕm) + mP3 (φn) + nP3 (φm))

where ϕ is the real root of xn + xn−m − 1 = 0 such that 0 ≤ ϕ ≤ 1, and φ is the real root
of xn − xn−m − 1 = 0 such that 1 ≤ φ. In particular, for m = 1, n = 2,

m(P ) =
4

π2
(P3(φ) − P3(−φ)) (19)

where φ2 + φ − 1 = 0 and 0 ≤ φ ≤ 1 (in other words, φ = −1+
√

5
2 ). Moreover, using the

numerical identity
ζ
Q(

√
5)(3)

ζ(3)

?
=

1√
5
(P3(φ) − P3(−φ))

(see Zagier [21]), then

m(Res{0,1,2})
?
=

4
√

5ζ
Q(

√
5)(3)

π2ζ(3)

Theorem 5

m(Res{(0,0),(1,0),(0,1)}) = m





∣

∣

∣

∣

∣

∣

x y z
u v w
r s t

∣

∣

∣

∣

∣

∣





= m((1 − x)(1 − y) − (1 − z)(1 − w)) =
9ζ(3)

2π2

7. An algebraic integration for Mahler measure

Here we will follow Deninger [8]. Given a variety X over K = R or C there is a
transformation

rD : H i
M(X, Q(j)) −→ H i

D(X/K, R(j))

called Beilinson regulator.
Here

H i
M(X, Q(j)) = Grj

γK2j−i(X) ⊗ Q

for X a regular, quasi-projective variety.
There is a natural pairing,

〈, 〉 : Hn(X/K, R(n)) × Hn(X/K, R(−n)) −→ R

Observe:

H i
D(X, R(i)) = {ϕ ∈ Ai−1(X, R(i − 1)) |dϕ = πi−1(ω), ω ∈ F i(X)} / dAi−2(X, R(i − 1))

Here Ai(X, R(j)) denotes the space of smooth i-forms with values in (2πi)jR, and F i(X)
denotes the space of holomorphic i-forms on X with at most logarithmic singularities at
infinity. πn : C → R(n) is the projection πn(z) = z+(−1)nz̄

2 .
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For P ∈ Z[x1, . . . , xn], let Z(P ) = {P = 0} ∩ Gn
m,K . Denote XP = Gn

m,K \ Z(P ). Since

Fn+1(XP ) = 0,
Hn+1

D (XP /K, R(n + 1)) = Hn(XP /K, R(n))

Deninger observes the following:

m(P ) =
〈

rD{P, x1, . . . , xn}, [Tn] ⊗ (2πi)−n
〉

Under certain assumptions, and by means of Jensen’s formula,

m(P ∗) − m(P ) =
〈

rD{x1, . . . , xn}, [A] ⊗ (2πi)1−n
〉

where {x1, . . . , xn} ∈ Hn
M(Zreg, Q(n)) and [A] ∈ Hn−1(Z

reg, Z)), where A is the union of
connected components of dimension n− 1 in {P = 0} ∩ {|x1| = . . . = |xn−1| = 1, |xn| ≥ 1}

8. The two-variable case

Rodriguez-Villegas [18] has worked out the details for two variables. This was further
developed by Boyd and Rodriguez-Villegas [4], [5].

Given a smooth projective curve C and x, y rational functions (x, y ∈ C(C)∗), define

η(x, y) = log |x|d arg y − log |y|d arg x (20)

Here

d arg x = Im

(

dx

x

)

(21)

is well defined in C in spite of the fact that arg is not. η is a 1-form in C \ S, where S is
the set of zeros and poles of x and y. It is also closed, because of

dη(x, y) = Im

(

dx

x
∧ dy

y

)

= 0

Let P ∈ C[x, y]. Write

P (x, y) = ad(x)yd + . . . + a0(x) = P ∗(x)
d

∏

n=1

(y − αn(x))

Then by Jensen’s formula,

m(P ) = m(P ∗) +
1

2πi

d
∑

n=1

∫

T1

log+ |αn(x)|dx

x
= m(P ∗) − 1

2π

∫

γ

η(x, y) (22)

Here
γ = {P (x, y) = 0} ∩ {|x| = 1, |y| ≥ 1}

is a union of paths in C = {P (x, y) = 0}. Also note that ∂γ = {(x, y) ∈ C2 | |x| = |y| =
1, P (x, y) = 0}

In our examples, we will get that η is exact, and ∂γ 6= 0 and then we can integrate
using Stokes’ Theorem.
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γy (  )

y = 1 − x| x | = 1

ξ6

In Smyth’s case, we compute the Mahler measure of P (x, y) = y + x − 1. We get:

m(P ) =
1

(2πi)2

∫

T2

log |y + x − 1|dx

x

dy

y
=

1

2πi

∫

T1

log+ |1 − x|dx

x
= − 1

2π

∫

γ

η(x, y)

Now write x = e2πiθ,

γ(θ) = (e2πiθ, 1 − e2πiθ), θ ∈ [1/6 ; 5/6]

x(∂γ) = [ξ6] − [ξ̄6]

The good point is that η(x, y) is exact in this case

Theorem 6

η(x, 1 − x) = dD(x) (23)

Then
2πm(x + y + 1) = D(ξ6) − D(ξ̄6) = 2D(ξ6)

In general, we associate η(x, y) with an element in H1(C \ S, R) in the following way.
Given [γ] ∈ H1(C \ S, Z),

[γ] →
∫

γ

η(x, y) (24)

(we identify H1(C \S, R) with H1(C \S, Z)′). Under certain conditions (tempered polyno-
mials, trivial tame symbols, see [18]) η(x, y) can be thought as an element in H1(C, R).

Note the following

Theorem 7 η satisfies the following properties

1. η(x, y) = −η(y, x)

2. η(x1x2, y) = η(x1, y) + η(x2, y)

3. η(x, 1 − x) = 0 in H1(C, R)

As a consequence, η is a symbol, and can be factored through K2(C(C)) (by Matsumoto’s
Theorem). Then we can guarantee that η(x, y) is exact by having {x, y} is trivial in
K2(C(C)) ⊗ Q. (Tensoring with Q kills roots of unity, which is fine, since η is trivial on
them).
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In general, if

x ∧ y =
∑

j

rj zj ∧ (1 − zj)

in
∧2(C(C)∗) ⊗ Q, then

η(x, y) = d





∑

j

rjD(zj)



 = dD





∑

j

rj [zj ]





We have γ ⊂ C such that

∂γ =
∑

k

εk[wk] εk = ±1

where wk ∈ C(C), |x(wk)| = |y(wk)| = 1. Then

2πm(P ) = D(ξ) for ξ =
∑

k

∑

j

rj [zj(wk)]

We could summarize the whole picture as follows:

. . . → (K3(Q̄) ⊃)K3(∂γ) → K2(C, ∂γ) → K2(C) → . . .

∂γ = C ∩ T2

There are two ”nice” situations:

• η(x, y) is exact, then {x, y} ∈ K3(∂γ). In this case we have ∂γ 6= ∅, we use Stokes’
Theorem and we finish with an element K3(∂γ) ⊂ K3(Q̄), leading to dilogarithms
and zeta functions (of number fields), due to theorems by Borel, Bloch, Suslim and
others.

• ∂γ = ∅, then {x, y} ∈ K2(C). In this case, we have η(x, y) is not exact and we get
essentially the L-series of a curve, leading to examples of Beilinson’s conjectures.

In general, we may get combinations of both situations.

9. The three-variable case

We are going to extend this situation to three variables. We will take

η(x, y, z) = log |x|
(

1

3
d log |y|d log |z| − d arg y d arg z

)

+ log |y|
(

1

3
d log |z|d log |x| − d arg z d arg x

)

+log |z|
(

1

3
d log |x|d log |y| − d arg xd arg y

)

Then η verifies

dη(x, y, z) = Re

(

dx

x
∧ dy

y
∧ dz

z

)

We can express the Mahler measure of P

m(P ) = m(P ∗) − 1

(2π)2

∫

Γ
η(x, y, z)
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Where
Γ = {P (x, y, z) = 0} ∩ {|x| = |y| = 1, |z| ≥ 1}

We are integrating on a subset of S = {P (x, y, z) = 0}. The differential form is defined in
this surface minus the set of zeros and poles of x, y and z, but that will not interfere our
purposes, since we will be dealing with the cases when η(x, y, z) is exact and that implies
trivial tame symbols thus the element in the cohomology can be extended to S.

As in the two-variable case, we would like to apply Stokes’ Theorem.
Let us take a look at Smyth’s case, we can express the polynomial as P (x, y, z) =

(1 − x) + (1 − y)z. We get:

m(P ) = m(1 − y) +
1

(2πi)2

∫

T2

log+

∣

∣

∣

∣

1 − x

1 − y

∣

∣

∣

∣

dx

x

dy

y
= − 1

(2π)2

∫

Γ
η(x, y, z)

In general, we have
η(x, 1 − x, y) = dω(x, y)

where

ω(x, y) = −D(x)d arg y +
1

3
log |y|(log |1 − x|d log |x| − log |x|d log |1 − x|)

Suppose we have

x ∧ y ∧ z =
∑

ri xi ∧ (1 − xi) ∧ yi

in
∧3(C(S)∗) ⊗ Q.
Then

∫

Γ
η(x, y, z) =

∑

ri

∫

Γ
η(xi, 1 − xi, yi) =

∑

ri

∫

∂Γ
ω(xi, yi)

In Smyth’s case, this corresponds to

x ∧ y ∧ z = − x ∧ (1 − x) ∧ y − y ∧ (1 − y) ∧ x

in other words,
η(x, y, z) = −η(x, 1 − x, y) − η(y, 1 − y, x)

Back to the general picture, ∂Γ = {P (x, y, z) = 0} ∩ {|x| = |y| = |z| = 1}. When
P ∈ Q[x, y, z], Γ can be thought as

γ = {P (x, y, z) = P (x−1, y−1, z−1) = 0} ∩ {|x| = |y| = 1}

Note that we are integrating now on a path inside the curve C = {P (x, y, z) = P (x−1, y−1, z−1) =
0}. The differential form ω is defined in this new curve (this way of thinking the integral
over a new curve has been proposed by Maillot). Now it makes sense to try to apply Stokes’
Theorem again. We have

ω(x, x) = dP3(x)

Suppose we have

[x]2 ⊗ y =
∑

ri[xi]2 ⊗ xi

in (B2(C(C)) ⊗ C(C)∗)Q.
Then, as before:
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∫

γ

ω(x, y) =
∑

ri P3(xi)|∂γ

Back to Smyth’s case, in order to compute C we set (1−x)(1−x−1)
(1−y)(1−y−1)

= 1 and we get

C = {x = y} ∪ {xy = 1} in this example, and

−[x]2 ⊗ y − [y]2 ⊗ x = ±2[x]2 ⊗ x

we integrate in the set described by the following picture

π

π

π

_

π_

Then

m((1 − x) + (1 − y)z) =
1

4π2

∫

γ

ω(x, y) + ω(y, x) =
1

4π2
8(P3(1) − P3(−1)) =

7

2π2
ζ(3)

10. The K-theory conditions

We follow Goncharov, [9], [10]. Given a field F , we define subgroups Ri(F ) ⊂ Z[P1
F ] as

R1(F ) := [x] + [y] − [xy]

R2(F ) := [x] + [y] + [1 − xy] +

[

1 − x

1 − xy

]

+

[

1 − y

1 − xy

]

R3(F ) := certain functional equation of the trilogarithm

Define

Bi(F ) := Z[P1
F ]/Ri(F ) (25)

The idea is that Bi(F ) is the place where Pi naturally acts. We have the following
complexes:

BF (3) : B3(F )
δ3
1−→ B2(F ) ⊗ F ∗ δ3

2−→ ∧3F ∗

BF (2) : B2(F )
δ2
1−→ ∧2F ∗

BF (1) : F ∗

(Bi(F ) is placed in degree 1).

δ3
1([x]3) = [x]2 ⊗ x δ3

2([x]2 ⊗ y) = x ∧ (1 − x) ∧ y δ2
1([x]2) = x ∧ (1 − x)

10



Proposition 8

H1(BF (1)) ∼= K1(F ) (26)

H1(BF (2))Q
∼= K ind

3 (F )Q (27)

H2(BF (2)) ∼= K2(F ) (28)

H3(BF (3)) ∼= KM
3 (F ) (29)

Goncharov [9] conjectures:

H i(BF (3) ⊗ Q) ∼= K
[3−i]
6−i (F )Q

Where K
[i]
n (F )Q is a certain quotient in a filtration of Kn(F )Q.

Note that our first condition is that

x ∧ y ∧ z = 0 in H3(BQ(S)(3) ⊗ Q) ∼= K
[0]
3 (Q(S))Q

∼= KM
3 (Q(S)) ⊗ Q

and the second condition is

[xi]2 ⊗ yi = 0 in H2(BQ(C)(3) ⊗ Q)
?∼= K

[1]
4 (Q(C))Q

Hence, the conditions can be translated as certain elements in different K-theories must be
zero, which is analogous to the two-variable case.

We could summarize this picture as follows. We first integrate in this picture

. . . → K4(∂Γ) → K3(S, ∂Γ) → K3(S) → . . .

∂Γ = S ∩ T3

As before, we have two situations. All the examples we have talked about fit into the
situation when η(x, y, z) is exact and ∂Γ 6= ∅. Then we finish with an element in K4(∂Γ).

Then we go to

. . . → (K5(Q̄) ⊃)K5(∂γ) → K4(C, ∂γ) → K4(C) → . . .

∂γ = C ∩ T2

Again we have two possibilities, but in our context, ω(x, y) is exact and we finish with an
element in K5(∂γ) ⊂ K5(Q̄) leading to trilogarithms and zeta functions, due to Zagier’s
conjecture and Borel’s theorem.

11. Future research

• There is a lot to explain about the relation between Mahler measure and regulators,
and we would like to achieve a better understanding in terms of the Beilinson con-
jecture. This also involves being able to explain the n-variable results obtained in
[15]. We would also like to be able to predict, using K-theory, what kind of Mahler
measure we should expect for a particular polynomial (before trying to compute it!).

• There is no doubt that we still need more examples in n-variables. For n ≥ 5 there are
only three examples of this kind (the ones in [15]) and they have been all constructed
over the same idea. It is necessary to generate examples that are radically different,
by developing a different method.
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• We would like to give a satisfactory explanation of why we should expect Mahler
measures of resultants to be interesting. Specifically, we wish to know if there is any
way of using the fact that a polynomial is a resultant while computing its Mahler
measure.

• We are interested in finding identities among multiple polylogarithms evaluated at
roots of the unity. We have used some identities in order to simplify some the formulas
in [16] and we could use more.

• It is also our interest to further explore the connection with hyperbolic volumes in
higher dimensions. Kellerhals [11, 12] has shown that the volume of 5-dimensional
doubly asymptotic orthoschemes can be expressed in terms of polylogarithms up to
weight 3. It would be interesting, then, to see if we can find relationships for 3-variable
Mahler measures and volumes in the 5-dimensional hyperbolic space.
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[14] M. N. Laĺın, Mahler Measure and Volumes in Hyperbolic Space, (September 2003), to
appear in Geom. Dedicata
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