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Mahler measure

Definition 1 For P ∈ C[x±1
1 , . . . , x±1

n ], the (logarithmic) Mahler measure is defined by

m(P ) =
1

(2πi)n

∫

Tn

log |P (x1, . . . , xn)|
dx1

x1
. . .

dxn

xn
. (1)

This integral is not singular and m(P ) always exists.
Because of Jensen’s formula:

∫ 1

0
log |e2πiθ − α|dθ = log+ |α|, (2)

1we have a simple expression for the Mahler measure of one-variable polynomials:

m(P ) = log |ad| +
d

∑

n=1

log+ |αn| for P (x) = ad

d
∏

n=1

(x − αn).

Examples of Mahler measures in several variables

It is in general very hard to find formulas for Mahler measure of several-variable poly-
nomials. For more than three variables, very little is known.

Theorem 2 [9] For n ≥ 1 we have:

π2nm

(

1 +

(

1 − x1

1 + x1

)

. . .

(

1 − x2n

1 + x2n

)

z

)

=
n

∑

h=1

sn−h(22, . . . , (2n − 2)2)

(2n − 1)!
π2n−2h(2h)!

22h+1 − 1

2
ζ(2h + 1) (3)

For n ≥ 0:

π2n+1m

(

1 +

(

1 − x1

1 + x1

)

. . .

(

1 − x2n+1

1 + x2n+1

)

z

)

=
n

∑

h=0

sn−h(12, . . . , (2n − 1)2)

(2n)!
22h+1π2n−2h(2h + 1)!L(χ−4, 2h + 2) (4)

There are analogous (but more complicated) formulas for

m

(

1 + x +

(

1 − x1

1 + x1

)

. . .

(

1 − xn

1 + xn

)

(1 + y)z

)

m

(

1 +

(

1 − x1

1 + x1

)

. . .

(

1 − xn

1 + xn

)

x +

(

1 −

(

1 − x1

1 + x1

)

. . .

(

1 − xn

1 + xn

))

y

)

1log+
x = log max{1, x} for x ∈ R≥0
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Where

sl(a1, . . . , ak) =







1 if l = 0
∑

i1<...<il
ai1 . . . ail if 0 < l ≤ k

0 if k < l

(5)

are the elementary symmetric polynomials, i. e.,

k
∏

i=1

(x + ai) =

k
∑

l=0

sl(a1, . . . , ak)x
k−l (6)

For example,

π3m

(

1 +

(

1 − x1

1 + x1

) (

1 − x2

1 + x2

) (

1 − x3

1 + x3

)

z

)

= 24L(χ−4, 4) + π2L(χ−4, 2) (7)

π4m

(

1 +

(

1 − x1

1 + x1

)

. . .

(

1 − x4

1 + x4

)

z

)

= 62ζ(5) +
14π2

3
ζ(3) (8)

π4m

(

1 + x +

(

1 − x1

1 + x1

) (

1 − x2

1 + x2

)

(1 + y)z

)

= 93ζ(5) (9)

(10)

Polylogarithms

Many examples should be understood in the context of polylogarithms.

Definition 3 The kth polylogarithm is the function defined by the power series

Lik(x) :=
∞

∑

n=1

xn

nk
x ∈ C, |x| < 1. (11)

This function can be continued analytically to C \ [1,∞).
In order to avoid discontinuities, and to extend polylogarithms to the whole complex

plane, several modifications have been proposed. Zagier [15] considers the following version:

Pk(x) := Rek





k
∑

j=0

2jBj

j!
(log |x|)jLik−j(x)



 , (12)

where Bj is the jth Bernoulli number, Li0(x) ≡ −1
2 and Rek denotes Re or Im depending

on whether k is odd or even.
This function is one-valued, real analytic in P1(C) \ {0, 1,∞} and continuous in P1(C).

Moreover, Pk satisfy very clean functional equations. The simplest ones are

Pk

(

1

x

)

= (−1)k−1Pk(x) Pk(x̄) = (−1)k−1Pk(x).

There are also lots of functional equations which depend on the index k. For instance, for
k = 2, we have the Bloch–Wigner dilogarithm,

D(x) := Im(Li2(x)) + arg(1 − x) log |x|
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which satisfies the well-known five-term relation

D(x) + D(1 − xy) + D(y) + D

(

1 − y

1 − xy

)

+ D

(

1 − x

1 − xy

)

= 0. (13)

Beilinson’s conjectures

One of the main problems in Number Theory is finding rational (or integral) solutions
of polynomial equations with rational coefficients (global solutions). In spite of the failure
of the local-global principle in general, there are several theorems and conjectures which
predict that one may obtain global information from local information and that that re-
lation is made through values of L-functions. These statements include the Dirichlet class
number formula, the Birch–Swinnerton-Dyer conjecture, and more generally, Bloch’s and
Beilinson’s conjectures.

Typically, there are four elements involved in this setting: an arithmetic-geometric
object X (typically, an algebraic variety), its L-function (which codify local information),
a finitely generated abelian group K ∼= H i

M
(X, Q(j)), and a regulator map

rD : H i
M(X, Q(j)) → H i

D(X, R(j))

Here H i
D

(X, R(i)) can be thought as a group of differential forms on the variety. Another
function reg : K → R, is defined and is also called regulator. Basically.

reg(ξ) =

∫

cycle
rD(ξ)

When K has rank 1, Beilinson’s conjectures predict that the L′
X(0) is, up to a rational

number, equal to a value of the regulator reg.
For instance, for a number field F , Dirichlet class number formula states that

lim
s→1

(s − 1)ζF (s) =
2r1(2π)r2hF regF

ωF

√

|DF |
.

Here, X = OF (the ring of integers), LX = ζF , and the group is O∗
F . Hence, when F is a

real quadratic field, Dirichlet class number formula may be written as ζ ′F (0) is equal to, up
to a rational number, log |ε|, for some ε ∈ O∗

F .

An algebraic integration for Mahler measure

The appearance of L-functions in Mahler measures formulas is a common phenomenon.
Deninger [5] interpreted the Mahler measure as a Deligne period of a mixed motive. More
specifically, in two variables, and under certain conditions, he proved that

m(P ) = reg(ξi),

where reg is the determinant of the regulator matrix, which we are evaluating in some class
in an appropriate group in K-theory.

Rodriguez-Villegas [11] has worked out the details for two variables. This was further
developed by Boyd and Rodriguez-Villegas [1], [2].
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More specifically one has

m(P ) = m(P ∗) −
1

2π

∫

γ

η(x, y), (14)

where
η(x, y) = log |x|d arg y − log |y|d arg x (15)

is a differential form that is ”essentially” defined in the curve C determined by the zeros
of P . This form is essentially the regulator. It is closed since

dη(x, y) = Im

(

dx

x
∧

dy

y

)

.

One has a crutial property:

Theorem 4

η(x, 1 − x) = dD(x). (16)

Because of the above property, there is a condition that tells us when η(x, y) is exact,
namely:

x ∧ y =
∑

j

rj zj ∧ (1 − zj)

in
∧2(C(C)∗) ⊗ Q, in other words, {x, y} = 0 in K2(C(C)) ⊗ Q.
Under those circunstances,

η(x, y) = d





∑

j

rjD(zj)



 = dD





∑

j

rj [zj ]



 .

We have γ ⊂ C such that

∂γ =
∑

k

εk[wk] εk = ±1

where wk ∈ C(C), |x(wk)| = |y(wk)| = 1. Then

2πm(P ) = D(ξ) for ξ =
∑

k

∑

j

rj [zj(wk)].

We could summarize the whole picture as follows:

. . . → (K3(Q̄) ⊃)K3(∂γ) → K2(C, ∂γ) → K2(C) → . . .

∂γ = C ∩ T2

There are two ”nice” situations:

• η(x, y) is exact, then {x, y} ∈ K3(∂γ). In this case we have ∂γ 6= ∅, we use Stokes’
Theorem and we finish with an element K3(∂γ) ⊂ K3(Q̄), leading to dilogarithms
and zeta functions (of number fields), due to theorems by Borel, Bloch, Suslim and
others.
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• ∂γ = ∅, then {x, y} ∈ K2(C). In this case, we have η(x, y) is not exact and we get
essentially the L-series of a curve, leading to examples of Beilinson’s conjectures.

In general, we may get combinations of both situations.

The three-variable case

We are going to extend this situation to three variables. We will take

η(x, y, z) = log |x|

(

1

3
d log |y|d log |z| − d arg y d arg z

)

+ log |y|

(

1

3
d log |z|d log |x| − d arg z d arg x

)

+log |z|

(

1

3
d log |x|d log |y| − d arg xd arg y

)

Then η verifies

dη(x, y, z) = Re

(

dx

x
∧

dy

y
∧

dz

z

)

,

so it is closed.
We can express the Mahler measure of P

m(P ) = m(P ∗) −
1

(2π)2

∫

Γ
η(x, y, z).

Where
Γ = {P (x, y, z) = 0} ∩ {|x| = |y| = 1, |z| ≥ 1}.

We are integrating on a subset of S = {P (x, y, z) = 0}. The differential form is defined in
this surface minus the set of zeros and poles of x, y and z, but that will not interfere our
purposes, since we will be dealing with the cases when η(x, y, z) is exact and that implies
trivial tame symbols thus the element in the cohomology can be extended to S.

As in the two-variable case, we would like to apply Stokes’ Theorem.
Let us take a look at Smyth’s case, we can express the polynomial as P (x, y, z) =

(1 − x) + (1 − y)z. We get:

m(P ) = m(1 − y) +
1

(2πi)2

∫

T2

log+

∣

∣

∣

∣

1 − x

1 − y

∣

∣

∣

∣

dx

x

dy

y
= −

1

(2π)2

∫

Γ
η(x, y, z).

In general, we have
η(x, 1 − x, y) = dω(x, y),

where

ω(x, y) = −D(x)d arg y +
1

3
log |y|(log |1 − x|d log |x| − log |x|d log |1 − x|).

Suppose we have

x ∧ y ∧ z =
∑

ri xi ∧ (1 − xi) ∧ yi

in
∧3(C(S)∗) ⊗ Q.
Then

∫

Γ
η(x, y, z) =

∑

ri

∫

Γ
η(xi, 1 − xi, yi) =

∑

ri

∫

∂Γ
ω(xi, yi).
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In Smyth’s case, this corresponds to

x ∧ y ∧ z = − x ∧ (1 − x) ∧ y − y ∧ (1 − y) ∧ x,

in other words,
η(x, y, z) = −η(x, 1 − x, y) − η(y, 1 − y, x).

Back to the general picture, ∂Γ = {P (x, y, z) = 0} ∩ {|x| = |y| = |z| = 1}. When
P ∈ Q[x, y, z], Γ can be thought as

γ = {P (x, y, z) = P (x−1, y−1, z−1) = 0} ∩ {|x| = |y| = 1}.

Note that we are integrating now on a path inside the curve C = {P (x, y, z) = P (x−1, y−1, z−1) =
0}. The differential form ω is defined in this new curve (this way of thinking the integral
over a new curve has been proposed by Maillot). Now it makes sense to try to apply Stokes’
Theorem again. We have

ω(x, x) = dP3(x).

Suppose we have

[x]2 ⊗ y =
∑

ri[xi]2 ⊗ xi

in (B2(C(C)) ⊗ C(C)∗)Q.
Then, as before:

∫

γ

ω(x, y) =
∑

ri P3(xi)|∂γ .

Back to Smyth’s case, in order to compute C we set (1−x)(1−x−1)
(1−y)(1−y−1)

= 1 and we get

C = {x = y} ∪ {xy = 1} in this example, and

−[x]2 ⊗ y − [y]2 ⊗ x = ±2[x]2 ⊗ x.

We integrate in the set described by the following picture

π

π

π

_

π_

Then

m((1 − x) + (1 − y)z) =
1

4π2

∫

γ

ω(x, y) + ω(y, x) =
1

4π2
8(P3(1) − P3(−1)) =

7

2π2
ζ(3)

and the second condition is

[xi]2 ⊗ yi = 0 in H2(BQ(C)(3) ⊗ Q)
?
∼= K

[1]
4 (Q(C))Q

6



Hence, the conditions can be translated as certain elements in different K-theories must be
zero, which is analogous to the two-variable case.

We could summarize this picture as follows. We first integrate in this picture

. . . → K4(∂Γ) → K3(S, ∂Γ) → K3(S) → . . .

∂Γ = S ∩ T3

As before, we have two situations. All the examples we have talked about fit into the
situation when η(x, y, z) is exact and ∂Γ 6= ∅. Then we finish with an element in K4(∂Γ).

Then we go to

. . . → (K5(Q̄) ⊃)K5(∂γ) → K4(C, ∂γ) → K4(C) → . . .

∂γ = C ∩ T2

Again we have two possibilities, but in our context, ω(x, y) is exact and we finish with an
element in K5(∂γ) ⊂ K5(Q̄) leading to trilogarithms and zeta functions, due to Zagier’s
conjecture and Borel’s theorem.

Studied examples

• Smyth(1981):

π2m(1 + x + y + z) =
7

2
ζ(3)

• Smyth(2002):

π2m(1 + x + y−1 + (1 + x + y)z) =
14

3
ζ(3)

• L (2003):

π2m

(

1 +

(

1 − x1

1 + x1

) (

1 − x2

1 + x2

)

z

)

= 7ζ(3)

π2m

(

1 +

(

1 − x1

1 + x1

)

x +

(

1 −

(

1 − x1

1 + x1

))

y

)

=
7

2
ζ(3) +

π2 log 2

2

• Condon (2003):

π2m

(

z −

(

1 − x

1 + x

)

(1 + y)

)

=
28

5
ζ(3)

• D’Andrea & L (2003):

π2m
(

z(1 − xy)m+n − (1 − x)m(1 − y)n
)

= 2n(P3(φ
m
1 ) − P3(−φm

2 )) + 2m(P3(φ
n
2 ) − P3(−φn

1 ))

π2m((1 − x)(1 − y) − (1 − w)(1 − z)) =
9

2
ζ(3)
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• L (2003):

π2m

(

1 +

(

1 − x1

1 + x1

) (

1 − x2

1 + x2

)

x

+

(

1 −

(

1 − x1

1 + x1

) (

1 − x2

1 + x2

))

y

)

=
21

4
ζ(3) +

π2 log 2

2
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