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Abstract

The Mahler measures of some n-variable polynomial families are given in terms of special
values of the Riemann zeta function and a Dirichlet L-series, generalizing the results of Lalin
(J. Number Theory 103 (2003) 85-108). The technique introduced in this work also motivates
certain identities among Bernoulli numbers and symmetric functions.
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1. Introduction

The goal of this work is to exhibit three families of multivariable polynomials whose
Mahler measure depend (in most of the cases) on special values of the Riemann zeta
function and the L-series on the Dirichlet character of conductor four.
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The Mahler measure of a polynomial P € C[xy,...x,] is defined as

1 dx1 dx
m(P) = — / 0g [P (x1, ...y Xp)|— -+ —.
@ri)* Jyn X1 Xn
Here T" ={(z1,...,24) € C"||z1| = -+ = |zn| = 1} is the unit torus.

For one-variable polynomials, Jensen’s formula gives a simple expression for the
Mahler measure as a function on the roots of the polynomial. However, it is in general
a very hard problem to give an explicit closed formula for the Mahler measure of a
polynomial in two or more variables.

For up to five variables, several examples have been produced by Bertin [3], Boyd
[5-7], Boyd and Rodriguez-Villegas [8,9], Cassaigne and Maillot [14], Condon [10],
Smyth [16,17], Vandervelde [19], the author [13], among others.

Smyth [18] gave an example of an n-variable family of polynomials whose Mahler
measures are related to special values of hypergeometric series.

We have analyzed the n-variable versions of the polynomials studied in [13] and
found closed formulas for their Mahler measures, which in most of the cases depend
on special values of the Riemann zeta function and Dirichlet L-series. More precisely,
we have proved that

Theorem 1. We have the following identities:
(i) For n>1:

1-— 1-—
=+ (50 (7))
14+ x; 14+ xp,

__ 5 ) L
_(2n—1)!;§s”*h(2’---,(2n 2)%)

2h+1 _
emie™ -1 l)nz"_ZhC(Zh +1).

2
(D
For n>0:
2, (1 n (1 —x1>m<1—xzn+1>z>
I +x; I+ x2n41
1 n
= G D suen(1P, L @n— DA+ DRI Ly 20+ 2).
" h=0
(2

'In order to simplify notation, we describe the polynomials as rational functions, writing 1 + }%z
instead of 1+x+ (1 —x)z, and so on. The Mahler measure does not change since the denominators are
products of cyclotomic polynomials.
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(i) For n>1:

1—xg l—xz) )
2n+2 n

" m 14+ x4+ ol — 0+ )z
( (1+x1) <1+x2n 1+
B 1 Z (Qh 4+ 2)1(22h+3 — 1)

T 2n—=1) 8

h=1

n—h 21
2(I+nh 2
x (;zoﬁ Su—h—1(2%, ..., 2n — 2)%( (2: )>(—1)1H_—thz> w22k +3).

3

For n>0:

1—x 1—x

2n+3 1 2n+1

T ml{l+x+ 14+ vy)z

( <1+X1> <1+x2n+1>( y)>
n

D sen(1% L 2= 1)

h=0

~ 2n)!

x 2241y 2n=2h (i(2h)!£3,2h+1(i, D)+ 2h + D)IPL(y_y. 2h + 2)) @

(iii) For n>1:

e (e () () -6 (2))
1+ x 14 x2, 1+ x; 1+ x2,

n2n+l
=3 log2
1 " Q¥+ 1)
S wen(22, ..., Qn =2 2t leoop 4]
+(2”—1)U;s n(2%, ..., 2n—=2)) Z n {2h+1)
1 T
+(2n—l)!2 4
h=1
n—h 20 ~21—1
2(1 +h) 29277 =1
h (22, 2n = 2)? —_pHt==____ “p
x(%snhz(, (2n ))( o )( ) T 2

xa 2 v op 4+ 1), %)
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For n>0:
(i (152 (522 - (72 (72)
I+x 1+ x2041 I+ x 1+ x2041
2n+2
:n2 log2
1 " Qh +2)1(2%h+3 — 1)
S 22, ..., (2n)? m=2heop 43
+(2n+1)!;nh< @n)?) : P2 2R+ 3)
1 Z (2h)'(22h+1 D
(2n—1)' 4
n—h 2 n2l—1
A +h) 141272 1)
h (@, 2n =2 pH=—= ___ p
x(anhz( (2n >>( o )( ) T 2l

n
where By, is the h-Bernoulli number, ﬁ = Z;‘;O B’,’IT .

{ is the Riemann zeta function,

L(t_4.8) =Y XL(”)’

nS
n=1
-1 .
= if n odd,
Y—q4(n) = ( n ) '
0 if n even
and L, (o, o) are linear combinations of multiple polylogarithms (they will be defined
later).
Also,
1 if =0,
siat, ....oag) =\ Dijcozy) @iy ooaiif 0 <<k, @)
0 if k<l

are the elementary symmetric polynomials, i.e.,

k k
H(x+a,~) = Zsl(al,...,ak)xk_l. (8)
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For concreteness, we list the first values for each family in the following tables:

M.N. Lalin/Journal of Number Theory 116 (2006) 102—139

wm (1+ (52) (452) 2)

e (1 (152) - (12 )

7¢(3)
62¢(5) + 47¢(3)
381¢(7) + 620%¢(5) + BT ((3)

2044¢ (9) +50872¢ (7) + 5855 ¢ (5) + 1022 ¢ (3)

Tom (1 + (i;ii) E (i%ﬁi) Z)

(1 () - (5) )

2L(x-4,2)
24]::()(_47 4) —+ 7|'2L(X_47 2)
160L(x 1, 6)+207°L(x 1, 4)+35L(x_4, 2)

896L(x -4, 8) + 2207 *L(x—4. 6) +
259 AL(X 1 4)+5T6L( )

mm(l+z+ (1+y)2)
m (l+l+(l+$1)(l‘-h) (1+J) )
(1+x+(1+ﬂ). (1+T)(1+z/))

w)-- (63) L)

™m (1 +r+ ({

2¢(3)
93¢(5)
1905 ¢(7) + 3172 (5)

T154¢(9) + 63572¢(7) + 285 ¢ (5)

i m(1+7+(1+—2)(1+y)z)

Tom (1+.77+ (ﬁ)(};—;j) (1 +.U)Z)

27T2L(X_4, 2) + ZLC';] (l, l)

2412 L(x -4, 4) + ™L(x-4,2) +
161L3,5(1,1) + 4mils, (i,1)

w1+ (352) (1)«

m(1+ (52) - (1)

+(1- (=) (122)y)
+(1- ().

An0(3) + T log 2

1882 (5) + H422¢(3) +
”—; log 2

(21))v)

%4(3) + %I log 2

w2 Jind
31¢(5)+ ¢ (3) + 5 log 2




M.N. Lalin/Journal of Number Theory 116 (2006) 102—139 107
2. An important integral

Before proving our main result, we will need to prove some auxiliary statements.

k
We will need to compute the integral [y %. The following lemma will
help:
Lemma 2. We have the following integral:
00 % dx n(a“_l _ bot—l)
= for 0<oa<l. 9
/0 @2+ a2 +bD)  2cos Z(B? —ad) == ®

Proof. We write the integral as a difference of two integrals:

/oo x* dx _foo 1 1 x* dx (10)
0 24+aH2+b)  Jo \x?+d® x2+b2) b2 —d?

Now, when 0 < o < 1,

0 x* dx 1 . x*
/0 N l_ezmuznges{xszaz}

(see, for instance, Section 5.3 in chapter 4 of the Complex Analysis book by Ahlfors
[2]). Then,

/Oo x* dx na®!

24,2 o
0 X°“4a 2co08 5
Thus, we get the result. [J

By continuity, the formula in the statement is true for « = 1, in fact the integral
converges for o < 3.
Next, we will define some polynomials that will be used in the formula for

foo xlogh x dx
0 (x24a?)(x24+b?)"

Definition 3. Let Px(x) € Q[x], k>0, be defined recursively as follows:

k+1 k+1 .

X 1 i+ [k +1

P — _ 1z Pri1—i(x). 11

& (X) k+1+k+1_2 (=D (j>k+1](X) (11)
j>1(odd)
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For instance, the first P (x) are:

Pyo(x) = x,
Pi(x) = x_2
2
Py = 2+ %,
3 3
P3(x) = x_4 + x_2
4 2
Py(x) = £+£+7—x,
5 3 15
Ps(x) = x—ﬁ—l—EJrz.
6 6 6

Lemma 4. The following properties are true

(1) deg P =k + 1.

(2) Every monomial of Pr(x) has degree odd (even) for k even (odd).
(3) Pr(0) =0.

4) Py(@{i) =0 forl>0.

(5) Q2+ D) Py(x) = 7= Pyt (x).

6) 2lPy_1(x) = (%le(x) mod x.

The above properties can be easily proved by induction. These properties, together
with Py, determine the whole family of polynomials P, because of the recursive nature
of the definition. At this point, it should be noted that this family is closely related
to Bernoulli polynomials. We postpone the discussion of this topic for the appendix,
since the explicit form of the polynomials Py is barely needed in order to perform the
computation of the Mahler measures.

We are now ready to prove the key Proposition for the main Theorem:

Proposition 5. We have:

2log 2logb
f“ x logh x dx _<n>k+1 Pk( na>_P’<( T ) (12)
0 (2+aH(x2+b2)  \2 a? — b? )

Proof. The idea, suggested by Rodriguez-Villegas, is to obtain the value of the integral
in the statement by differentiating k times the integral of Lemma 2 and then evaluating
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at o« = 1. Let

7.C(aot—l _ ba—l)

f) =3

cos Z2(b? — a?)

which is the value of the integral in the Lemma 2. In other words, we have

FO (1) = /‘X’ x logh x dx
0o (¥ +a)(x?+b?)

By developing in power series around o = 1, we obtain

o
log" a — log" b
f(o()cos T Y Z og a 'Og
n.

2 T 207 —ad) (@= 1%

n=0
By differentiating k times,
k 00

k . o\ () T log" ™ a — log"* b
(k—=j) - — _ 1)
;) (j)f (@) (COS 2 ) 202 — a) 2 ! (= D%

n=0

We evaluate in oo = 1,

k

it (k i i n(logha —loghb)
— (k=) Z) =
E (== (j)f ! (1)<2> = .

2_ 2
=0 (0dd) 2(b* —a%)

As a consequence, we obtain

k

k+1 . . +1

1 i+t (k41 _ m\/—1 log""" a —log
©1)y=— —1 z( )“‘“ Pn(z) + .
S k+1j>%;dd)( ) o) *k+ D — b2

k+1 b

When k£ =0,

2loga 2logb
loga—logb_nPO( T )_PO( T )
az—br 2 a? —b?

fOm=ra=

The general result follows by induction on k and the definition of P,. [
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3. Integrals and polylogarithms
In order to understand how special values of zeta functions and L-series arise in our
formulas, we are going to need the definition of polylogarithms, which can be found,

for instance, in Goncharov’s works, [11,12]:

Definition 6. Multiple polylogarithms are defined as the power series

ki _k
Li — X
lnl,...,ﬂm(xl""7x’Vl) i Z k"'k"z...k”’"
O<ky<kg<w<k, 1 72 "

which are convergent for |x;| < 1. The length of a polylogarithm function is the number
m and its weight is the number w = nj + -+ + ny,.

Definition 7. Hyperlogarithms are defined as the iterated integrals

Inl,...,nm(al Do O, Gmgn)

f“mﬂ dt dt dt dt dt dt

= O—O0:-++0—0O0 O—o0-++0—0O0
0 t—a; t t t—ay t t
ni n2

dt dt dr
o O—O0:++0 —
t—a, t t

N

where n; are integers, a; are complex numbers, and

/bw dr dr / dr dry
O .« .. O = A .
o t—b t— by 0<n < <u<b N —b1 1k —bi

The value of the integral above only depends on the homotopy class of the path
connecting 0 and a1 on C\{ay, ..., an}.
It is easy to see (for instance, in [12]) that,

. a as am  dm+1
Inl,.‘.,nm(al el Gpg) = (_l)lenl,‘..,nm (_, T ey, T, _) ,
a az am—1 Aam
. —1. R
Llnl,...,nm(xls ce X)) = (_l)mlnl,...,nm((xl ce Xm) R 1),

which gives an analytic continuation of multiple polylogarithms. Observe that we re-
cover the special value of the Riemann zeta function {(k) for k>2 as Lir(1), as well

as L(y_4. k) = —5 (Lig () — Lix(—i)).
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In order to express the results more clearly, we will establish some notation.
Definition 8.
Ly (o) := Lir () — Li,(—0),
Lo, o) := 2(Li, s (0, ) — Liy g (—0, ) + Liy 5 (or, —00) — Li, s (—0, —0)).
Note that the weight of any of the functions above is equal to the sum of its subindexes.
This notation is the same as in [13].

Now we are ready to establish some technical results that will help us recognize
special values of the Riemann zeta function and L-series out of integrals.

Lemma 9. We have the following length-one identities:

"oel s _ (1o L (G +1 13
0 Og xx2—1 _(_ ) J- _2j+1 (.]+ )s ( )
Lo dx (—=DJi+jn, . . .
/0 log’xx2+1 = 3 iljp1() = (=17 jIL(y_4. j + 1), (14)

and the following length-two identities:

1 prx .
ds ds ds . dx (_1)]1!
5 0 log’ = L3011, D), 15
/0 /() S2—lo s ° s og xx2—l 3 3,}-‘1—1( ) (15)
L opx gy ds ds . dx (_1)j+lij!
N _ Lot (). 16
,/(\) /() S2 —1 ° S © Ky 0g x_xz +1 ] 3,]+1(1 1) ( )

Proof. The idea is to translate the integral into hyperlogarithms. We use the fact that
L ds
J, ¥ =—1logx.

X N
L dx (=7 ! 1 1 ds ds
log/ x = — drxro—o---0—
0 x2—1 2 o \x—1 x+1 s s
— —

Jj times

The j! occurs as a way to count the possible permutations of the variables s, since
they are ordered in the hyperlogarithm integral.

1yt —D/* ! !
= C R Wi~ Lo = T2 (1 - F) LG+
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The last equality is a consequence of the Euler product decomposition for the zeta
function. The second formula can be proved in a similar way.
Now, for the length-two identities, we do as before,

Lopex o gs ds ds j dx
5 o—o—logx2
o Jo sc—1 s s x2—1

(=D o 1 ds ds 1 1
= — _— = dso—o—o — dx
4 0o \s—1 s+1 s s x—1 x+1

dt dt

O—O0+++ 0 —
t t
—_— ——

j times
(=17 !
= 1 I3, ;1 (A:1: ) = ja(=1:1: 1) +13 j4q(=1:-1:1)
I3 j1(1:=1:1))
=i
4

(!

(Lis,j41(1,1) = Li3 j11(=1, 1) + Liz j+1 (1, =1) — Liz j+1(—1, —1))

L3 41(1,1).

The other formula in the statement can be proved analogously. [J

Now let us observe that the values £, (1, 1) for r + s odd, can be expressed as
combinations of values of {(k) for 2 <k <r+s. This is possible because of the amazing
formula (75) in [4], which claims:

Li;s(p, 0) = 3 (~Lir15(p0) + (1 + (=1)°)Li, (p)Lis(0))

LD ((r e I)Lir+s(,0) 4 (r T 1)Lir+s<a)>
2 r—1 s—1

. s (r+s—=2k—-1\_.
— Y Lin(po)(-1) (( >L1r+s_2k(p)

r—1
O<k<f

r+s—2k—1\. .
+< T >L1r+s_2k(o>) an

for r +s odd, p = £1, and ¢ = £1.
We will only need L, (1, 1) for r =3 and s even.
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Proposition 10. We have:

22h+3 -1 2h+1 _ 1
L3on(11) = == (h + D@h + DIQRh +3) = =—5—hQh + 5HDLA + 1)
2h—2k+3
- Z (2h 2kt 2) 22—1c(2k)((2h 2k +3)

for h>=2, and
93 21
L32(1,1) = ZC(S) - ?CQ)CG)'

Expressing everything in terms of odd special values of { and powers of m:

2h+3 _ 2h+1 2

(h+ 1)2h + D{QRh +3) — ———h(2h + 5)—((2h +1)

L3op(1, 1) = mT 22

2h —2k+2 22h 2k+3 —1(=1 k*lB 2 2k
_Z< + ) (=D"" Bx(2m) COh — 2k 1 3)

22h 2(2k)!
for h>22, and

L3o(1,1) = —z(S) - —n2c<3>

The proof of this statement is an easy application of formula (17) together with the
well-known formula

(=D By 2m)*

S(2k) = 2(2k)!

By applying formula (17) we can also obtain the following result:

Proposition 11. We have

! codx (=D .
/ log(1 + x) log/ x— L Uiy 1 (=1, 1) — Lip 41 (1, —1))
0

x—1= 2
and

Lij2n(=1,1) = Lig 25 (1, =1)

2+l _ 2h 4
= (2h — l)wij(ﬂl +1)— logZWQ’(zh)
h=1" h2h41-2k -1
2 — D2 _
-2 ( 22h3§ )C(Zk)C(Zh + 1 —2k).

k=1
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In other words,

1
d
/ log(1 + x)logzh*1 by *
0 X2 —1
2h+1 _
=—2h - D!2h — I)WC(Zh +1)

(log 222" — 1) By n?"

e
+=D 4h

_ h=1 2h41-2k 2k—1 _ k—1
Qh— DI Q2 h@ DED Bok okro 41— 2k,

2 . 22h—2k (2k)!

~
Il

Proposition 12. We have

dx

2+1

o
/ log(1 + x%) logZh
0

1k E 2h+1
= (=1 2E2h(2) log 2

h
20! 2h—21+1
+2§ (22 —)21)! (1 221+1> (=D Ezp (g) (21 + 1),

oo Enx
Tl

where Ej, is the h-th Euler number, 22X+1 ="

Proof. The proof of this Proposition is again a simple exercise in applying hyperlog-

arithms,
2x2t dt
/ / X log?" x dx
224+ 1 x2+1

Z/f 1 L\ a2 o g 191
= (0] X dx
2x2 41 x2+1 g 1 -2

Now we make the following change of variables: y = ¢x in the first term but we let
y = x in the second term,

o0
/ log(1 + x?) log*" x
0

t
logt)zh tlog™ y)

[ e ot
1—1¢2

2h

© Jog?" ydy ! dr 2h © 102Ky dy ! logktdr
22/ og yy/ 2y (_l)k/ og yy/ og' tdr
0 y2+1 o 1+t k 0 y2+1 0 1—12

k=1
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We will apply Lemma 9. But first, note that f
write k = 2/

oo log’y fy =0 for n odd. Then we may

y
= 4Qh)\L(y_y, 2h + 1) log2

h o ron ‘ ' 1
2y <2l>2(2h — 2D)IL(y_y, 2 — 21 + 1)(2D)! (1 - W) (2l+1)
=1

h
=4(2h)\L(x_4. 2h + 1)10g2+4Z(2h)!< 2211“ ) L(x_4, 2h — 21 + D{QI+1).

=1
The proof of the statement is now just an application of the well-known formula

( 1)k ( )2k+l
2(2k)! ’

L(z-4.2k+1) = O

Proposition 13. We have

1 o . . . 2h
5/0 ((Liz (ix) — Liz(—ix)) log xxz—_’_1

h 2h+3-21 _

-y 5 ((22}1’)), Q¥ — (=) (h— 1+ 1) (%) (@h+3-2D).
[=0

Proof. Note that

1 oo
1 Lin (ix) — Lio(—i log2h
5 | @iz )~ Lia(i o 45

/ / 2ix dr dr = 5, dx
o —log™ x
o 2x2+1 1 x2+1

1 00 1 2h d
—/ / tog Y log ¢ dt.
o Jo 2x2+DHxZ2+1)

We are now ready to apply Proposition 5

log ¢ dt.

21
/1 (7-5>2h+1 Py (——2‘%[)
—Jo

2 1—1¢2
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Applying Proposition A.1 from the appendix,

N 2log 1 2h+1-21
Vomyanet 2 2h +1 <——>
T s
= = —~ _N'B 2 py—nfr— 2L ogrdr
/0 (2) 2h+1l§ 2’( 2 >( Ty ee
1 h 2h+2-21
2 2h + 1 2-1 11 ( ™\ log t
=] —/—/Y B 221 (=1 Z) =
/0 2h+1l§ 2’( 21 >( A (2) 1-12
Then, apply Lemma 9
L) 41 (T 1
- 2§Bz,m(z — (=1 (5) Qh—20+2) <1_W)
x((2h +3 —2I)
h 2h+3-21
_ (2h)! 21-1 1+1_21 2 _
= ;Bzzm(z —DEDT =14 D =g (@R +3-2). O

4. An identity for symmetric polynomials

For dealing with the polynomials Py, we will need to manage certain identities of
symmetric polynomials. More specifically, we are going to use the following result:

Proposition 14.

" 2h
2n(=Dls,_ (2%, ..., 2n—2)%) = ;(—1)’1(21 - 1>s,,_h(12, o 2n=1)?),
2h + 1

Qn+ D(=Dls,(12,...,2n = 1)%) = Z(—nh( o

h=I

)sn_h (22,...,2n)%).

Proof. These equalities are easier to prove if we think of the symmetric functions as
coefficients of certain polynomials, as in Eq. (8).

In order to prove the first equality, multiply by x* on both sides and add for
l=1,...,n:

n
2n an_,(zz, L 2n =2 (=)
=1

- ZZ(—])h (;f l>snh(12, o, 2n =D,

=1 h=I
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The statement we have to prove becomes
n—1 n h W
[ J@p)? -« = ,;<—1)hsn_h(12, L 2n=1?) ; (21 B 1>x”. (18)

j=0

The right-hand side of (18) is

= YD (1 @n = DO+ DY — @ = 1))
h=0

| =

= [[]@i-D*—+DH -[]@ji-1D*-@x-D?H
j=1

J=1

n

= | J[@i+0@ji-2-0-[]@i-0n@j-2+x
j=1 j=1

n—1 n—1
((—=x)(2n +x) —x(2n — x))% [J@? =) =2n @) -

j=1 j=0

so Eq. (18) is true.
In order to prove the second equality, we apply a similar process. First multiply by
x2+1 on both sides and add for I = 1,..., n:

Qn+ 1Y s (12, @2n = D (=D
=1

=Y > <2h2’; 1>sn_h(22, NGO

=1 h=l

Hence, we have to prove

n n h 2h+1
@n+Dx [J(@2j =1 =x*) =) (=D'syn @ ... 20D Y < )le“.

21
j=1 h=1 =1

19)
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The right-hand side is

=Y (D'sn@ ., (2n)2>§((x + D7 — (= )P
h=0

=S (a+D[[@)? -+ - -D]]@)? - -1

j=1 Jj=1

n n

= le+D]J@+1+0Q - 1-0-@-D[]Q@ji-1+0)Qj+1-x)
j=1 j=1

(n+1+x)+@Qn+1 —x))% [T@i—1* %
j=1

= @n+Dx [J@j -1 =5

J=1

thus proving Eq. (19). O

5. Description of the general method

We will prove our main result by first examining a general situation and then spe-
cializing to the particular families of the statement.
Let P, € C[x] such that its coefficients depend polynomially on a parameter o € C.

We replace o by (ii;i) . (X:) and obtain a new polynomial Pc Clx, x1, ..., xu].

By definition of Mahler measure, it is easy to see that

()= (P )ﬂ o
e = (2mi)" /nm (i};:)(fﬁl%) X1 Xn

i9_,’ .

We perform a change of variables to polar coordinates, x; = e

1 T T
Qm)" /;n cen [n <Pin tan(gzl)mtan((’;)) doy --- do,.
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Set x; = tan (%) We get
1 [*> © dx; dx,
't /;m /;oo ( n xn) xlz —|— 1 x,% + 1
2m [oe o dx; dx,
Zﬁ/ / m(Pi"xl---xn)z—l'“ 247"
0 0 Xy + X7+

Making one more change, X| = X1, ..., Xp—] = X+ Xp—1,Xn = X =+ Xp:

2" /OO foo (P ) )21 d)%l )22 d)?z )En—l din—l d)?n

= — ... m ln)e PR .
n n) 22 22 2 22 22 20 | 22

™ Jo 0 X{+1x5 +x7 Xo  t Xy 5 X+ X

n—1

We need to compute this integral. In most of our cases, the Mahler measure of P,
depends only on the absolute value of o. If not, for each n we may modify P, such
that it absorbs the number i”. From now on, we will write m(P,) instead of m(Pjn,)
to simplify notation.

By iterating Proposition 5, the above integral can be written as a linear combination,
with coefficients that are rational numbers and powers of 7 in such a way that the
weights are homogeneous, of integrals of the form

o0 ) X
J
/0 m (Py) log xxzztl'

It is easy to see that j is even iff n is odd and the corresponding sign in that case
is “477.

We are going to compute these coefficients.

Let us establish some convenient notation:

Definition 15. Let a, , € Q be defined for n>1 and h =0,...,n —1 by

o0 o p ) X2 dxo, x2,—1 dxo,—1 dxy
m(xl)x2+1x2 o
0 0 2n 2n—1 2n 1 2

n N\ 2n—2h [ - dx
= i (—) / m (P log ™ x5 (20)
2 0 xc—1
h=1
Let b, 5 € Q be defined for n>0 and 7 =0,...,n by

o o p ) Yot dx2p+1 Xon dxop dx;
m(Py) = 1 2 2 2.2
0 0 X1 T X5, +X5, X +x3

n
\2n—2h [° dx
= bun (= / m (Py)log™ x ———. (21)
Pt (2) 0 X +1
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We claim:
Lemma 16.
n n
D bunx® = ann-1 (Pan-1 (x) = Py () (22)
h=0 h=1
n+l n
Z:Cl/1+l,}z—l)62}171 = an,hPﬂz (x) (23)
h=1 h=0

Proof. First observe that

n
T\ 2n—2h [ o dx
hX_(j)bn,h (2) fo m (P log™

n T\2n—2h [OO (OO P log2i=1 dy dx 4
—hzz;an,hl(z) /0 /0 m (Py) ylog yﬁm (24)

But

/"o ylog?"=1ydy (n>2h Pap—1 (ZI%gx> — Pop—1 (D)
0

O+ -1)  \2 241

by applying Proposition 5 for a = x and b = i.
The right-hand side of Eq. (24) becomes

—h:1 n,h—1 ) 0 X 2h—1 T 2h—1 x2+1-

As a consequence, Eq. (24) translates into the polynomial identity (22).
On the other hand,

ntl N\2042-2h [ oy dx
Sansa (5) [ oo e
h=1 0 .

n b m\2n—2h [OO (OO P log2h dy dx 25)
= — m o O i e—
}; n,h(z) /0 /0 ( x)y g yy2+1x2+y2
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But

/"O ylog?ydy <n>2h+1 Py, (—ZI;gx) — P, (0)
0 OO+ \2 x2—1

by applying Proposition 5 for a = x and b = 1.
So the right-hand side of (25) becomes

n
\2n+l [ 2log x dx
=2 (5 [T (P)

which translates into the identity (23). O

Theorem 17. We have

-1
"Za 2o 2Pt -2 (26)
P mht = Qn —1)!
fornz1and h=0,...,n—1, and
Xn:b o _ @1 en - DY) o
P mh 2n)!
for n>20 and h=0,...,n.
In other words,
Cosie1n(2%, .., 2n = 2)Y)
et = @n — 1) ’ 8
snn (12, ..., 2n — 1)?)
bop = ! ) (29)

Proof. For 2n + 1 =1, n = 0 and the integral becomes

/oo P.) dx
m -
0 Y x241
SO bo)o = 1.

For 2n =2, n =1 and we have

/o"/o" (P.) ydy dx /O" (P)logxdx
m _— = m
o Jo Uy 412432 o Yxr -1

so ayo = 1.
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Then the statement is true for the first two cases.
We proceed by induction. Suppose that

_snm1-n (@ 2n = 2)%)
o 2n— 1)

We have to prove that

spen(12, ..., 2n — 1D?)
(2n)! '

bn,h =

By Lemma 16, it is enough to prove that

n
an,,,(lz, o, 2= DP)xh
h=0

=21 sun(2, .., (20 =2)%) (Pt (¥) = Popt () -
h=1

(30)

Recall Eq. (11) that defines the polynomials P, from which the following identity

may be deduced:

h—1

2h
x2h = Z(—l)k( )ch—zk—l(x)-
= 2k + 1

Multiplying Eq. (31) by s,_,(12,..., 2n — 1)?) and adding, we get

n
> son(2, .. @n = DA
h=0

n h—1 2h
= sin(1%....2n— 1)) Z(—l)k<
h=1 k=0 2k +

+s,(12, ..., 2n — D?).

Now let us evaluate the above equality at x =i, we obtain

> suen(1% @ — DA
h=0

1)P2h—2k—l(x)

€19}
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n h—1 2
_ 2 132 Nk .
—;sn_h(l e, @Qn—1) )kgo( 1) <2k+1>P2h—2k—1(1)

+s,(1%, ..., 2n — 1?).

But

Do (P = D)D) = @417 (4 2n = D=1 =0,
h=0

from where

n

an_h(12, e, 20— 1H)x2h

h=0

1 h—1
= 2 _1\2 Ik 2h B )
= hZ:‘TSn—h(l ey (2}1 1) )kZ::O( ]) <2k + 1>(P2h—2k—1()C) P2h—2k—l(1))-

Let [ = h — k, then this becomes
n h 2h
_ 2 2 h—l1 .
= hgilsn—h(l yoos 2n—=1)7) 1271(—1) (21 B 1>(P21—1(X) — Py (1))

- S S _1\h 2h 2 Y TV . .
=D | 20 Jamen P @r = D) ) (D (P () = P (),
I=1 \h=l

and equality (30) is proved by applying Proposition 14.
Now suppose that

b S Qn = 1))
mh = (2n)! ’

we want to see that

sn_n (22, ..., (2n)%)
2n + 1!

An+1,h =

Then it is enough to prove that

D sn@ @O =@+ DY s (1P Q= D) Py (x) (32)
h=0 h=0

by Lemma 16.
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Eq. (11) implies

h
2h +1
241 _ 1 Py
x kE_O( ) <2k+1> 2h—2k (X),

and so,

n
D osen @ P
h=0

n h
2h +1
_ 2 2 k
= 5@ 2D Y (= <2k+ 1>P2h_zk(x>.
h=0 k=0
Let [ = h — k, then

n h
o (2h+1
=gsm<22,...,<2n>2)l§<—1>h l( 5 )Pym

n n
2h +1
=Y. (Z(—l)h( . )sn_h(zz, . <2n)2)> (=1 Py (x)
=0 \h=I
which proves (32) by Proposition 14. [

6. Proof of the main theorem
In the last section we managed to express the Mahler measure of P as a linear
combination of functions that depend on the Mahler measure of P,. We are now ready
to apply that machinery to the specific families of polynomials. At this point we need
to strongly use the formulas for the Mahler measure of each particular polynomial P,.
(i) Py(z) =1+ az.
m(1 + oz) = log™ |«

This is the simplest possible case. For the even case we get

1— 1—
(i () - (32)7)
14 x 1 4 x5

n
T\ 2n=2h [ B dx
— hE_l an.p—1 <§> /0 log* x log?~! S
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:iswh(zz,...,<2n—2)2)22hn2,,_2h /mlogzhx o
Pt 2n —1)! 1 x2—1

Now set y = %

ol On DY /‘ o, 4y
= s log™ y 5
= (2n —1)! 0 -y

If we apply Lemma 9, we obtain

" sun(22, ..., (2n —2)? - 1
_ ZS n( (zn_(l)f!l ) )22hn2n 2h(2h)!<1 — W) {2Ch+1)
h=1

n 2 72 2h+1 _
3@ GO @ D gy
Pt 2n —1)! 2

For the odd case we get
2, (1 n (1 _x1>... (1 —X2n+1)z)
I+ x 1+ x2p41

n o]
Antl T\ 2n—2h . oh dx
=2 }?:Obn’h (5) A log™ x log xx2 1

n
s sn-n(1%, ..., 2n — 1)2)22h+1n2n72h /oolog2h+1 . 2dx _
Z @n)! 1 e

Now set y = )lc,

_ _ — sn—n (12, (2n — 1)2)22h+1n2n—2h /1 log2h+1 dy
= E g V> .
P 2n)! 0 y2+1

Now apply Lemma 9,
2n — 1)?
@n = D7 op 4 1yt g2n=2hy L op 4 2).

_ i Sn,h(lz, R
B (2n)!

h=0

(i) Py(x,y,2) =0 +x)+oa(l+ y)z.

125



126
This Mahler measure was computed by Smyth [5,17],

2L3 (o))

m((1+x) +a(1 + y)z) =
n? log || +2£3 (|l ")

where

L3 () = ——
o ;2_£ rt

2/‘ dr dr dr
——— o0 — o —.
0

Now set s = ta,

‘We obtain

1—x l—xzn) )
2n+2

" m 1+ x+ I+y)z
< (1+x1) <1+x2n ( y)

n I px
70\ 2n—2h ds ds ds
=2 - ( ) 4/ / - log"™ -
};an’h "2 o Jo s? 1°75 °5 8 o

> dx
2 2h
lo —4
tr /; & 1 Jo s2—=1 s

., (2n—2)%) 22h ;2n—2h

_ Z Su—n (22, .
_ !
— n — 1!

s2—1 s s

1 px 1
d d d d d
X —8/[ u o—so—slog2h_1x 2x —n2/ log? x 2x
0 0 xc—1 0 Xc —

By Lemma 9,

— Xn: sn_h(22, ey (2n — 2)2) 92h ;2n—2h
] 2n —1)!

1
x ((Zh — DIL3 (1, 1) + (2h)! (1 T 3%

M.N. Lalin/Journal of Number Theory 116 (2006) 102—

139

for o<1,

for |o| > 1,

> 2 {(2h + 1)) )
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But if we apply Proposition 10, we get just combinations of the Riemann zeta
function:

Z Sp— h(2 ., (2n — 2)2) nzn_zh
B (2n -

h—1
~ 2h =2k +2\ o mys o CDFBy@m*
x(2h — 1)! kg ( 5 )(2 1)—2(2/<)z C@2h — 2k + 3).

Now set t = h — k and change the order of the sums

B i (2t +2)!2% 13 — 1)

8
=1

n—t 2 2 2k
Sn—r—k (2%, ..., 2n —2)7) (2t + 2k 2 2t
-1 B 2t + 3).
X(}Zg 2n— 1) < 2 )( )t+k %k | T {Qr+3)

The odd case is

1 —x 1 —x +1> )
2n+3 n
" m | T+ x+ 1+ y)z
( <1+x1) <1+X2n+1 (1+)
2n 2h ds ds ds dx
_ ~2n+l1 2h
=2 E bnh < //0 2 o—oTlog Xx2+1

o0 d d
+7r2/ logzh“ / / ds_ds  ds log® x— u
1 241 o s2—1 s N x“ 41

_ Xn: sn—n(12,..., 2n — 1)?) 22+l 2n-2h
(2n)!

d d ! d
// o—o—slogth al —n2/ log2ht!l x X
o 82 s x2+1 0 x24+1

By Lemma 9,

Zn: sa—n(1%, ..., 2n — 1)2)22h+1 2n—2h
fr— TE
2n)!

x (i(2h)!£3,2h+1(i, D)+ Qh + D)ITPL(y_y, 2h + 2)) .
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We should observe that it would be nice to have a simpler expression for £3 2p41(i, 1).
In fact, we believe that this number should be somehow related to L(y_4, k) (in a result
analogous to Eq. (17)), but we have been unable to find such a relation.

(iil) Py(z) =1 4oax + (1 —o)y.

This Mahler measure is a particular case of an example computed by Cassaigne
and Maillot [14]. This case is different from the previously studied cases due to the
fact that the Mahler measure of this polynomial does not just depend on the absolute
value of the parameter «, it also depends on the argument of «. This fact makes the
application of the general method a little bit more subtle. We will use

mm(l +ox + (1 —a)y)

D(a)  if Im(a) >0,
— Jargallog|1 — of + |arg(l — 2] log || +
D(x) if Im(a) < O.

The deduction of this formula can be found in [13]. For the even case we need to use
the formula for the case in which the parameter o is real,

log™ o ifa > 0,
m(l+ox+ (1 —a)y) =
log(l —a) ifa <O.

Then
14+ x; 14+ x2, 14+ x; 14+ x2,
n
_ 2 7T\ 2n—2h | o0 h—1 dx
=12 n };an,hfl (E) 5 7oom(P(,1)nx) lOg |X|x2 — 1

Note that we have taken into account that the formula depends on the sign of the
parameter.

n 2 2 o)
(2%, 2n—2 1
j : Sn h( P s ( n ) )22hn2n+l—2h / _(10g+x IOg(l x)) 10g2h—1 X
— 2n —1)! 0o 2

x2 -1

But setting y = )]—C,

dx

00 1 dx
/ log(1 + x) log?" =1 x = f log(1 + x) log?" ! x
0 x2 —1 0 x2

-1
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1
1 d
+/ log( +y>10g2h—ly : y
0 y ye—1

1
d
= 2/ log(1 + y) log?" ™! y——
0 ye—1

! d

y
+ [ log* .
/o =T

Then the Mahler measure is

_ Z sn—n(2%, ..., (2n — 2)2)22hn2n+1—2h
(211 — 1!

! d ! d
X / log(1 +y)log2h_1y 3 ) +/ logzhy—y2 .
0 y =1 Jo -y

If we apply Lemma 9 and Proposition 11, we obtain

2h41 _

1
WC(% +1)

22, 2n -2
— an h( ( n ) )22h 2n+1-2h (2]’1 1)'(2h+ 1)
(2n — D!
1 log2(2%" — 1) Bypm®h

e
+=D 4h

(2]’1 — ! hX_E (22h+1—2k _ 1)(22k—1 ) (_l)k

B
22h—2k (2k)! Zrt k41— 2k)>

=

=1

Finally, by applying equality (41) from the Appendix and changing the order of the
sums (and setting ¢t = h — k):

2n+1 ( _ 2)2) 22h+1 _

n sn—n (2%, 1 onti-2n
= — 10g2—|—Z G @) = @h 4 1)

Z (Zt)y(22t+l 1)

— 42n - 1)!

n—t 2k 22k 22k—1 -1
x(antk@Z,... @n —2) )(( +’))( 1)k I%sz)

Xn2n+1—2lé’(2t + 1)
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For the odd case we need the formula when the parameter « is purely imaginary,
am(1 +iox + (1 — i%)y) = Zlog ‘ozz + 1‘ +Im (Lia (i o)) ,
where o € R.
() (5 - 68)-(52)
14+ x; 1+ x2n41 1+ x; 1+ x2n41

2n—2h |

dx
22n+1 an h ( ) E/; m(P( 1)”1x) IOg |)C|x2 1

2n—2h d
22”+12bnh< ) /O (5 log(1 +2%) + Im (Lin i) ) log™ x

T
We will now apply Propositions 12 and 13,
Ssaon(12, ., Qn = 1)) 5 2n=2h h T\ 2+
= - 92+l 2n— (( 1 Ez;,(2> log 2
P ( n)
h _ 241
2h)! hel T\2h=2042 (2 -1
Z n = 21), )" Exp—2 (5) Ty I (RL+1)
h 2h+3-21
@h)! 2-1 I+1_21 2 -1
2(; (21)'( = DED 0 =4 D g t2h+3-20) ).

Applying Eq. (39) from the Appendix

n2nt? si—n(12,...,2n = 1) _,,
_ +1_2n—2h
= log2 + E (2n)' 2 "
h=0

22l+1

h
2h)! 2h-21+42 _1
i (Z @V B (3) (zﬂT) G

=1
21 I+1_21 2232l
ZB IW(Z — DD -1+ 1) (W)

x (2h +3 —21)> .
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Let us observe the following term carefully,

n

Z sin(12,..., (2n — 1)2)22h+17_[2n—2h

Pt 2n)!
h 2h+3-21
(Zh)! 21—1 1+1_21 2 -1
XIX(;BZ,m(z = DEDH =4 ) ( g L2h 43 —21).
Sets=h—1,

n

L 2n—2s 243
—(2n)! ;}” {2s +3)(s + DI )

n—s 2 l
x ;sn_s_l(ﬁ, o, (2n— 1)2)32,( (SZ;F )>(22’—1 — DD

By Theorem A.4 from the Appendix,

= (2’11), @ + 36+ DENIE - 12
T s=0

2 2
on+ l)sn,s(Z oo (2n)9)

1 n _— 22s+3 -1 5 )
= nt ) Zn "TE(2s +3)(2s + Z)ITSH_S(Z v, (20)7).
T s=0

Finally, the Mahler measure is

w2 1 25 + 21283 1) ) 9 omas
= —5—log2+ TR ;) n sn_s(2, ..., 2n) )7
x{(2s +3)
"INy [ 5 5 (20h+1) i
+;W(}§)Sﬂ_l_h(l s, 2n—=1) )( o )(_1) Eyy

xt" 22020 4 1).

Let us also add, that with the help of Proposition A.5 the above equation may be
written in terms of Bernoulli numbers instead of Euler numbers.
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7. Concluding remarks

In conclusion, the Mahler measure of these three families of n-variable polynomials
can be computed explicitly as some linear combination of special values of zeta func-
tions, the L-series on the Dirichlet character of conductor 4, (and £324+1(i, 1) for the
second family). It remains to relate £32,41(i, 1) to L-series and perhaps zeta functions,
which would simplify formula (4).

In some cases the coefficients of these formulas are related to Bernoulli numbers. It
should be remarked that the results of Theorem A.4 and Proposition A.6 suggest that
there should be a simpler expression for formulas of the kind of Theorem A.5, and
that might allow to find better expressions for the formulas of case (iii) (Egs. (5) and
(6)), for instance.

Finally and most importantly, it would be interesting to find different families, per-
haps, by adding new variables by using other forms of fractional transformations or
other rational functions.
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Appendix A. Some identities involving Bernoulli and Euler numbers

The main result of this section is a collection of identities involving Bernoulli num-
bers and symmetric functions, which can be deduced from the explicit form of the
polynomials P and their behavior as it was studied in Section 5. In addition to those
identities, and for completeness, we also mention some other properties of Bernoulli
and Euler numbers that have been used in order to simplify the final form of the
equations of Theorem 1.

We begin by explicitly computing the polynomials Fg:

Proposition A.1. We have the following:

k

2 k4+1\ Jh-i k1=
Pk(x)z—th_;)Bh< i )(2 — DifxktI=h, (33)

Proof. It is clear that the equation is true for k = 0, 1. We will prove that the properties
of Lemma 4 hold. But these properties are straightforward except for (4). Then it is
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enough to verify property (4).
20+ 1 220+
~ S P = Zm( A )(2h b1
h=0
Thus, it suffices to prove that
21
? 20+ 1\
0= B 2" —1 for I > 0.
Z h< " )( ) or [ >
h=0
Using the well-known identity:
k
k+1
> () =0
s=0 §

for k = 2[, we conclude that we only need to prove,

2[+1
9 20+ 1 hl
0= B 2 forl >0
> ,,( / ) or >

since
Bjy1=0 j=12...
but that is true, because of this other well known identity

k

k
1 =2YYB, = § 2“( )BS forn>1. O
S
s=0

Let us mention the following technical consequence that will be used later.

Corollary A.2. We have the following special values:

21

2
Py—1G) = (=1) By

133

(34)

(33)

(36)
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Proof.
21 I+1 20—1
. 1 21 B (—1) 21 _
Paoi() = —7 Bh<h>(2h LoD = ZBh<h)2h 1
h=0 h=0
(_I)H-l B B (_1)l+1
= (1 =22"NBy —2271By)) = (1—22"By

because of Eq. (35). O
In fact,

Corollary A.3. We have

P = 20 (B () - 2B (5)) + S22

where By (x) is the Bernoulli polynomial.

We are now ready to prove the main Theorem of this section.

Theorem A.4. We have the following identities:
For 1<I<n:

sn_1(12, ..., 2n—1)?)

2(L+ )

n—l
1
= 22 2n-2H—B
ngsn 1—s( (2n =25 ZS( s

For 1<n:

2"n!

2 n
((2”)’) =Y @ Q= DD By (2P — (-1,
s=1 ’

For 0<I<n:

QL+ sy (22, ..., 2n)?)

n—I

=Qn+ 1)) s ... 20— 1)2>32s(

s=0

2(L+ )
2s

)(22S _ 2)(_1)&4-1.

)(ZZS _ 2)(_1)54‘1.

(37
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Proof. By Lemma 16 and Theorem 17 we have

@2+ 13- 2+ @2n— 1)

2n)!
son(2 ... =22 [ 2% <2h) o
= _= B, 2i=1 _ )i/ J
Z on D! 2hj§ i) X
2h
—(=D" Bay

Set j = 2s, then the first term in the difference is

" sen@E L @n=2) [ 1N on L s
2. Qn—1)! (_Z§32‘(2s>(2 ~ DD '

h=1

Now set [ =h — s,

Y
= an —n(2 (2n_(12)7 2)%) ( ZBZU‘ ,)< >(22(h H—1 1)(_1)h—l+1x21)

= $n-1 (2%, n =2 | 2R\ s2--1 h=i+1\ 2
Z<Z (2”_1)! EBz(h l)<21>(2 — (=D X

Comparing coefficients we get

sn_1(12,...,2n — 1))
(2n)!

noh@ - @n =27 1 2R 2n-1-1 h—1+1
= Z (2n ~ 1) EBz(h1)<21)(2 — (=1 '

Thus

sp_1(12, ..., 2n = 1)?)

2(L + 5)

n—I
1
—n an_l_s(?, e, (2n— 2)2)mst< s

)(22S _ 2)(_1)S+1.

The second equality is obtained by comparing the independent coefficients.
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For the third equality, we do a similar process:

x(x242%) - (x4 2n)?)

Qn + 1!
" san(12, .., 2n—1)?) Py
=y Ul ASSREEEE - ZB,( )(21—1 — Difx2hH1=i
: T
o 2n)! 2h+14 j
n 2 2 h
(2 en—1 2 2h+1
g i) (2 ghp 2kt
— 2n)! 2h+1 4 2s

X(22S71 _ 1)(_1)Sx2h+123) .
Now set [ = h — s,
" san (12 2n=1 [ 2 & 2h+1
- Z Y ZBz(/H)
Z 2n)! 2h+1 2 +1

x (A=D1 _ 1)(_1)hl+1x21+1>

(& sen (12, 2n =12 2 2h+1
= E ' Bon-1
=\ (2n)! 2h+1 20+ 1

w (22h=D=1 _ 1)(_1)h—l+1> L2+

Comparing coefficients we get

sn_1(2%, ..., (2n)%)
Qn+1)!

2n)! 2h +1 2A+1

n 2 2
Sp—n(17, ..., 2n—=1)") 2 2h + 1 N _
Zj : n BZ(h—l)( )(22(/1 n—-1 _ 1)(_1)]’1 l+1‘
h=I

Thus

QL+ D5yt (2%, ..., 2n)%)
n—l
2(1
=@+ DY s 20 - 1)2)st( ( 24! S))

s=0

(22S _ 2)(_1)S+1 .

O
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The next result illuminates the last formula of Theorem 1.

Proposition A.5. We have

n—l
1 2( +5)
wei—s (2%, ..., (2n = 2)>)—— By, 2252 — 2)(—1)"t!
nY spi-s(2%....2n ))lﬂz(%)( )(=1)

“ 2k
— Z(—1)’<+’<2l)s,,_k(12, s 2n = D) Egpy. (38)

k=l

Proof. By Proposition 14,

n—l
1 214 )\ s 2 )
ngsn_l_s(Zz,...,(2n—2)2)mst< ’s >22 2% —2)(=1)*H!
_”_l (_1)l+s
_Z 5
s=0
k(% 2 2y
x Z( )(2 ol >s,,_k(1 oo, (2n 1))l+s

k=Il+s

XB2S (2(12—;— s))22s (22S _ 2)(_1)S+1

k+I1+1
_Z Z D (2k+1) sn—k(12, ..., 2n — 1D?)

pr eyl T2k+1 \ 2
2k =)+ 1
x325<( 2)+ )22‘%223—2).
S

Changing the order of the sums,

(— k1 <2k—|—1> ) < (2(1< 1)+1> e s

- sp—k(12, ..., 2n = 1) )§ :B 225(2% —2).
~ 2k +1 21
Now observe that

k—1 2(k—=D)+1

20k = 1)+ 1\ e . 2k —1)+1
> B <( )+ )223(225—2)= > Bm(( )+ )2’”(2’”—2).
m
m=0

s=0
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By Eq. (35),
2k=D)+1
2k =D+ 1 _ 1
— Z Bm( >22m — 42(1{ 1)+132(k71)+] (_)
m 4
m=0
for k — 1 > 0 and = —1 otherwise.

Now use the following identity:
2n 1 n
2°"B, 1 =2-2"B, —nE,_1,

which can be found, for instance, as Eq. (23.1.27) in [1].

Then, we get
N (A
> st< 5 )225(225 —2) = —Qk =) + DEx-.
s=0 §

Therefore,

n (_l)k+l+1 <2k+1

(12 2n—=1D)HQ*k = 1) + D) Eyg—
Hrl 2 )Snk(7 , 2n —1)7)(2( )+ DEyx—n

k=l

- 2k
= Z(—l)"*’(zl)sn_kuz, L @n=DHEyy. O
k=l

We would like to finish by stating a few basic equalities that can be proved by
induction:

Proposition A.6. We have

> sun(% . 20— DA (=1 Ey = 2n)!, (39)
h=0
D sen( ., @ = DHED T By = @n+ DY, (40)
h=0
n 2h (92h __
an_h(22, o, (2n — 2)2)(—1)’”1%3% =22n — 1. 1)

h=1
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