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1. Introduction to Mahler measure

Definition 1 For P ∈ C[x1, . . . , xn], the (logarithmic) Mahler measure is defined by

m(P ) :=

∫ 1

0
. . .

∫ 1

0
log |P (e2πiθ1 , . . . , e2πiθn)|dθ1 . . .dθn =

1

(2πi)n

∫

Tn

log |P (x1, . . . , xn)|dx1

x1
. . .

dxn

xn

(1)
In particular, given a polynomial P (x) = adx

d + ad−1x
d−1 + · · · + a0 = ad

∏d
n=1(x − αn)

with complex coefficients, it is true that

m(P ) := log |ad| +
d

∑

n=1

log+ |αn| (2)

because of Jensen’s equality
∫ 1
0 log |e2πiθ − α|dθ = log+ |α| = log max{1, |α|}

It is possible to prove that this integral is not singular and that m(P ) always exists.
For the several-variable case, it seems that there is no simpler general formula than

the integral defining the measure. However, many examples have been found relating the
Mahler measure of polynomials in two variables to special values of L-functions in quadratic
characters, L-functions on elliptic curves and dilogarithms.

2. Dilogarithm and volumes of ideal tetrahedra

Definition 2 The Dilogarithm is the function defined by the power series

Li2(z) :=
∞

∑

n=1

zn

n2
z ∈ C, |z| < 1 (3)

It has an analytic continuation to C \ (1,∞) given by

Li2(z) := −
∫ z

0
log(1 − t)

dt

t

The dilogarithm jumps by 2πi log |z| as z crosses the cut by (1,∞). Hence, it is natural
to consider the following function:

Definition 3 The Bloch – Wigner Dilogarithm is defined by

D(z) := Im(Li2(z)) + arg(1 − z) log |z| (4)
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Figure 1: The volume of the hyperbolic tetrahedron over
4
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∣

∣
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∣

∣

∣
eiα
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This function has several properties. It is real analytic in C \ {0, 1} and continuous in C.
It also satisfies

D(z̄) = −D(z) (⇒ D|R ≡ 0) (5)

D(z) = −D

(

1

z

)

= −D(1 − z) (6)

−2

∫ θ

0
log |2 sin t|dt = D(e2iθ) =

∞
∑

n=1

sin(2nθ)

n2
(7)

among other important relations.
Now consider the space H

3 which can be represented as C×R≥0∪{∞}. In this space the
geodesics are either vertical lines or semicircles in vertical planes with endpoints in C×{0}.
An ideal tetrahedron is a tetrahedron whose vertices are all in C×{0}∪{∞} = P

1(C). Such
a tetrahedron is always equivalent to a tetrahedron ∆ with vertices 0, 1,∞, z and Im z > 0
and has a hyperbolic volume equal to

Vol(∆) = D(z) (8)

(The volume element in this space is dxdydz
z3 ).

The invariance of the formula by the action of PSL2(C) is in agreement with the fact
that this is the group of isometries (preserving orientation) of H

3.
These ideal tetrahedra are important because any completed oriented 3-manifold with

finite volume can be decomposed in ideal tetrahedra (which may be degenerated).

3. Mahler measure and hyperbolic volumes

One of the simplest examples of Mahler measure in two variables is Cassaigne and
Maillot’s formula:

Theorem 4

πm(ax + by + c) =







D
(
∣

∣

a
b

∣

∣ eiγ
)

+ α log |a| + β log |b| + γ log |c| 4

π log max{|a|, |b|, |c|} not4
(9)

Here 4 stands for the statement that |a|, |b|, and |c| are the lengths of the sides of a
triangle, and α, β, and γ are the angles opposite to the sides of lengths |a|, |b|, and |c|
respectively.
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Figure 2: The main term in Cassaigne – Maillot formula is the volume of the ideal hyperbolic
tetrahedron over the triangle.

In this formula, the polynomial equation can be written as

y =
ax + b

c

and the dilogarithm term is the volume of the ideal tetrahedron that can be built over the
triangle of sides |a|, |b| and |c|. See figure 2.

Another example was due to Vandervelde. He studied the polynomials whose equation
can be expressed as

y =
bx + d

ax + c

When a, b, c, d ∈ R
∗, the Mahler measure of this polynomial is the sum of some logarithms

and two dilogarithm terms, which can be interpreted as the volume of the ideal polyhedra
built over a cyclic quadrilateral of sides |a|, |b|, |c| and |d|.

We have studied the case of

y =
xn − 1

t(xm − 1)
=

xn−1 + · · · + 1

t(xm−1 + · · · + 1)

and obtained a similar result.
To be concrete, we are going to describe a particular example with n = 3, and m = 2.

y =
x3 − 1

t(x2 − 1)
, Rt(x, y) = x2 + x + 1 − t(x + 1)y (10)

in full detail.
The result is

m(Rt) − log |t| =







2
2·3·π (ε1Vol(π∗(P1)) + ε2Vol(π∗(P2))) + σ1−σ2

π
log |t| 0 < t < 3

2

2
2·3·π ε1Vol(π∗(P1)) + σ1

π
log |t| 3

2 ≤ t

where ε1 = ±1, ε2 = ±1.
We may suppose that t > 0 because the Mahler measure only depends on |t| in this

case.
Let us compute the Mahler measure:

m(x2 + x + 1 − t(x + 1)y) =
1

(2πi)2

∫

T2

log |x2 + x + 1 − t(x + 1)y|dx

x

dy

y
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Figure 3: We integrate over the arcs γi where |y| ≥ 1. The extremes of these arcs occur in
points where y crosses the unit circle.

=
1

2πi

∫

T1

log |t(x + 1)|dx

x
+

1

(2πi)2

∫

T2

log

∣

∣

∣

∣

x2 + x + 1

t(x + 1)
− y

∣

∣

∣

∣

dx

x

dy

y

= log t +
1

2πi

∫

T1

log+

∣

∣

∣

∣

x2 + x + 1

t(x + 1)

∣

∣

∣

∣

dx

x

by Jensen’s formula. We need to compute the integral on the right. We will integrate in

the set where
∣

∣

∣

x2+x+1
t(x+1)

∣

∣

∣
≥ 1. So we need to determine for which points we have

∣

∣

∣

∣

x2 + x + 1

t(x + 1)

∣

∣

∣

∣

= 1,
x2 + x + 1

t(x + 1)
· x−2 + x−1 + 1

t(x−1 + 1)
= 1

since |x| = 1 (recall that we have restricted to x ∈ T
1).

In other words, we need to solve

Q(x) = x4 + (2 − t2)x3 + (3 − 2t2)x2 + (2 − t2)x + 1 = 0

In fact, it is easy to see that the roots of Q in the unit circle are at most four and they are
of the form α1, α−1

1 , α2, α−1
2 , such that

Re α1 =
t2 − 2 − t

√
t2 + 4

4
for 0 < t (11)

Re α2 =
t2 − 2 + t

√
t2 + 4

4
for 0 < t <

3

2
(12)

Let σi = arg αi, say that Imαi ≥ 0, we have

π > σ1 >
2π

3
(13)

2π

3
> σ2 > 0 (14)

Back to the Mahler measure calculation, first note that

∫ β

α

log |xn − 1|dx

ix
=

1

n

∫ βn

αn

log |y − 1|dy

iy
=

2

n

∫
arg βn

2

arg αn

2

log |2 sin t|dt =
D(αn) − D(βn)

n

So, for 0 < t < 3
2

m(x2 + x + 1 − t(x + 1)y) − log t =
1

2πi

∫

γ1∪γ2

log

∣

∣

∣

∣

x3 − 1

t(x2 − 1)

∣

∣

∣

∣

dx

x
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Figure 4: The case of α1 corresponds to the ordinary convex polygon. Note that α1 exists
for any t > 0 and the same is true for the polygon. In every picture, the bold segments
correspond to sides of length t, (opposite to angles τ) and the others are sides of length 1
(opposite to angles η).

where γ1 is the arc from α1 to α−1
1 and γ2 is the arc from α−1

2 to α2 (see picture 3)

=
D(α−3

1 ) − D(α3
1) + D(α3

2) − D(α−3
2 )

3(2π)
−D(α−2

1 ) − D(α2
1) + D(α2

2) − D(α−2
2 )

2(2π)
−2(σ1 − σ2)

2π
log t

=
3D(α2

1) − 2D(α3
1)

6π
− 3D(α2

2) − 2D(α3
2)

6π
− σ1 − σ2

π
log t

For 3
2 ≤ t, the integral is over the arc γ1 alone, so

m(x2 + x + 1 − t(x + 1)y) − log t =
3D(α2

1) − 2D(α3
1)

6π
− σ1

π
log t

Our claim is that each of these terms with dilogarithms correspond (up to a sign) to
the volume of a hyperbolic orthoscheme built over a cyclic polygon. Each polygon has 3
sides of length 1 and 2 sides of length t. The sides of length 1 are opposite to a central
angle η and the sides of length t are opposite to a central angle τ . Also 0 < η, τ ≤ π.

For the α1 term, take η = 2π − 2σ1 and τ = 3σ1 − 2π. Then 3η + 2τ = 2π. This
corresponds to the convex pentagon which is inscribed in a circle (see figure 4).

The case of α2 splits into three subcases according to the values of t, as shown in the
following table.

0 < t < 1√
2

2π
3 > σ2 > π

2

η = 2π − 2σ2

τ = 2π − 3σ2
3η − 2τ = 2π

1√
2

< t < 2√
3

π
2 > σ2 > π

3

η = 2σ2

τ = 2π − 3σ2
3η + 2τ = 4π

2√
3

< t < 3
2

π
3 > σ2 > 0

η = 2σ2

τ = 3σ2
3η − 2τ = 0

Figure 5 illustrates the polygons corresponding to each of these subcases.
We would like to point out that in every case, the polygon exists if and only if the

corresponding term shows up in the formula.
The cases of t = 1√

2
and t = 2√

3
are limit cases and we get the transition figures of

picture 6. Figure 6.d is the intermediate figure between 5.a and 5.b and the same is true
for 6.e, which is between 5.b and 5.c.

¤
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Figure 5: Case α2: a) 0 < t < 1√
2

b) 1√
2

< t < 2√
3

c) 2√
3

< t < 3
2

d e

Figure 6: d) t = 1√
2

e) t = 2√
3
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