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Abstract. Let f ∈ Fq[T ] be a monic polynomial over the finite field Fq of q elements and
let k ≥ 1 be a natural number. Following the work of Das, Elma, Kuo, and Liu [DEKL23], let
ωk(f) be the number of distinct monic irreducible factors of f with multiplicity k. We study
the distribution of ωk in Fq(T ) when restricted to h-free polynomials and h-full polynomials.
We show that a generalization of the Erdős–Kac Theorem restricted to the h-free polynomials
is true for ω1, but not for ωk for 2 ≤ k < h, and similarly, a generalization of the Erdős–Kac
Theorem restricted to the h-full polynomials is true for ωh, but not for ωk for k ≥ h+ 1.

1. Introduction

Let Fq be the finite field of q elements, where q is a prime power. For f ∈ Fq[T ], let

(1) f = αP v1
1 · · ·P vr

r

be its prime factorization, where Pj ∈ Fq[T ] is monic irreducible, vj ≥ 1, and α ∈ F∗
q.

Let h ≥ 2 be a natural number. We say that f ∈ Fq[T ] is h-free if vj < h for j = 1, . . . , r
in (1). Analogously, we say that f is h-full if vj ≥ h for j = 1, . . . , r in (1). Notice that for
h = 2, we obtain the square-free and the square-full polynomials respectively. We denote by
Sh and by Nh the sets of h-free and h-full polynomials respectively.

The number of distinct prime divisors is given by ω(f) := r. The distribution of values of
ω has been extensively studied over the natural numbers. In 1940, Erdős and Kac famously
proved that for n a natural number ω(n) has a limiting normal distribution in the sense that

lim
x→∞

1

x

∣∣∣∣∣
{
3 ≤ n ≤ x : α ≤ ω(n)− log log(n)√

log(n)
≤ β

}∣∣∣∣∣ = 1√
2π

∫ β

α

e−t2/2dt.

Various approaches to the Erdős and Kac’s theorem have been pursued, see for example the
works of Delange [Del53, Del71], Halberstam [Hal55], Billingsley [Bil69], and Granville and
Soundararajan [GS07].

The function field version of the Erdős–Kac Theorem was settled by W.-B. Zhang [Zha96],
namely, if we let Mn denote the monic polynomials of Fq[T ] of degree n, then

lim
m→∞

∣∣∣∣{f ∈ Mn : n ≤ m,α ≤ ω(f)−log log(n)√
log(n)

≤ β

}∣∣∣∣
|{f ∈ Mn : n ≤ m}|

=
1√
2π

∫ β

α

e−t2/2dt.

This was then generalized by Liu [Liu04b, Liu04a]. Rhoades [Rho09] gave another proof,
extending the methods Granville and Soundararajan [GS07] to the function field setting.
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It is also interesting to pose the question of whether the Erdős–Kac Theorem extends
to subfamilies. Laĺın and X. Zhang [LZ23] proved the corresponding generalizations to the
Erdős–Kac Theorem for h-free and h-full monic polynomials over Fq[T ], by the method of
moments. It is remarkable that, while a positive proportion of monic polynomials of a certain
degree are h-free, and this proportion remains positive as the degree goes to infinity, the same
is not true for h-full, which constitute a thin family as the degree goes to infinity. Therefore,
the analogue to the Erdős–Kac Theorem is more surprising in this context.

In [EL22], Elma and Liu considered a refinement of ω(n) as follows. For k ≥ 1 a natural
number, let ωk(n) denote the number of distinct prime factors of n with multiplicity k.
They computed the first and second moments of ωk(n), proved the analogue of Erdős–Kac
Theorem for ω1(n), and showed that ωk(n) for k ≥ 2 does not have normal order F (n) for
any nondecreasing nonnegative function F (n). This work was subsequently extended by
Das, Elma, Kuo, and Liu [DEKL23] to the function field setting.

The goal of this manuscript is to explore the refined functions ωk(f) in the case of the
h-free and h-full families of monic polynomials in Fq[T ]. As one may expect from the above
discussion, we obtain that ω1(f) satisfies a limiting normal distribution over the h-free poly-
nomials, while ωk(f) for 2 ≤ k < h does not. For the h-full polynomials, we have that ωh(f)
satisfies a limiting normal distribution, while ωk(f) for k ≥ h + 1 does not. (In the h-free
case, ωk(f) is trivial for k ≥ h while in the h-full case, ωk(f) is trivial for k < h.)

We adopt the following notation. Let M and Mn denote the sets of monic polynomials of
Fq[T ] and monic polynomials of degree n respectively. We let

∑
P and

∏
P denote the sum

and product over all monic irreducible polynomials in Fq[T ]. For a polynomial F (T ) ∈ Fq[T ],
the quantity |F (T )| := qdeg(F ) denotes its norm or absolute value, and we set |0| := 0. We
denote by ζq(s) the zeta function associated to Fq[T ], defined precisely in (10).

Define

B1 = γ +
∑
P

(
log

(
1− 1

|P |

)
+

1

|P |

)
to be the function field analogue of the first Mertens constant, where

γ = lim
n→∞

(
n∑

k=1

1

k
− log(n)

)
≈ 0.57721566 . . .

is the Euler–Mascheroni constant. The Mertens constantB1 appears in estimates for
∑

n≤x ω(n)
(see [HW08, Theorem 430]).

For f ∈ M and P ∈ P , let νP (f) be the multiplicity of P in the factorization of f , that
is, νP (f) is the integer such that P νP (f) | f but P νP (f)+1 ∤ f (this includes the possibility of
νP (f) = 0 when P ∤ f). We have that

ω(f) =
∑
P |f

1.

For a natural number k ≥ 1, we define

ωk(f) :=
∑
P |f

νP (f)=k

1.
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Clearly we have

ω(f) =
∑
k≥1

ωk(f).

In [DEKL23, Theorem 1.1], Das, Elma, Kuo, and Liu prove that, as n → ∞,

(2)
1

|Mn|
∑

f∈Mn

ω1(f) = log(n) +

(
B1 −

∑
P

1

|P |2

)
+O

(
1

n

)
.

For k ≥ 2, ε ∈ (0, 1/2) and as n → ∞, they prove

(3)
1

|Mn|
∑

f∈Mn

ωk(f) =

(∑
P

1

|P |k
− 1

|P |k+1

)
+Oε

(
q

n
k
−n+εn

)
.

The authors of [DEKL23] compute the second moments in Theorem 1.2 obtaining results of
the form

1

|Mn|
∑

f∈Mn

ω1(f)
2 = log2(n) + C2 log(n) + C3 +O

(
log(n)

n

)
,

and
1

|Mn|
∑

f∈Mn

ωk(f)
2 = C ′

k +Oε

(
q

n
k
−n+εn

)
,

where C2, C3, C
′
k are certain precisely given constants (depending only on q).

In contrast, [LZ23, Theorem 4.1] states that the moments over the h-free family are given,
as n → ∞, by

1

|Sh ∩Mn|
∑

f∈Sh∩Mn

ω(f) = log(n) +B1 −
∑
P

|P | − 1

|P |(|P |h − 1)
+Oε

(
nε−1

)
,

while
1

|Sh ∩Mn|
∑

f∈Sh∩Mn

ω(f)2 = log2(n) + S2(h) log(n) + S3(h) +Oε

(
nε−1

)
,

for certain precise constants S2(h) and S3(h) depending on q and h.
Similarly [LZ23, Theorem 6.1] gives that

1

|Nh ∩Mn|
∑

f∈Nh∩Mn

ω(f) = log
(n
h

)
+N1(h) +Oε

(
nε−1

)
,

while

1

|Nh ∩Mn|
∑

f∈Nh∩Mn

ω(f)2 = log2
(n
h

)
+N2(h) log

(n
h

)
+N3(h) +Oε

(
nε−1

)
,

and N1(h), N2(h), N3(h) are certain precisely given constants depending on q and h. In
particular, setting h = 1 for the h-full polynomials gives the moments of ω for the whole set
of monic polynomials, namely,

1

|Mn|
∑

f∈Mn

ω(f) = log (n) +N1(1) +Oε

(
nε−1

)
,
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and
1

|Mn|
∑

f∈Mn

ω(f)2 = log2 (n) +N2(1) log (n) +N3(1) +Oε

(
nε−1

)
.

We remark that for n ≥ h,

|Sh ∩Mn| =
qn

ζq(h)

and

|Nh ∩Mn| =
q

n
h

h

h−1∑
j=0

ξjnh
∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)
+Oε

(
q

n
h+1

+εn
)
,

where ξh denotes a primitive complex root of unity of order h.
Throughout this article, the error terms have implied functions depending on q and h.

This does not pose a problem, as we assume q and h to be fixed.

As previously stated, [DEKL23, Theorem 1.5] asserts that ω1(f)−log(n)√
log(n)

has a limiting normal

distribution; [LZ23, Theorem 4.2] gives the analogous result for ω(f)−log(n)√
log(n)

restricted to Sh ∩

Mn, while [LZ23, Theorem 6.2] gives this for
ω(f)−log(n

h)√
log(n

h)
restricted to Nh ∩Mn.

In this work, we compute the first and second moments of ω1 for h-free polynomials.

Theorem 1.1. For any ε > 0 and as n → ∞, the first moment of ω1 over the h-free
polynomials of degree n is given by:

(4)
1

|Sh ∩Mn|
∑

f∈Sh∩Mn

ω1(f) = log(n) + C1(Sh, 1) +O

(
1

n

)
,

where

C1(Sh, 1) = B1 −
∑
P

|P |h−1 − 1

|P |(|P |h − 1)
.

The second moment is given by:

1

|Sh ∩Mn|
∑

f∈Sh∩Mn

ω1(f)
2 = log2(n) + C2(Sh, 1) log(n) + C3(Sh, 1) +Oε

(
qn

n1−ε

)
,(5)

where

C2(Sh, 1) =

(
2

(
B1 −

∑
P

|P |h−1 − 1

|P |(|P |h − 1)

)
+ 1

)
and

C3(Sh, 1) = B2
1+B1−ζ(2)−

∑
P

(
|P |h−2(|P | − 1)

|P |h − 1

)2

+

(∑
P

|P |h−1 − 1

|P |(|P |h − 1)

)2

−(2B1+1)
∑
P

|P |h−1 − 1

|P |(|P |h − 1)
.

Finally, the variance is given by:

Varh−free,n(ω1) :=
1

|Sh ∩Mn|
∑

f∈Sh∩Mn

ω1(f)
2 −

(
1

|Sh ∩Mn|
∑

f∈Sh∩Mn

ω1(f)

)2

= log(n) + C4(Sh, 1) +Oε

(
nε−1

)
,
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where

C4(Sh, 1) = B1 − ζ(2)−
∑
P

(
|P |h−2(|P | − 1)

|P |h − 1

)2

−
∑
P

|P |h−1 − 1

|P |(|P |h − 1)
.

We remark that the error term in the first moment is of better quality than the error
term in the second moment, as this last one contains an extra factor of nε. This is due to
the fact that the first moment can be computed in two ways: one that uses the generating
function for ω1 directly, and another way, that deduces the moments from equations (2) and
(3) (obtained by Das, Elma, Kuo, and Liu with other methods), resulting in an improvement
of the error term.

Another interesting observation is that for the case h = 2, we have ω1 = ω, and the results
for the moments coincide with the results from [LZ23].

The techniques used to compute the first and second moments in the case of ω1 can be
pushed further to prove an analogue of Erdős–Kac Theorem.

Theorem 1.2. As n → ∞, ω1(f) with f ∈ Sh ∩ Mn approaches a normal distribution,
namely, for α ≤ β,

1

|Sh ∩Mn|

∣∣∣∣∣
{
f ∈ Sh ∩Mn : α ≤ ω1(f)− log(n)√

log(n)
≤ β

}∣∣∣∣∣→ 1√
2π

∫ β

α

e−t2/2dt.

Similarly we obtain the first and second moments of ωk for 1 < k < h for h-free polyno-
mials.

Theorem 1.3. For any ε > 0 and as n → ∞, the first moment of ωk over the h-free
polynomials of degree n is given by:

(6)
1

|Sh ∩Mn|
∑

f∈Sh∩Mn

ωk(f) =
∑
P

|P |h−k−1(|P | − 1)

|P |h − 1
+Oε

(
q

n
k
−n+εn

)
and the second moment is given by:

1

|Sh ∩Mn|
∑

f∈Sh∩Mn

ωk(f)
2 =

(∑
P

|P |h−k−1(|P | − 1)

|P |h − 1

)2

−
∑
P

(
|P |h−k−1(|P | − 1)

|P |h − 1

)2

+
∑
P

|P |h−k−1(|P | − 1)

|P |h − 1
+Oε

(
q

n
k
−n+εn

)
.

(7)

Let U ⊆ M and g,G : U → R≥0 be two functions. We say that G is non-decreasing if
G(f1) ≥ G(f2) for all f1, f2 with deg(f1) ≥ deg(f2). Then g is said to have normal order G
(for a non-decreasing function G over S) if for any ε > 0 the number of polynomials f with
degree n that do not satisfy the inequality:

(1− ε)G(f) < g(f) < (1 + ε)G(f)

is o(U ∩Mn) as n → ∞.
Theorems 1.1 and 1.2 imply in particular that ω1(f) has normal order log(deg(f)) over

the h-free polynomials. It is natural to pose the same question for ωk when k > 1. We have
the following negative result, which is consistent with the findings of [DEKL23] for the whole
set of monic polynomials.
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Theorem 1.4. For 1 < k < h, the function ωk(f) does not have normal order G(f) for any
non-decreasing function G : Sh ∩M → R≥0.

Using the same methods, we can prove analogous results forNh. Before stating our results,
we establish some notation. Let

K(P, h, j) :=
1− (q

1
h ξjh)

− deg(P )

|P |(1− (q
1
h ξjh)

− deg(P )) + 1
,

and recall that as n → ∞,

|Nh ∩Mn| =
q

n
h

h

h−1∑
j=0

ξjnh
∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)
+Oε

(
q

n
h+1

+εn
)
.

Theorem 1.5. For any ε > 0 and as n → ∞, the first moment of ωh over the h-full
polynomials of degree n is given by:

1

|Nh ∩Mn|
∑

f∈Nh∩Mn

ωh(f) = log
(n
h

)
+ C1(Nh, h) +Oε

(
nε−1

)
,(8)

where

C1(Nh, h) =B1 +
1

|Nh ∩Mn|
q

n
h

h

h−1∑
j=0

ξjnh
∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)

×
∑
P

(
K(P, h, j)− 1

|P |

)
.

The second moment is given by:

(9)
1

|Nh ∩Mn|
∑

f∈Nh∩Mn

ωh(f)
2 = log2

(n
h

)
+ C2(Nh, h) log

(n
h

)
+ C3(Nh, h) +Oε

(
nε−1

)
,

where

C2(Nh, h) =2B1 + 1 +
2

|Nh ∩Mn|
q

n
h

h

h−1∑
j=0

ξjnh
∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)

×
∑
P

(
K(P, h, j)− 1

|P |

)
and

C3(Nh, h) =B2
1 +B1 − ζ(2)− 1

|Nh ∩Mn|
q

n
h

h

h−1∑
j=0

ξjnh
∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)

×

∑
P

K(P, h, j)2 +

(∑
P

(
K(P, h, j)− 1

|P |

))2

+(2B1 + 1)
∑
P

(
K(P, h, j)− 1

|P |

)]
.
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Finally, the variance is given by:

Varh−full,n(ωh) :=
1

|Nh ∩Mn|
∑

f∈Nh∩Mn

ω1(f)
2 −

(
1

|Nh ∩Mn|
∑

f∈Nh∩Mn

ω1(f)

)2

= log
(n
h

)
+B1 − ζ(2) +

1

|Nh ∩Mn|

h−1∑
j=0

ξjnh
∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)

×

−∑
P

K(P, h, j)2 +

(∑
P

(
K(P, h, j)− 1

|P |

))2

+
∑
P

(
K(P, h, j)− 1

|P |

)
−

[
1

|Nh ∩Mn|

h−1∑
j=0

ξjnh
∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)

×
∑
P

(
K(P, h, j)− 1

|P |

)]2
+Oε

(
nε−1

)
.

The techniques employed in the proof of the above statement can be pushed further to
prove an analogue of Erdős–Kac result.

Theorem 1.6. As n → ∞, ωh(f) with f ∈ Nh ∩ Mn approaches a normal distribution,
namely, for α ≤ β,

1

|Nh ∩Mn|

∣∣∣∣∣∣
f ∈ Nh ∩Mn : α ≤

ωh(f)− log
(
n
h

)√
log
(
n
h

) ≤ β


∣∣∣∣∣∣→ 1√

2π

∫ β

α

e−t2/2dt.

Similarly we obtain the first and second moments of ωk for h < k for h-full polynomials.

Theorem 1.7. For any ε > 0 and as n → ∞ the first moment of ωk over the h-full
polynomials of degree n is given by:

1

|Nh ∩Mn|
∑

f∈Nh∩Mn

ωk(f) =
1

|Nh ∩Mn|
q

n
h

h

h−1∑
j=0

ξjnh
∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)
×
∑
P

|P |(q
1
h ξjh)

−k deg(P )K(P, h, j) +Oε

(
q−

n
h(h+1)

+εn
)
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and the second moment is given by:

1

|Nh ∩Mn|
∑

f∈Nh∩Mn

ωk(f)
2 =

1

|Nh ∩Mn|
q

n
h

h

h−1∑
j=0

ξjnh
∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

−deg(P ))

)

×

[∑
P

(
|P |(q

1
h ξjh)

−k deg(P )K(P, h, j)
)2

−

(∑
P

|P |(q
1
h ξjh)

−k deg(P )K(P, h, j)

)2

+
∑
P

|P |(q
1
h ξjh)

−k deg(P )K(P, h, j)

]
+Oε

(
q−

n
h(h+1)

+εn
)
.

Theorems 1.5 and 1.6 imply in particular that ωh(f) has normal order log(deg(f)) over
the h-full polynomials. It is natural to pose the same question for ωk when k > h. We have
the following negative result.

Theorem 1.8. For h < k, the function ωk(f) does not have normal order G(f) for any
non-decreasing function G : Nh ∩M → R≥0.

This article is organized as follows. We start by including some notation and preliminary
statements in Section 2. The moments of ωk over the h-free polynomials are treated in Section
3, including the first and second moment formulas, the normality results, and the analogue
of Erdős–Kac Theorem. Then Section 4 is organized likewise, for the h-full polynomials.
Finally, we conclude with a discussion of possible directions of future research.
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2. Notation and preliminary statements

Let M denote the set of monic polynomials over Fq[T ] and let Mn (respectively M≤n)
denote the subset ofM containing the polynomials of degree n (respectively degree ≤ n). Let
P denote the set of monic irreducible polynomials, and let Pn := P∩Mn and P≤n := P∩M≤n

be defined analogously to the corresponding subsets of M. The zeta function of Fq[T ] is
given by

(10) ζq(s) =
∑
f∈M

1

|f |s
=
∏
P

(
1− 1

|P |s

)−1

,

where the sum and the product converge for Re(s) > 1. By summing over the degree and
then over Mn, one can prove that

ζq(s) =
1

1− q1−s
,
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which gives a meromorphic continuation for ζq(s) to the whole complex plane, with single
poles when qs = q. It is often convenient to consider the change of variables u = q−s, which
gives

Zq(u) =
∑
f∈M

udeg(f) =
∏
P

(
1− udeg(P )

)−1
,

now converging absolutely for |u| < 1
q
, and having a meromorphic continuation to the com-

plex plane with a single pole at u = 1
q
.

We recall Perron’s formula over Fq[T ], which will be used throughout this article. (See
for example [Mur08, 4.4.15] for the classical statement, and [DFL22, Lemma 2.2] for the
function field version.)

Theorem 2.1 (Perron’s Formula). If the generating series A(u) =
∑

f∈M a(f)udeg(f) is

absolutely convergent in |u| ≤ r < 1, then∑
f∈Mn

a(f) =
1

2πi

∮
|u|=r

A(u)

un

du

u
,

where
∮
denotes the integral over the circle centered at the origin and oriented counterclock-

wise.

The following result is due to Warlimont [War93] in the context of arithmetical semigroups.
It was later rediscovered by Afshar and Porritt [AP19] in the function field setting, and
intensively used in [LZ23]. It extends the Selberg–Delange method to function fields and is
crucial for obtaining the first and second moments for ω1(f) in all cases.

Theorem 2.2. [War93, Lemma 2],[AP19, Proposition 2.3] Let C(u, z) =
∑

n≥0Cz(n)u
n

and B(u, z) =
∑

n≥0Bz(n)u
n be power series with coefficients depending on z satisfying

C(u, z) = B(u, z)Zq(u)
z. Suppose also that, uniformly for |z| ≤ A,∑

n≥0

|Bz(n)|
qn

n2A+2 ≪A 1.

Then, uniformly for |z| ≤ A and n ≥ 1, we have

Cz(n) = qn
nz−1

Γ(z)
B (1/q, z) +OA

(
qnnRe(z)−2

)
,

where Γ(z) is the gamma function defined by

Γ(z) =

∫ ∞

0

tz−1e−tdt.

For the h-full polynomial case we will need the following extension proven in [LZ23].

Theorem 2.3. [LZ23, Theorem 2.3] Let C(u, z) =
∑

n≥0Cz(n)u
n and B(u, z) =

∑
n≥0Bz(n)u

n

be power series with coefficients depending on z satisfying C(u, z) = B(u, z)Zq(u
h)z, where

h is a positive integer. Suppose also that, uniformly for |z| ≤ A,∑
n≥0

|Bz(n)|
q

n
h

n2A+2 ≪A 1.

9



Then, uniformly for |z| ≤ A and n ≥ 1, we have

Cz(n) =
q

n
hnz−1

hzΓ(z)

h−1∑
j=0

ξjnh B
(
(q

1
h ξjh)

−1, z
)
+OA

(
q

n
hnRe(z)−2

)
,

where ξh denotes a primitive h-root of unity in C.

To close this section, we recall another result of [LZ23] that will allow us to differentiate
inside an error term after applying Theorems 2.2 and 2.3.

Lemma 2.4. [LZ23, Lemma 3.2] Let Gn(z), f(z) be complex functions, analytic at z = 1
such that Gn(R), f(R) ⊂ R and

Gn(z) = f(z)nRe(z)−1 +O
(
nRe(z)−2

)
in a neighborhood of z = 1. Then, for any small ε > 0, we have

G′
n(1) =

∂

∂z
(f(z)nRe(z)−1)

∣∣∣∣
z=1

+Oε

(
n−1+ε

)
,(11)

G′′
n(1) =

∂2

∂z2
(f(z)nRe(z)−1)

∣∣∣∣
z=1

+Oε

(
n−1+ε

)
.(12)

3. Moments for the h-free polynomials.

In this section we treat the case of h-free monic polynomials, where h ≥ 2 and h ≥ k ≥ 1.
To prove Theorems 1.1 and 1.3, we start by considering the following Euler product, which
converges absolutely for |u| < 1

q
and gives the generating Dirichlet series for the h-free

polynomials:

Zq(u)

Zq(uh)
=
∏
P

(
1− uhdeg(P )

1− udeg(P )

)
=
∏
P

(
1 + udeg(P ) + · · ·+ u(h−1) deg(P )

)
=

∑
f∈Sh∩M

udeg(f).

We introduce the coefficient ωk(f) by writing it as the exponent of an extra variable, which
we will later differentiate. This preserves the additive structure of ωk(f).

Ck,Sh
(u, z) :=

∑
f∈Sh∩M

zωk(f)udeg(f) =
∏
P

(1 + udeg(P ) + · · ·+ zuk deg(P ) + · · ·+ u(h−1) deg(P ))

=
∏
P

(
1− uhdeg(P )

1− udeg(P )
+ (z − 1)uk deg(P )

)
.

The above generating series can be used in two ways to compute the moments of ωk(f).
Firstly, we can use techniques such as Perron’s formula (Theorem 2.1) and Theorem 2.2
to directly estimate the coefficient of un and obtain the moments by differentiating and
evaluating at z = 1. Secondly, we can use the generating series to relate ωk(f) over the h-free
monic polynomials to the results from [DEKL23] for the whole family of monic polynomials.
Next, we explain this second approach in detail.

Any f ∈ M can always be written as f(T ) = m(T )n(T )h in an unique way, where m(T )
is h-free. We define mh(f) := m(f). Our next goal is to study ωk ◦mh for k = 1, . . . , h− 1,
that is to say, we want to find

∑
f∈Mn

ωk(m(f)) and
∑

f∈Mn
ωk(m(f))2.

10



We have the following generating function for ωk ◦mh:∑
f∈M

zωk(mh(f))udeg(f) =
∏
P

(
1 + · · ·+ u(k−1) deg(P ) + zuk deg(P ) + u(k+1) deg(P ) + · · ·+ zu(h+k) deg(P ) + · · ·

)
=
∏
P

(
1

1− udeg(P )
+

(z − 1)uk deg(P )

1− uhdeg(P )

)
=Zq(u

h)Ck,Sh
(u, z).(13)

From this we immediately see that there must be a relation between
∑

f∈Sh∩Mn
ωk(f)

j and∑
f∈Mn

ωk(mh(f))
j. We will make this more precise after we do a careful study of the

generating functions.
Now, notice also that for f ∈ Mn,

(14) ωk(mh(f)) = ωk(f) + ωh+k(f) + · · ·+ ω(⌊n
h
⌋−1)h+k(f).

Thus, if we can describe the relationship between the moments of ωk(f) over Sh and the
moments of ωk(mh(f)) in more precise terms, we can use equation (14) and deduce Theorems
1.1 and 1.3 from the results of Das, Elma, Kuo, and Liu (2) and (3). While we have not
found an efficient way of doing this for the second moment, we do have a way of doing this
for the first moment, which in the case of ω1(f), leads to an improvement to the error term
compared to what is obtained by directly applying the generating function.

We analyze the first two moments in the next subsections, as we consider two natural
cases, according to whether k = 1 or 1 < k < h, separately.

3.1. First and second moments of ω1 for the h-free polynomials. The case of ω1

corresponds to k = 1. We proceed to extract the singularity at u = 1
q
in the generating

function by writing

B1,Sh
(u, z) := Zq(u)

−zC1,Sh
(u, z).

Our goal is to apply Theorem 2.2. In order to proceed, we verify that the hypotheses are
satisfied.

Lemma 3.1. Let B1,Sh
(u, z) =

∑
n≥0 Bz(n)u

n. For |z| ≤ A, n ≥ 2 and σ > 1
2
,∑

0≤a≤n

|Bz(a)|
qσa

≤ cA,σ,

where cA,σ is a constant depending on A and σ.

Proof. The argument follows very similar steps to those in the proof of [AP19, Proposition
2.5] and [LZ23, Lemmas 3.1, 5.1]. Let bz(f) be the function defined on the powers of monic
irreducible polynomials P by

(15) 1 +
∑
j≥1

bz(P
j)uj = (1 + zu+ u2 + · · ·+ uh−1)(1− u)z,

and extended multiplicatively to all f ∈ M.
Now B1,Sh

(u, z) =
∑

f∈M bz(f)u
deg(f), and therefore, Bz(n) =

∑
f∈Mn

bz(f). Expanding

the right-hand side of (15), we see that bz(P ) = 0. By Cauchy’s integral formula over
11



|u| =
√

2
3
, we obtain

bz(P
j) =

1

2πi

∮
|u|=

√
2
3

(1 + zu+ u2 + · · ·+ uh−1)(1− u)z
du

uj+1
.

Thus,

|bz(P j)| ≤
(
3

2

) j
2

MA,

for j ≥ 2, where

MA := sup
|z|≤A,|u|≤

√
2
3

∣∣(1 + zu+ u2 + · · ·+ uh−1)(1− u)z
∣∣

is a constant depending on A. The rest of the proof proceeds exactly as in [LZ23, Lemma
3.1] to obtain ∑

0≤a≤n

|Bz(a)|
qσa

≪ exp

(
MA

q2σ−1 − 1

)
.

□

Since a2A+2 < qa/3 as a approaches infinity, it follows from Lemma 3.1 that∑
a≥0

|Bz(a)|
qa

a2A+2 <
∑
a≥0

|Bz(a)|
q

2a
3

≪A 1

uniformly for |z| ≤ A. Thus we can apply Theorem 2.2 to B1,Sh
(u, z).

Proof of Theorem 1.1. Recall that we have∑
f∈Sh∩M

zω1(f)udeg(f) = C1,Sh
(u, z) = B1,Sh

(u, z)Zq(u)
z.

Applying Theorem 2.2, this gives

(16)
∑

f∈Sh∩Mn

zω1(f) = qn
nz−1

Γ(z)
B1,Sh

(1/q, z) +OA

(
qnnRe(z)−2

)
.

Differentiating both sides of (16) with respect to z for z close to 1, and applying (11), we
have that
(17)∑
f∈Sh∩Mn

ω1(f)z
ω1(f)−1 =

(
B1,Sh

(1/q, z)

Γ(z)

)′

qnnz−1+
B1,Sh

(1/q, z)

Γ(z)
qn log(n)nz−1+Oz(1)Oε

(
qn

n1−ε

)
.

Evaluating (17) at z = 1, we have
(18)∑
f∈Sh∩Mn

ω1(f) =
∂
∂z
B1,Sh

(1/q, 1)Γ(1)− B1,Sh
(1/q, 1)Γ′(1)

Γ(1)2
qn+

B1,Sh
(1/q, 1)

Γ(1)
qn log(n)+Oε

(
qn

n1−ε

)
.

12



Recall that Γ(1) = 1 and Γ′(1) = −γ. Notice that the evaluation of B1,Sh
(1/q, 1) is particu-

larly simple:

B1,Sh
(1/q, 1) =

∏
P

(
1− 1

|P |h

)
=

1

ζq(h)
.

In addition, the logarithmic derivative of B1,Sh
(1/q, z) gives

(19)
∂
∂z
B1,Sh

(1/q, z)

B1,Sh
(1/q, z)

=
∑
P

(
log

(
1− 1

|P |

)
+

|P |h−2(|P | − 1)

|P |h − 1 + (z − 1)|P |h−2(|P | − 1)

)
.

Applying the above identities to (18), we obtain the proof of (4) (with an error term of
Oε

(
qn

n1−ε

)
).

We now proceed to prove (5). Multiplying (17) by z, differentiating both sides with respect
to z for z close to 1, and applying (12), we obtain

∑
f∈Sh∩Mn

ω1(f)
2zω1(f)−1 =

(
B1,Sh

(1/q, z)

Γ(z)

)′′

qnznz−1 +

(
B1,Sh

(1/q, z)

Γ(z)

)′

qn(nz−1 + 2znz−1 log(n))

+
B1,Sh

(1/q, z)

Γ(z)
qn log(n)(nz−1 + znz−1 log(n))

+Oz(1)Oε

(
qn

n1−ε

)
.(20)

Now observe that(
B1,Sh

(1/q, z)

Γ(z)

)′′

=

(
∂
∂z
B1,Sh

(1/q, z)Γ(z)− B1,Sh
(1/q, z)Γ′(z)

Γ(z)2

)′

=
∂2

∂z2
B1,Sh

(1/q, z)Γ(z)2 − 2 ∂
∂z
B1,Sh

(1/q, z)Γ(z)Γ′(z) + B1,Sh
(1/q, z)(2Γ′(z)2 − Γ(z)Γ′′(z))

Γ(z)3
.

In addition, multiplying (19) by B1,Sh
(1/q, z), taking the derivative, and evaluating at

z = 1, we obtain

∂2

∂z2
B1,Sh

(1/q, 1) =
∂

∂z
B1,Sh

(1/q, 1)
∑
P

(
log

(
1− 1

|P |

)
+

|P |h−2(|P | − 1)

|P |h − 1

)

− B1,Sh
(1/q, 1)

∑
P

(
|P |h−2(|P | − 1)

(|P |h − 1)

)2

=
1

ζq(h)

[∑
P

(
log

(
1− 1

|P |

)
+

|P |h−2(|P | − 1)

|P |h − 1

)]2

− 1

ζq(h)

∑
P

(
|P |h−2(|P | − 1)

(|P |h − 1)

)2

.(21)
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Evaluating (20) at z = 1 gives∑
f∈Sh∩Mn

ω1(f)
2

=
∂2

∂z2
B1,Sh

(1/q, 1)Γ(1)2 − 2 ∂
∂z
B1,Sh

(1/q, 1)Γ(1)Γ′(1) + B1,Sh
(1/q, 1)(2Γ′(1)2 − Γ(1)Γ′′(1))

Γ(1)3
qn

+
∂
∂z
B1,Sh

(1/q, 1)Γ(1)− B1,Sh
(1/q, 1)Γ′(1)

Γ(1)2
qn(1 + 2 log(n))

+
B1,Sh

(1/q, 1)

Γ(1)
qn log(n)(1 + log(n)) +Oε

(
qn

n1−ε

)
.

Replacing (21) in the above equation, and using the fact that Γ′′(1) = γ2+ζ(2), we obtain

∑
f∈Sh∩Mn

ω1(f)
2 =

qn(log(n))2

ζq(h)

+
qn(log(n))

ζq(h)

(
2
∑
P

(
log

(
1− 1

|P |

)
+

|P |h−2(|P | − 1)

|P |h − 1

)
+ 2γ + 1

)

+
qn

ζq(h)

[∑
P

(
log

(
1− 1

|P |

)
+

|P |h−2(|P | − 1)

|P |h − 1

)]2

− qn

ζq(h)

∑
P

(
|P |h−2(|P | − 1)

(|P |h − 1)

)2

+
2γ + 1

ζq(h)
qn
∑
P

(
log

(
1− 1

|P |

)
+

|P |h−2(|P | − 1)

|P |h − 1

)
+

γ2 + γ − ζ(2)

ζq(h)
qn

+Oε

(
qn

n1−ε

)
.

Combining with the definition of B1, we obtain (5).
The variance can be directly computed from equations (4) and (5) by recalling that [LZ23,

Lemma 3.3] gives, for n ≥ h,

|Sh ∩Mn| =
qn

ζq(h)
.

Now we consider the improvement on the error term of the first moment that can be
obtained by working with equations (13), (14), as well as (2) and (3). From the above
discussion of the generating function and (13), we deduce that

(22)
∑

f∈Sh∩Mn

ωk(f)
j =

1

ζq(h)

∑
f∈Mn

ωk(mh(f))
j.

14



Now, combining the above with (14), (2), and (3) gives

∑
f∈Sh∩Mn

ω1(f) =
1

ζq(h)

qn log(n) + qn

(
B1 −

∑
P

1

|P |2

)
+

⌊n
h
⌋−1∑

j=1

qn

(∑
P

1

|P |jh+1
− 1

|P |jh+2

)
+O

(
qn

n

)
+Oε

(
nq

n
h
+εn
)

=
qn log(n)

ζq(h)
+

qn

ζq(h)

(
B1 −

∑
P

|P |h−1 − 1

|P |(|P |h − 1)

)
+O

(
qn

n

)
,

giving (4) with the better error term of size qn

n
.

This concludes the proof of the first and second moments of ω1(f). □

3.2. First and second moments of ωk for the h-free polynomials. Here we consider
the case 1 < k < h. We have that Ck,Sh

(u, z) has a pole of order 1 at u = 1
q
. We extract it

as follows:

Bk,Sh
(u, z) = Zq(u)

−1Ck,Sh
(u, z) =

∏
P

(
1− uhdeg(P ) + (z − 1)uk deg(P )(1− udeg(P ))

)
,

where Bk,Sh
(u, z) is absolutely convergent for |u| < q−

1
k and |z| ≤ A.

By Perron’s formula (Theorem 2.1), we have that∑
f∈Sh∩Mn

zωk(f) =
1

2πi

∮
Bk,Sh

(u, z)

(1− qu)un

du

u
,

where the integral takes place on a small circle around the origin. We move the circle to
|u| = q−ε− 1

k and obtain the residue at u = 1
q
. This gives∑

f∈Sh∩Mn

zωk(f) =− Resu= 1
q

Bk,Sh
(u, z)

(1− qu)un+1
+

1

2πi

∮
|u|=q−ε− 1

k

Bk,Sh
(u, z)

(1− qu)un

du

u

=Bk,Sh
(1/q, z)qn +Oz(1)Oε

(
q

n
k
+εn
)
.(23)

Proof of Theorem 1.3. In order to recover the first moment, we differentiate and evaluate
(23) at z = 1: ∑

f∈Sh∩Mn

ωk(f) =
∂

∂z
Bk,Sh

(1/q, 1)qn +Oε

(
q

n
k
+εn
)
.(24)

The logarithmic derivative of Bk,Sh
(1/q, z) gives

∂
∂z
Bk,Sh

(1/q, z)

Bk,Sh
(1/q, z)

=
∑
P

|P |h−k−1(|P | − 1)

|P |h − 1 + (z − 1)|P |h−k−1(|P | − 1)
,

and thus

(25)
∂

∂z
Bk,Sh

(1/q, 1) =
1

ζq(h)

∑
P

|P |h−k−1(|P | − 1)

|P |h − 1
.

Replacing the above in (24) gives the first moment, equation (6).
15



We proceed to compute the second moment. Differentiating (23), multiplying by z, dif-
ferentiating again, and setting z = 1, we have∑

f∈Sh∩Mn

ωk(f)
2 =

∂2

∂z2
Bk,Sh

(1/q, 1)qn +
∂

∂z
Bk,Sh

(1/q, 1)qn +Oε

(
q

n
k
+εn
)
.(26)

For the second derivative we have

∂2

∂z2
Bk,Sh

(1/q, 1) =
∂

∂z
Bk,Sh

(1/q, 1)
∑
P

|P |h−k−1(|P | − 1)

|P |h − 1
− Bk,Sh

(1/q, 1)
∑
P

(
|P |h−k−1(|P | − 1)

|P |h − 1

)2

=
1

ζq(h)

(∑
P

|P |h−k−1(|P | − 1)

|P |h − 1

)2

−
∑
P

(
|P |h−k−1(|P | − 1)

|P |h − 1

)2
 .

Combining this with (25) in (26) gives (7), the desired result, equation (7).
As a final note, we remark that we could have computed the first moment from (22) by

combining with (14) and (3). This alternative approach does not improve the error term in
(6). □

3.3. Normal order and an Erdős–Kac result for the h-free polynomials. The goal
of this section is to prove Theorem 1.2, namely the Erdős–Kac result for ω1 over the h-free
polynomials, and Theorem 1.4, which investigates the normal order of the functions ωk over
the h-free polynomials.

Proof of Theorem 1.2. Our argument follows very closely the proof of [LZ23, Theorem 1.3].
In order to prove the statement we will show that as n → ∞,

1

|Sh ∩Mn|
∑

f∈Sh∩Mn

(
ω1(f)− log(n)√

log(n)

)v

→ Cv

where

(27) Cv =

{
v!

2
v
2 ( v

2)!
v even,

0 v odd.

Let us study the higher moments of ω1. We consider again the moment generating function
with z = et:

C1,Sh
(u, et) =

∑
f∈Sh∩M

etω1(f)udeg(f) =
∏
P

(
1 + etudeg(P ) + · · ·+ u(h−1) deg(P )

)
.

Evaluating at z = et will allow us to differentiate multiple times in a single step and recover
the moments via the generating function

(28) E
(
ωℓ
1

)
= E

(
etω1
)(ℓ)∣∣∣

t=0
.

We extract the singularity of C1,Sh
(u, et) at u = 1

q
as

B1,Sh
(u, et) = Zq(u)

−etC1,Sh
(u, et).
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By applying Theorem 2.2 we obtain∑
f∈Sh∩Mn

eω1(f)t = qn
net−1

Γ(et)
B1,Sh

(
1/q, et

)
+OA

(
qnnRe(et)−2

)
.

By (28), we have

(29) E
(
ωℓ
1

)
= ζq(h)

ℓ∑
j=0

(
ℓ

j

)
(net−1)(j)

(
B1,Sh

(1/q, et)

Γ(et)

)(ℓ−j)
∣∣∣∣∣
t=0

+Oε

(
1

n1−ε

)
.

Recall from Eq. (24) in [LZ23], that for j ≥ 1,

(30) (net−1)(j) = net−1

j∑
m=1

{
j

m

}
(et log(n))m = net−1Tj(e

t log(n)),

where the
{

j
m

}
are the Stirling numbers of the second kind, and the Tj are the Touchard

polynomials [Tou39].
By combining (30) with (29), we have:

(31) E
(
ωℓ
1

)
= ζq(h)

ℓ∑
j=0

(
ℓ

j

)
Tj(log(n))

(
B1,Sh

(1/q, et)

Γ(et)

)(ℓ−j)
∣∣∣∣∣
t=0

+Oε

(
1

n1−ε

)
.

Notice that

1

|Sh ∩Mn|
∑

f∈Sh∩Mn

(
ω1(f)− log(n)√

log(n)

)v

=
1

(log n)
v
2

v∑
ℓ=0

(
v

ℓ

)
E(ωℓ

1)(−1)v−ℓ(log n)v−ℓ.

Combining the above with (31), we then obtain

1

(log n)
v
2

v∑
ℓ=0

(
v

ℓ

)
E(ωℓ

1)(−1)v−ℓ(log n)v−ℓ

=
ζq(h)

(log n)
v
2

v∑
ℓ=0

(
v

ℓ

) ℓ∑
j=0

(
ℓ

j

)
Tj(log(n))

(
B1,Sh

(1/q, et)

Γ(et)

)(ℓ−j)
∣∣∣∣∣
t=0

(−1)v−ℓ(log n)v−ℓ +Oε

(
1

n1−ε

)
.

(32)

Consider the change of variables u = v − ℓ, m = v − ℓ + j. Then, the main term in (32)
becomes

ζq(h)

(log n)
v
2

v∑
m=0

(
B1,Sh

(1/q, et)

Γ(et)

)(v−m)
∣∣∣∣∣
t=0

m∑
u=0

(
v

u

)(
v − u

m− u

)
Tm−u(log n)(−1)u(log n)u

=
ζq(h)

(log n)
v
2

v∑
m=0

(
v

m

) (
B1,Sh

(1/q, et)

Γ(et)

)(v−m)
∣∣∣∣∣
t=0

m∑
u=0

(
m

u

)
Tm−u(log n)(−1)u(log n)u.(33)

Since the generating function for the Touchard polynomials [Tou39] is

ex(e
t−1) =

∞∑
m=0

Tm(x)

m!
tm,
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one can see that the generating function for the inner sum in (33) is given by

ex(e
t−1−t) =

∞∑
m=0

tm

m!

m∑
u=0

(
m

u

)
Tm−u(x)(−1)uxu.

Notice that the coefficient of xu in the power series of ex(e
t−1−t) is given by (et−1−t)u

u!
, whose

lowest power of t is t2u. Therefore, thinking of ex(e
t−1−t) as a power series in t, we have that

the coefficient of tv is a polynomial in x of degree at most
⌊
v
2

⌋
.

Now suppose that v is even. Then, the coefficient of x
v
2 tv in ex(e

t−1−t) is given by 1

2
v
2 ( v

2)!
.

Back to the inner sum in (33), this gives a leading coefficient of m!

2
m
2 (m

2 )!
for (log n)

m
2 when

m is even. Incorporating this information in (33), we get, for v even,

1

(log n)
v
2

v∑
ℓ=0

(
v

ℓ

)
E(Ω(f)ℓ)(−1)v−ℓ(log n)v−ℓ

=
ζq(h)

(log n)
v
2

B(1/q, 1)
Γ(1)

v∑
u=0

(
v

u

)
Tv−u(log n)(−1)u(log n)u +O

(
1

log n

)
=

v!

2
v
2

(
v
2

)
!
+O

(
1

log n

)
,

while for v odd we get

O

(
1√
log n

)
,

as desired.
□

Before proceeding to the proof of Theorem 1.4, we need an auxiliary result.

Lemma 3.2. Let n ≥ 0, ℓ > 0 be integers and let P ∈ P. Then, as n → ∞,

∑
f∈Sℓ∩Mn

(f,P )=1

1 =
qn

ζq(ℓ)

(
1− |P |−1

1− |P |−ℓ

)
+Oℓ,deg(P )(1).

Proof. We consider the generating function

∑
f∈Sℓ∩M
(f,P )=1

udeg(P ) =
Zq(u)(1− udeg(f))

Zq(uℓ)(1− uℓ deg(P ))
.

We remark that the above generating function has simple poles at u = 1
q
and u = ξjℓdeg(P )

for j = 0, . . . , ℓ deg(P )− 1, and no other poles.
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By Perron’s formula (Theorem 2.1), and by moving the integral to |u| = R with R → ∞,
we have∑
f∈Sℓ∩Mn

(f,P )=1

1 =
1

2πi

∮
(1− quℓ)(1− udeg(P ))

(1− qu)(1− uℓ deg(P ))

du

un+1

=− Resu= 1
q

(1− quℓ)(1− udeg(P ))

(1− qu)(1− uℓdeg(P ))un+1
−

ℓ deg(P )−1∑
j=0

Resu=ξj
ℓ deg(P )

(1− quℓ)(1− udeg(P ))

(1− qu)(1− uℓ deg(P ))un+1

=
qn

ζq(ℓ)

(
1− |P |−1

1− |P |−ℓ

)
+Oℓ,deg(P )(1).

□

Notice in particular that Lemma 3.2 implies that∑
f∈Sℓ∩Mn

νP (f)=k

1 =
∑

f∈Sh∩Mn−k deg(P )

(f,P )=1

1 =
qn−k deg(P )

ζq(ℓ)

(
1− |P |−1

1− |P |−ℓ

)
+Oh,deg(P )(1).

Proof of Theorem 1.4. We follow the argument given in [DEKL23, Theorem 1.4]. Let G(f)
be a non-decreasing function G : Sh∩M → R≥0. First assume that there is an f0 ∈ Sh∩M
such that G(f0) > 0. Therefore, G(f) > 0 for all f ∈ Sh ∩M such that deg(f) > deg(f0).
Let n > deg(f0) and consider the following set:

OS,0(n, h) := {f ∈ Sh ∩Mn : ωk(f) = 0}.
It can be seen that

Sk ∩Mn = Sh ∩Mn ∩ Sk ⊆ OS,0(n, h),

and therefore

|OS,0(n, h)| ≥ |Sk ∩Mn| =
qn

ζq(k)

for n ≥ k.
This means that |OS,0(n, h)| is ≫ qn. In particular, the set of monic h-free polynomials f

for which G(f) > 0 and ωk(f) = 0 is not o(qn). Clearly, for those f , we have

|ωk(f)−G(f)| > G(f)

2

is satisfied. That means that ωk(f) does not have normal order G when G is not the constant
function 0.

Now, if G(f) = 0 for all f ∈ Sh ∩M we define:

OS,1(n, h) := {f ∈ Sh ∩Mn : ωk(f) = 1}.
Let P ∈ P1 be a fixed monic irreducible polynomial of degree 1. It can be seen that

|OS,1(n, h)| ≥
∑

f∈Sh∩Mn, νP (f)=k
νQ(f)<k, ∀Q∈P, Q ̸=P

1 ≥
∑

f∈Sk∩Mn−k

(f,P )=1

1 =
qn−k

ζq(k)

(
1− q−1

1− q−k

)
+Ok(1),

where we have used Lemma 3.2.
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This means that |OS,1(n, h)| is ≫ qn. In particular, the set of monic h-free polynomials f
for which G(f) = 0 and ωk(f) = 1 is not o(qn). For those f , we have that

|ωk(f)−G(f)| > G(f)

2
.

Therefore ωk does not have normal order G when G is the constant function 0.
□

4. Moments for the h-full polynomials

In this section we prove the analogous results for the case of h-full polynomials, where
k ≥ h ≥ 2. To prove Theorems 1.5 and 1.7 we consider the following Euler product, which
converges absolutely for u < q−

1
h and gives the generating Dirichlet series for the h-full

polynomials: ∏
P

(
1 + uhdeg(P ) + u(h+1) deg(P ) + · · ·

)
=

∑
f∈Nh∩M

udeg(f).

We introduce the coefficient ωk(f) as in previous sections, the process being completely
analogous.

Ck,Nh
(u, z) :=

∑
f∈Nh∩M

zωk(f)udeg(f) =
∏
P

(
1 + uh deg(P ) + · · ·+ zuk deg(P ) + · · ·

)
=
∏
P

(
1− udeg(P ) + uhdeg(P )

1− udeg(P )
+ (z − 1)uk deg(P )

)
.

For the h-full polynomials there are two cases, according to whether k = h or h < k.
These two cases will be considered separately.

4.1. First and second moments of ωh for the h-full polynomials. We consider here
the case k = h. We proceed to extract the singularity at u = q−

1
h by writing

Bh,Nh
(u, z) := Zq(u

h)−zCh,Nh
(u, z)

Our goal is to apply Theorem 2.3, for which we need to verify that the hypotheses are
satisfied.

Lemma 4.1. Let Bh,Nh
(u, z) =

∑
n≥0 Bz(n)u

n. For |z| ≤ A, n ≥ 2 and σ > 1
h+1

,∑
0≤a≤n

|Bz(a)|
qσa

≤ cA,σ,

where cA,σ is a constant depending on A and σ.

Proof. The argument follows very similar steps to those in the proof of [AP19, Proposition
2.5] and [LZ23, Lemmas 3.1, 5.1]. Let bz(f) be the function defined on the powers of monic
irreducible polynomials P by

(34) 1 +
∑
j≥1

bz(P
j)uj = (1 + zuh + uh+1 + · · · )(1− uh)z,

and extended multiplicatively to all f ∈ M.
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Now Bh,Nh
(u, z) =

∑
f∈M bz(f)u

deg(f), and therefore, Bz(n) =
∑

f∈Mn
bz(f). Expanding

the right-hand side of (34), we see that bz(P
j) = 0 for j ≤ h. By Cauchy’s integral formula

over |u| =
(
2
3

) 1
h , we obtain

bz(P
j) =

1

2πi

∮
|u|=( 2

3)
1
h

(1 + zuh + uh+1 + · · · )(1− uh)z
du

uj+1
.

Thus,

|bz(P j)| ≤
(
3

2

) j
h

MA,

for j ≥ h+ 1, where

MA := sup

|z|≤A,|u|≤( 2
3)

1
h

∣∣(1 + zuh + uh+1 + · · · )(1− uh)z
∣∣

is a constant depending on A. The rest of the proof proceeds exactly as in [LZ23, Lemma
5.1] to obtain ∑

0≤a≤n

|Bz(a)|
qσa

≪ exp

(
MA

q(h+1)σ−1 − 1

)
.

□

Since a2A+2 < qa/3 as a approaches infinity, it follows from Lemma 3.1 that∑
a≥0

|Bz(a)|
qa

a2A+2 <
∑
a≥0

|Bz(a)|
q

2a
3

≪A 1

uniformly for |z| ≤ A. Thus we can apply Theorem 2.3 to B1,Sh
(u, z).

Proof of Theorem 1.5. Recall that we have∑
f∈Nh∩M

zωh(f)udeg(f) = Ch,Nh
(u, z) = Bh,Nh

(u, z)Zq(u
h)z.

Applying Theorem 2.3, this gives∑
f∈Nh∩Mn

zωh(f) =
q

n
hnz−1

hzΓ(z)

h−1∑
j=0

ξjnh Bh,Nh

(
(q

1
h ξjh)

−1, z
)
+OA(q

n
hnRe(z)−2).(35)

Differentiating both sides of (35) with respect to z for z close to 1 and applying (11) we
get:

∑
f∈Nh∩Mn

ωh(f)z
ωh(f)−1 =

q
n
hnz−1

hz
log
(n
h

) h−1∑
j=0

ξjnh

Bh,Nh

(
(q

1
h ξjh)

−1, z
)

Γ(z)

(36)

+
q

n
hnz−1

hz

h−1∑
j=0

ξjnh

Bh,Nh

(
(q

1
h ξjh)

−1, z
)

Γ(z)

′

+Oz(1)Oε

(
q

n
h

n1−ε

)
.
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Evaluating (36) at z = 1 we have∑
f∈Nh∩Mn

ωh(f) =
q

n
h

h
log
(n
h

) h−1∑
j=0

ξjnh Bh,Nh

(
(q

1
h ξjh)

−1, 1
)

+
q

n
h

h

h−1∑
j=0

ξjnh

∂
∂z
Bh,Nh

((q
1
h ξjh)

−1, 1)Γ(1)− Bh,Nh
((q

1
h ξjh)

−1, 1)Γ′(1)

Γ(1)2
(37)

+Oε

(
q

n
h

n1−ε

)
.

Note that we have

Bh,Nh
((q

1
h ξjh)

−1, 1) =
∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)
.(38)

The logarithmic derivative of Bh,Nh
(u, z) gives

(39)
∂
∂z
Bh,Nh

(u, z)

Bh,Nh
(u, z)

=
∑
P

(
log(1− uh deg(P )) +

uhdeg(P )(1− udeg(P ))

1− udeg(P ) + uhdeg(P ) + (z − 1)uhdeg(P )(1− udeg(P ))

)
,

and thus
∂
∂z
Bh,Nh

((q
1
h ξjh)

−1, 1)

Bh,Nh
((q

1
h ξjh)

−1, 1)
=
∑
P

(
log

(
1− 1

|P |

)
+

1− (q
1
h ξjh)

− deg(P )

|P |(1− (q
1
h ξjh)

− deg(P )) + 1

)
.(40)

Replacing the above result and (38) in (37) gives∑
f∈Nh∩Mn

ωh(f) =
q

n
h

h

h−1∑
j=0

ξjnh
∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)

×

[
log
(n
h

)
+
∑
P

(
log

(
1− 1

|P |

)
+

1− (q
1
h ξjh)

− deg(P )

|P |(1− (q
1
h ξjh)

−deg(P )) + 1

)
+ γ

]

+Oε

(
q

n
h

n1−ε

)
.

Combining the above results with the definition of B1 proves (8).
We now proceed to prove (9). Multiplying (36) by z, differentiating both sides with respect

to z for z close to 1, and applying (12), we obtain∑
f∈Nh∩Mn

ωh(f)
2zωh(f)−1 =

(
1 + z log

(n
h

)) q
n
hnz−1

hz
log
(n
h

) h−1∑
j=0

ξjnh
Bh,Nh

((q
1
h ξjh)

−1, z)

Γ(z)

+
(
1 + 2z log

(n
h

)) q
n
hnz−1

hz

h−1∑
j=0

ξjnh

(
Bh,Nh

((q
1
h ξjh)

−1, z)

Γ(z)

)′

(41)

+
q

n
hnz−1

hz
z

h−1∑
j=0

ξjnh

(
Bh,Nh

((q
1
h ξjh)

−1, z)

Γ(z)

)′′

+Oz(1)Oε

(
q

n
h

n1−ε

)
.
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Now notice that

(
Bh,Nh

((q
1
h ξjh)

−1, z)

Γ(z)

)′′

=

(
∂
∂z
Bh,Nh

((q
1
h ξjh)

−1, z)Γ(z)− Bh,Nh
((q

1
h ξjh)

−1, z)Γ′(z)

Γ(z)2

)′

=
∂2

∂z2
Bh,Nh

((q
1
h ξjh)

−1, z)Γ(z)2 − 2 ∂
∂z
Bh,Nh

((q
1
h ξjh)

−1, z)Γ(z)Γ′(z) + Bh,Nh
((q

1
h ξjh)

−1, z)(2Γ′(z)2 − Γ(z)Γ′′(z))

Γ(z)3
.

(42)

Differentiating from (39), we have that

∂2

∂z2
Bh,Nh

((q
1
h ξjh)

−1, 1) =
∂

∂z
Bh,Nh

((q
1
h ξjh)

−1, 1)
∑
P

(
log

(
1− 1

|P |

)
+

1− (q
1
h ξjh)

− deg(P )

|P |(1− (q
1
h ξjh)

− deg(P )) + 1

)

− Bh,Nh
((q

1
h ξjh)

−1, 1)
∑
P

(
1− (q

1
h ξjh)

− deg(P )

|P |(1− (q
1
h ξjh)

− deg(P )) + 1

)2

=
∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)

×

(∑
P

(
log

(
1− 1

|P |

)
+

1− (q
1
h ξjh)

−deg(P )

|P |(1− (q
1
h ξjh)

−deg(P )) + 1

))2

−
∑
P

(
1− (q

1
h ξjh)

− deg(P )

|P |(1− (q
1
h ξjh)

− deg(P )) + 1

)2
 .(43)

Evaluating (41) at z = 1, recalling that Γ(1) = 1, Γ′(1) = −γ, Γ′′(1) = γ2 + ζ(2), and
replacing (42) in (41) gives

∑
f∈Nh∩Mn

ωh(f)
2 =

(
1 + log

(n
h

)) q
n
h

h
log
(n
h

) h−1∑
j=0

ξjnh Bh,Nh
((q

1
h ξjh)

−1, 1)

+
(
1 + 2 log

(n
h

)) q
n
h

h

h−1∑
j=0

ξjnh

[
∂

∂z
Bh,Nh

((q
1
h ξjh)

−1, 1) + γBh,Nh
((q

1
h ξjh)

−1, 1)

]

+
q

n
h

h

h−1∑
j=0

ξjnh

[
∂2

∂z2
Bh,Nh

((q
1
h ξjh)

−1, 1) + 2γ
∂

∂z
Bh,Nh

((q
1
h ξjh)

−1, 1)

+(γ2 − ζ(2))Bh,Nh
((q

1
h ξjh)

−1, 1)
]
+Oε

(
q

n
h

n1−ε

)
.
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Replacing in the above (38), (40), and (43) gives

∑
f∈Nh∩Mn

ωh(f)
2 =

q
n
h

h

h−1∑
j=0

ξjnh
∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)

×

[(
log
(n
h

))2
+ log

(n
h

)[
1 + 2γ + 2

∑
P

(
log

(
1− 1

|P |

)
+

1− (q
1
h ξjh)

− deg(P )

|P |(1− (q
1
h ξjh)

− deg(P )) + 1

)]

+

(∑
P

(
log

(
1− 1

|P |

)
+

1− (q
1
h ξjh)

−deg(P )

|P |(1− (q
1
h ξjh)

− deg(P )) + 1

)
+ γ

)2

+
∑
P

(
log

(
1− 1

|P |

)
+

1− (q
1
h ξjh)

− deg(P )

|P |(1− (q
1
h ξjh)

− deg(P )) + 1

)
+ γ − ζ(2)−

∑
P

(
1− (q

1
h ξjh)

− deg(P )

|P |(1− (q
1
h ξjh)

− deg(P )) + 1

)2


+Oε

(
q

n
h

n1−ε

)
.

Combining the above with the definition of B1 proves (9).
An explicit expression for |Nh ∩ Mn| can be found in [LZ23, Lemma 5.3]. Indeed, for

n ≥ h, we have

|Nh ∩Mn| =
q

n
h

h

h−1∑
j=0

ξjnh
∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)
+Oε

(
q

n
h+1

+εn
)
.

The variance can be then directly computed by combining the above with (8) and (9).
□

4.2. First and second moments of ωk for the h-full polynomials. Here we consider
the case k > h. We have that Ck,Sh

(u, z) has poles of order 1 when u = 1
qh
. We extract these

poles as

Bk,Nh
(u, z) =Zq(u

h)−1Ck,Sh
(u, z)

=
∏
P

(
1 +

u(h+1) deg(P )(1− u(h−1) deg(P ))

1− udeg(P )
+ (z − 1)uk deg(P )(1− uhdeg(P ))

)
,

where Bk,Nh
(u, z) is absolutely convergent for |u| < q−

1
h+1 and |z| ≤ A.

We use Perron’s formula (Theorem 2.1) to compute the first moment and obtain

∑
f∈Nh∩Mn

zωk(f) =
1

2πi

∮
Bk,Nh

(u, z)

(1− quh)un

du

u
,

24



where the integral takes place in a small circle around the origin. We move the circle to

|u| = q−ε− 1
h+1 and obtain the residues at u = (q

1
h ξjh)

−1. This gives

∑
f∈Nh∩Mn

zωk(f) =−
h−1∑
j=0

Res
u=(q

1
h ξjh)

−1

Bk,Nh
(u, z)

(1− quh)un+1
+

1

2πi

∮
|u|=q

−ε+ 1
h+1

Bk,Nh
(u, z)

(1− quh)un

du

u

=
h−1∑
j=0

(q
1
h ξjh)

n+1Bk,Nh
((q

1
h ξjh)

−1, z)
1

q
1
h ξjh
∏

m̸=j

(
1− ξm−j

h

) +Oz(1)Oε

(
q

n
h+1

+εn
)

=
q

n
h

h

h−1∑
j=0

ξjnh Bk,Nh
((q

1
h ξjh)

−1, z) +Oz(1)Oε

(
q

n
h+1

+εn
)
.(44)

Proof of Theorem 1.7. To recover the first moment, we differentiate and evaluate the above
equation at z = 1. This gives

∑
f∈Nh∩Mn

ωk(f) =
q

n
h

h

h−1∑
j=0

ξjnh
∂

∂z
Bk,Nh

((q
1
h ξjh)

−1, 1) +Oε

(
q

n
h+1

+εn
)
.(45)

We have

Bk,Nh
((q

1
h ξjh)

−1, 1) =
∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)
.(46)

The logarithmic derivative gives

∂
∂z
Bk,Nh

(u, z)

Bk,Nh
(u, z)

=
∑
P

uk deg(P )(1− uh deg(P ))(1− udeg(P ))

(1− uhdeg(P ))(1− udeg(P ) + uhdeg(P )) + (z − 1)uk deg(P )(1− uh deg(P ))(1− udeg(P ))
,

and thus

∂
∂z
Bk,Nh

((q
1
h ξjh)

−1, 1)

Bk,Nh
((q

1
h ξjh)

−1, 1)
=
∑
P

|P |(q 1
h ξjh)

−k deg(P )(1− (q
1
h ξjh)

− deg(P ))

|P |(1− (q
1
h ξjh)

− deg(P )) + 1
.(47)

Replacing the above results in (45) gives the first moment (10).
We proceed to compute the second moment. Differentiating (44), multiplying by z, dif-

ferentiating again, and setting z = 1, we have

∑
f∈Nh∩Mn

ωk(f)
2 =

q
n
h

h

h−1∑
j=0

ξjnh

(
∂2

∂z2
Bk,Nh

((q
1
h ξjh)

−1, 1) +
∂

∂z
Bk,Nh

((q
1
h ξjh)

−1, 1)

)
+Oε

(
q

n
h+1

+εn
)
.

(48)
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For the second derivative we have

∂2

∂z2
Bk,Nh

((q
1
h ξjh)

−1, 1) =
∂

∂z
Bk,Nh

((q
1
h ξjh)

−1, 1)
∑
P

|P |(q 1
h ξjh)

−k deg(P )(1− (q
1
h ξjh)

− deg(P ))

|P |(1− (q
1
h ξjh)

− deg(P )) + 1

− Bk,Nh
((q

1
h ξjh)

−1, 1)
∑
P

(
|P |(q 1

h ξjh)
−k deg(P )(1− (q

1
h ξjh)

− deg(P ))

|P |(1− (q
1
h ξjh)

− deg(P )) + 1

)2

=
∏
P

(
1− 1

|P |

)(
1 +

1

|P |(1− (q
1
h ξjh)

− deg(P ))

)

×

(∑
P

|P |(q 1
h ξjh)

−k deg(P )(1− (q
1
h ξjh)

− deg(P ))

|P |(1− (q
1
h ξjh)

− deg(P )) + 1

)2

−
∑
P

(
|P |(q 1

h ξjh)
−k deg(P )(1− (q

1
h ξjh)

− deg(P ))

(|P |(1− (q
1
h ξjh)

− deg(P )) + 1)

)2
 .

Combining this with (46) and (47) in (48), we get the desired result.
□

4.3. Normal order and an Erdős–Kac result for the h-full polynomials. The goal
of this section is to prove Theorems 1.6 and 1.8. We start by proving Theorems 1.6, which
in particular implies that ωh has normal order over the h-full polynomials.

Proof of Theorem 1.6. Our argument follows very closely the proof of Theorem 1.2 and
[LZ23, Theorem 1.6]. We will prove that, as n → ∞,

1

|Nh ∩Mn|
∑

f∈Nh∩Mn

ωh(f)− log
(
n
h

)√
log
(
n
h

)
v

→ Cv,

where Cv is given by (27).
As before we will consider the moment generating function evaluated at z = et,

Ch,Nh
(u, et) =

∑
f∈Nh∩M

etωk(f)udeg(f) =
∏
P

(1 + etuhdeg(P ) + u(h+1) deg(P ) + · · · ),

and we extract the singularities at uh = 1
q
as

Bh,Nh
(u, et) = Zq(u

h)−etCh,Nh
(u, et).

By applying Theorem 2.3 we get

∑
f∈Nh∩Mn

eω1(f)t =
q

n
hnet−1

het

h−1∑
s=0

ξsnh
Γ(et)

Bh,Nh

(
(q

1
h ξsh)

−1, et
)
+OA(q

n
hnRe(et)−2).
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By considering the moment generating function, and combining with (30), we have, as in
the h-free case,

E
(
ωℓ
h

)
=

(
h−1∑
s=0

ξsnh Bh,Nh

(
(q

1
h ξsh)

−1, 1
))−1 ℓ∑

j=0

(
ℓ

j

)
hjTj

(
log
(n
h

))
(49)

×
h−1∑
s=0

ξsnh

Bh,Nh

(
(q

1
h ξsh)

−1, et
)

Γ(et)

(ℓ−j)
∣∣∣∣∣∣∣
t=0

+Oε

(
1

n1−ε

)
.

Notice that

1

|Nh ∩Mn|
∑

f∈Nh∩Mn

ωh(f)− log
(
n
h

)√
log
(
n
h

)
v

=
1(

log
(
n
h

)) v
2

v∑
ℓ=0

(
v

ℓ

)
E(ωℓ

h)(−1)v−ℓ
(
log
(n
h

))v−ℓ

.

Combining with (49), we then have

1(
log
(
n
h

)) v
2

v∑
ℓ=0

(
v

ℓ

)
E(ωℓ

h)(−1)v−ℓ
(
log
(n
h

))v−ℓ

=

(∑h−1
s=0 ξ

sn
h Bh,Nh

(
(q

1
h ξsh)

−1, 1
))−1

(
log
(
n
h

)) v
2

v∑
ℓ=0

(
v

ℓ

) ℓ∑
j=0

(
ℓ

j

)
Tj

(
log
(n
h

))
(50)

×
h−1∑
s=0

ξsnh

Bh,Nh

(
(q

1
h ξsh)

−1, et
)

Γ(et)

(ℓ−j)
∣∣∣∣∣∣∣
t=0

(−1)v−ℓ
(
log
(n
h

))v−ℓ

+Oε

(
1

n1−ε

)
.

Consider the change of variables u = v − ℓ, m = v − ℓ + j. Then the main term in (50)
becomes(∑h−1

s=0 ξ
sn
h Bh,Nh

(
(q

1
h ξsh)

−1, 1
))−1

(
log
(
n
h

)) v
2

v∑
m=0

h−1∑
s=0

ξsnh

Bh,Nh

(
(q

1
h ξsh)

−1, et
)

Γ(eht)

(v−m)
∣∣∣∣∣∣∣
t=0

×
m∑

u=0

(
v

u

)(
v − u

m− u

)
Tm−u

(
log
(n
h

))
(−1)u

(
log
(n
h

))u

=

(∑h−1
s=0 ξ

sn
h Bh,Nh

(
(q

1
h ξsh)

−1, 1
))−1

(
log
(
n
h

)) v
2

v∑
m=0

(
v

m

) h−1∑
s=0

ξsnh

Bh,Nh

(
(q

1
h ξsh)

−1, et
)

Γ(eht)

(v−m)
∣∣∣∣∣∣∣
t=0

×
m∑

u=0

(
m

u

)
Tm−u

(
log
(n
h

))
(−1)u

(
log
(n
h

))u
.
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Similarly to the h-free case we get, for v even, that the main term should come from
setting m = v, which leads to

1(
log
(
n
h

)) v
2

v∑
ℓ=0

(
v

ℓ

)
E(ωh(f)

ℓ)(−1)v−ℓ
(
log
(n
h

))v−ℓ

=

(∑h−1
s=0 ξ

sn
h Bh,Nh

(
(q

1
h ξsh)

−1, 1
))−1

(
log
(
n
h

)) v
2

h−1∑
s=0

ξsnh

Bh,Nh

(
(q

1
h ξsh)

−1, 1
)

Γ(1)


×

v∑
u=0

(
v

u

)
Tv−u

(
log
(n
h

))
(−1)u

(
log
(n
h

))u
+O

(
1

log n

)
=

v!

2
v
2

(
v
2

)
!
+O

(
1

log n

)
,

while for v odd we get

O

(
1√
log n

)
.

□

Before proceeding to the proof of Theorem 1.8 we need the following auxiliary result.

Lemma 4.2. Let n ≥ ℓ > h > 0 be integers. Then

(51) |Nh ∩Mn ∩ Sℓ| =
q

n
h

h

h−1∑
j=0

ξjnh HNh,Sℓ

(
(q

1
h ξjh)

−1
)
+Oε

(
q

n
h+1

+εn
)
,

where HNh,Sℓ
(u) is defined below by (53).

In addition, let P0 ∈ P be fixed. Then

∑
f∈Nh∩Mn∩Sℓ

(f,P0)=1

1 =
q

n
h

h

h−1∑
j=0

ξjnh HNh,Sℓ

(
(q

1
h ξjh)

−1
)( 1− (q

1
h ξjh)

− deg(P0)

1− (q
1
h ξjh)

− deg(P0) + (q
1
h ξjh)

−hdeg(P0) − (q
1
h ξjh)

−ℓdeg(P0)

)

+Oε

(
q

n
h+1

+εn
)
,

(52)

Proof. We consider the generating series for the polynomials that are simultaneously h-full
and k-free,

GNh,Sℓ
(u) :=

∑
f∈Nh∩Sℓ∩M

udeg(f) =
∏
P

(
1 + uhdeg(P ) + · · ·+ u(ℓ−1) deg(P )

)
=
∏
P

(
1 +

uh deg(P ) − uℓdeg(P )

1− udeg(P )

)
.
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We extract the poles at uh = 1
q
as follows

HNh,Sℓ
(u) =Zq(u

h)−1GNh,Sℓ
(u)

=
∏
P

(
1 +

u(h+1) deg(P ) − uℓdeg(P ) − u2h deg(P ) + u(h+ℓ) deg(P )

1− udeg(P )

)
,(53)

where HNh,Sℓ
(u) is absolutely convergent for |u| < q−

1
h+1 .

By Perron’s formula (Theorem 2.1), and by moving the integral to |u| = q−ε− 1
h+1 ,∑

f∈Nh∩Sℓ∩Mn

1 =
1

2πi

∮
HNh,Sℓ

(u)

1− quh

du

un+1

=−
h−1∑
j=0

Res
u=(q

1
h ξjh)

−1

HNh,Sℓ
(u)

(1− quh)un+1
+

1

2πi

∮
|u|=q

−ε− 1
h+1

HNh,Sℓ
(u)

1− quh

du

un+1

=
q

n
h

h

h−1∑
j=0

ξjnh HNh,Sℓ

(
(q

1
h ξjh)

−1
)
+Oε

(
q

n
h+1

+εn
)
.

This gives a proof of (51). To prove (52), we can proceed similarly, but using the generating
series

GP0
Nh,Sℓ

(u) :=
∑

f∈Nh∩Sℓ∩M
(f,P0)=1

udeg(f) =
∏
P ̸=P0

(
1 +

uhdeg(P ) − uℓ deg(P )

1− udeg(P )

)

instead. □

Proof of Theorem 1.8. As in the proof of Theorem 1.4, let G(f) be a non-decreasing function
G : Nh ∩ M → R≥0. First assume that there is an f0 ∈ Nh ∩ M such that G(f0) > 0.
Therefore G(f) > 0 for all f ∈ Nh ∩M such that deg(f) > deg(f0). Let n > deg(f0) and
consider the following set:

ON ,0(n, h) := {f ∈ Nh ∩Mn : ωk(f) = 0}.

It can be seen that

Nh ∩Mn ∩ Sk ⊆ ON ,0(n, h),

and therefore

|ON ,0(n, h)| ≥ |Nh ∩Mn ∩ Sk| =
q

n
h

h

h−1∑
j=0

ξjnh HNh,Sk

(
(q

1
h ξjh)

−1
)
+Oε

(
q

n
h+1

+εn
)

by Lemma 4.2.
Since h and k are fixed, this means that |ON ,0(n, h)| is ≫ q

n
h . As in the case of the proof

of Theorem 1.4, we conclude that ωk(f) does not have normal order G when G is not the
constant function 0.

Now, if G(f) = 0 for all f ∈ Nh ∩M we define

ON ,1(n, h) := {f ∈ Nh ∩Mn : ωk(f) = 1}.
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Let P ∈ P1 be a fixed monic irreducible polynomial of degree 1. It can be seen that:

|ON ,1(n, h)| ≥
∑

f∈Nh∩Mn, νP (f)=k
νQ(f)<k,∀Q∈P,Q ̸=P

1

≥
∑

f∈Nh∩Mn−k∩Sk

(f,P )=1

1

=
q

n−k
h

h

h−1∑
j=0

ξ
j(n−k)
h HNh,Sk

(
(q

1
h ξjh)

−1
)( 1− (q

1
h ξjh)

−1

1− (q
1
h ξjh)

−1 + (q
1
h ξjh)

−h − (q
1
h ξjh)

−k

)
+Oε

(
q

n−k
h+1

+εn
)

where we have applied Lemma 4.2.
Since h and k are fixed, this means that |ON ,1(n, h)| is ≫ q

n
h . As in the case of Theorem

1.4, we conclude that ωk(f) does not have normal order G when G is the constant function
0.

□

5. Conclusion

This work represents a natural merging of questions from both [DEKL23] and [LZ23].
Namely, we have taken the functions ωk from [DEKL23], which are refinements of the number
of distinct prime factors function ω, and have considered them over the subfamilies of h-
free and h-full polynomials as in [LZ23]. The current results support the findings of the
previous works. We recall from [LZ23] that a motivation for studying and comparing results
in these two families of polynomials lies in the fact that the h-free polynomials represent a
positive proportion of the whole polynomial family, while the h-full polynomials do not, as
their size is of order q

n
h , while the size of the full family is of order qn. It is therefore more

surprising that the h-full polynomials satisfy an Erdős-Kac type of result than the h-free
polynomials satisfy such result. From this work, we now conclude that the weight of this
behaviour is carried by ω1 for the h-free polynomials, and by ωh for the h-full polynomials.
This phenomenon is not so surprising for ω1 and the h-free polynomials, since it is exactly as
observed in [DEKL23]. However, the case of ωh and the h-full polynomials is less immediate
to predict.

The most evident direction for extending this work is to consider the number field case,
naturally restricting the results of [EL22] to h-free and h-full numbers. Das, Kuo, and Liu
have informed us that they are pursuing this direction.

Other directions of future research could include the study of intersection sets of the form
Nh ∩ Sk, as well as more general settings, such as considering polynomials f satisfying that
νP (f) belongs to a union of some fixed intervals.
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