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Abstract. It is known that the lengths of closed geodesics of an arithmetic hyperbolic orbifold are related
to Salem numbers. We initiate a quantitative study of this phenomenon. We show that any non-compact

arithmetic 3-dimensional orbifold defines cQ1/2 +O(Q1/4) square-rootable Salem numbers of degree 4 which
are less than or equal to Q. This quantity can be compared to the total number of such Salem numbers,

which is shown to be asymptotic to 4
3
Q3/2 + O(Q). Assuming the gap conjecture of Marklof, we can

extend these results to compact arithmetic 3-orbifolds. As an application, we obtain lower bounds for the
strong exponential growth of mean multiplicities in the geodesic spectrum of non-compact even dimensional

arithmetic orbifolds. Previously, such lower bounds had only been obtained in dimensions 2 and 3.

1. Introduction

A Salem number is a real algebraic integer λ > 1 such that all of its Galois conjugates except λ−1 have
absolute value equal to 1. Salem numbers appear in many areas of mathematics including algebra, geometry,
dynamical systems, and number theory. They are closely related to the celebrated Lehmer’s problem about
the smallest Mahler measure of a non-cyclotomic polynomial. We refer to [Smy15] for a survey of research
on Salem numbers.

It has been known for some time that the exponential lengths of the closed geodesics of an arithmetic
hyperbolic n-dimensional manifold or orbifold are given by Salem numbers. For n = 2 and 3 this relation is
described in the book by C. Maclachlan and A. Reid [MR03, Chapter 12]. More recently, it was elaborated
upon and generalized to higher dimensions by V. Emery, J. Ratcliffe, and S. Tschantz in [ERT19]. In
particular, their Theorem 1.1 implies that, for a non-compact arithmetic hyperbolic n-orbifold O, a closed
geodesic of length ` corresponds to a Salem number λ = e` if the dimension n is even, and to a so called
square-rootable Salem number λ = e2` if n is odd. The degrees of these Salem numbers satisfy deg(λ) ≤ n+1.
A natural question arises: What proportion of Salem numbers of a given degree are associated to a fixed
orbifold O?

To this end, let us recall some results about the distribution of algebraic integers. This field has a long
history, so we will mention only the more recent results which are relevant to our work. In a beautiful paper
[Thu14], W. Thurston, motivated by the study of entropy of one-dimensional dynamical systems, encountered
limiting distributions of conjugates of Perron numbers, a class which includes Salem numbers as a subset. His
experiments led to a set of interesting problems and conjectures, some of which were successfully resolved
by F. Calegari and Z. Huang in [CH17]. Later on, some ideas from their approach helped F. Götze and
A. Gusakova to compute the asymptotic growth of Salem numbers in [GG19]. The precise form of their
result is given in Theorem 3. It is remarkable that this result was established only very recently, as it allows
us to play the asymptotic formula against the distribution of closed geodesics of an arithmetic n-orbifold.
We also come up with a related question about the distribution of square-rootable Salem numbers. We
were able to answer these questions in the first non-trivial case, when the degree of the Salem numbers is 4
and the corresponding dimension of the arithmetic orbifolds is 3. For higher even dimensions, the interplay
between counting Salem numbers and the prime geodesic theorems ([Mar69], [GW80]) allows us to prove
lower bounds for the strong exponential growth of mean multiplicities in the geodesic spectrum.

The first result of this paper is the following theorem:
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Theorem 1.

A. Let OD be a non-compact arithmetic hyperbolic 3-orbifold associated to a Bianchi group ΓD =
PSL(2, oK), where oK is the ring of integers of an imaginary quadratic number field K = Q(

√
−D),

and D is a square-free positive integer. Then OD generates

cQ1/2 +O(Q1/4)

square-rootable Salem numbers of degree 4 which are less or equal to Q, where c = π
4
√
D

if D ≡
1, 2 mod 4 and c = π

2
√
D

if D ≡ 3 mod 4.

B. The number of Salem numbers of degree 4 that are square-rootable over Q and less than or equal to
Q is

4

3
Q3/2 +O(Q).

This theorem together with a special case of the theorem of Götze and Gusakova implies that, in the
logarithmic scale, a given 3-orbifold OD generates asymptotically 1/4 of all Salem numbers of degree 4 and
asymptotically 1/3 of the square-rootable Salem numbers of degree 4.

The proof of the first part of the theorem uses the work of J. Marklof on multiplicities in length spectra of
arithmetic hyperbolic 3–orbifolds [Mar96]. For proving part B we take advantage of some special properties
of Salem numbers of degree 4. Extending these results to higher degrees would require an extension of
Marklof’s length spectrum asymptotic to arithmetic orbifolds of dimension greater than 3 and an analogue
of the Götze–Gusakova theorem for square-rootable Salem numbers of higher degree.

While we do not handle the higher-dimensional case in this paper, we are able to extend Theorem 1 to
compact arithmetic 3-orbifolds and associated Salem numbers of degree 4d, d ≥ 1, square-rootable over an
intermediate field L of degree d — see Theorem 9. Finally, we show how to apply our methods to prove lower
bounds for the strong exponential growth of mean multiplicities in the geodesic spectrum of non-compact
even dimensional arithmetic orbifolds. Namely, we prove:

Proposition 2. Let O be a non-compact arithmetic hyperbolic orbifold of even dimension n ≥ 4. Then the
mean multiplicities in the length spectrum of O have a strong exponential growth rate of at least

〈g(`)〉 ∼ ce
(n2−1)`

`
, `→∞,

where c is a positive constant.

Results of this nature were previously known only for arithmetic orbifolds of dimensions 2 and 3.
The paper is organized as follows. In Section 2 we recall definitions and some properties of Salem numbers

and arithmetic groups. In Section 3 we prove Theorem 1. In Section 4 we prove Theorem 9. In Section 5
we consider other dimensions, prove Proposition 2, and discuss some open problems.

2. Preliminaries

2.1. Salem numbers. A Salem number is a real algebraic integer λ > 1 such that all of its Galois conjugates
have absolute value less than or equal to 1, and at least one of them has absolute value equal to 1. Let
λ′ denote a Galois conjugate of the Salem number λ with |λ′| = 1. Since λ′ and its complex conjugate
λ′ = (λ′)−1 are Galois conjugates we conclude that the minimal polynomial pλ of a Salem number λ is
self-reciprocal, i.e., pλ(x) = xdeg(pλ)pλ(x−1). This means that its coefficients form a palindromic sequence.
Moreover, the polynomial pλ is of even degree n = 2(m + 1) because otherwise pλ(−1) = −pλ(−1) = 0,
which contradicts its irreducibility. Thus, all Galois conjugates of a Salem number λ (except for λ−1) have
absolute value 1 and lie on the unit circle in the complex plane. We used this property as the first definition
of Salem numbers in the introduction. For convenience in this paper we will also allow Salem numbers to
have degree 2 (where λ has λ−1 as its only conjugate). We do this so that our definition of Salem numbers
aligns with that used in [ERT19].

The celebrated Lehmer’s problem asks about the existence of a smallest Salem number λ > 1 and gives
the conjectural candidate λ = 1.176 . . . of degree 10 found by D. H. Lehmer in 1933 [Leh33]. We refer to
[Smy15] and the references therein for more about Lehmer’s problem. In this paper we will be interested
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in a somewhat opposite question about how quickly the number of Salem numbers grows when their values
tend to infinity.

We denote by Salm the set of all Salem numbers of degree 2(m+ 1) and let

Salm(Q) := {λ ∈ Salm : λ ≤ Q}.
It is not hard to find examples of Salem numbers of any even degree. One of the basic facts proved by

Salem is that if λ is a Salem number of degree n, then so is λk for all k ∈ N (see [Smy15, Lemma 2]). This
implies that the counting function #Salm(Q) grows at least as fast as c logQ. However, the actual growth
of Salem numbers is much faster. A precise result for their asymptotic growth was recently proved by Götze
and Gusakova:

Theorem 3 ([GG19], Theorem 1.1). For any positive integer m we have

#Salm(Q) = ωmQ
m+1 +O(Qm),

as Q→∞, where

ωm :=
2m(m+1)

m+ 1

m−1∏
k=0

k!2

(2k + 1)!
.

We remark for future reference that ω1 = 2.
In this paper, we will encounter a special class of Salem numbers that are called square-rootable.

Definition 4. Let λ be a Salem number, let L be a subfield of Q(λ + λ−1), and let p(x) be the minimal
polynomial of λ over L. We say that λ is square-rootable over L via α if there exist a totally positive
element α ∈ L and a monic palindromic polynomial q(x), whose even degree coefficients are in L and whose
odd degree coefficients are in

√
αL, such that q(x)q(−x) = p(x2).

The square-rootable Salem numbers were first defined by Emery, Ratclifffe, and Tschantz in [ERT19].
They are of interest because they are associated to geodesic lengths of odd-dimensional arithmetic orbifolds.

2.2. Arithmetic orbifolds. Let us recall the definition of an arithmetic Kleinian group. Let K be a number
field with exactly one complex place, oK its ring of integers, and A a quaternion algebra over K ramified at
all real places of K. Let D be an oK-order of A, and denote by D1 its group of elements of norm 1. Consider
a K-embedding ρ : A ↪→ M(2,C) associated with the complex place of K. The group

ΓD = Pρ(D1) < PSL(2,C),

where P : SL(2,C) → PSL(2,C) is the natural projection, is then a discrete finite covolume subgroup of
PSL(2,C). Following [Mar96], we will call ΓD an arithmetic quaternion group. A subgroup Γ < PSL(2,C)
which is commensurable with some such group ΓD is called an arithmetic Kleinian group. The associated
quotient space O = H3/Γ is an arithmetic hyperbolic 3-orbifold.

Arithmetic hyperbolic orbifolds can be compact or non-compact with cusps and finite volume. In dimen-
sion 3 the non-compact orbifolds correspond to the arithmetic Kleinian groups which are commensurable
with the Bianchi groups ΓD = PSL(2, oK), where oK is the ring of integers of an imaginary quadratic number
field K = Q(

√
−D) and D is a square-free positive integer (cf. [MR03, Theorem 8.2.3]).

An important subclass of arithmetic groups of hyperbolic isometries is defined by admissible quadratic
forms. For this definition let L be a totally real number field with ring of integers oL, and let f be a quadratic
form of signature (n, 1) defined over L such that, for every non-identity embedding σ : L→ R, the form fσ is
positive definite. The group Γ = O0(f, oL) of integral automorphisms of f is a discrete subgroup of O0(n, 1),
which is the full group of isometries of the hyperbolic n-space Hn (the group O0(n, 1) is the subgroup of the
orthogonal group O(n, 1) that preserves the upper cone in the vector model of Hn). Using reduction theory,
one can show that such groups Γ have finite covolume. The groups Γ obtained in this way and subgroups of
Isom(Hn) which are commensurable with them are called arithmetic subgroups of the simplest type.

It is a well-known consequence of [Wei60] that every non-cocompact arithmetic Γ in dimension n 6= 7 is
commensurable with the group of units of a quadratic form over Q. A more careful analysis implies that
the same is true for n = 7 but we will not consider this case here. For the purpose of this paper we record
a corollary that the Bianchi groups are arithmetic subgroups of the simplest type. Indeed, it is not hard to
write down the corresponding quadratic forms for each ΓD, which we leave as an exercise for the interested
reader.
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3. Proof of Theorem 1

3.1. Proof of part A. In [ERT19], V. Emery, J. Ratcliffe and S. Tschantz obtained the following result.

Theorem 5 (cf. [ERT19], Theorem 1.6). Let Γ ⊆ Isom(Hn) be an arithmetic lattice, with n odd, of the
simplest type defined over a totally real number field L. Let γ be a hyperbolic element of Γ, and let λ = e2`(γ).
Then λ is a Salem number which is square-rootable over L.

Recall from the previous section that in dimension n = 3 the Bianchi groups correspond to arithmetic
lattices of the simplest type defined over L = Q.

Now recall a result of Marklof on counting geodesic lengths in the spectrum of Bianchi orbifolds [Mar96]. It
is important for us that the lengths are counted without multiplicities, as it is well-known that multiplicities
in the spectrum of arithmetic orbifolds can grow very rapidly. We have:

Theorem 6 (cf. [Mar96], Theorem 4(b)). Let ΓD = SL(2, oK), K = Q(
√
−D), D ∈ Z>0 square-free. Then

the number of distinct real lengths of closed geodesics less than or equal to ` in H3/ΓD is given by

Nr(`) =


π

4
√
D
e` +O(e`/2), D ≡ 1, 2 mod 4,

π

2
√
D
e` +O(e`/2), D ≡ 3 mod 4.

Combining Theorems 5 and 6, we obtain that a non-compact arithmetic hyperbolic 3-orbifold generates

N (Q) = Nr(
1

2
logQ) ∼ cQ1/2

square-rootable Salem numbers λ ≤ Q of degree ≤ 4, where c is the constant given by Theorem 6.
Going more carefully through the proof of Marklof’s theorem allows us to conclude that most of these

Salem numbers have degree equal to 4. Indeed, the proof of Theorem 4(b) (loc.cit.) shows that the main
contribution to the counting function Nr(`) comes from the ellipses e(y) with y ≤ x, y 6∈ Q and sums up to
1
4E(x), x = 2 cosh ` different lengths (cf. [Mar96, Section 4] for the definition of E(x)). The corresponding

Salem numbers λ are square-rootable, hence deg(λ) = deg(λ
1
2 ) (by [ERT19, Lemmas 7.4 and 7.2]). On the

other hand, we have λ
1
2 + λ−

1
2 = y 6∈ Q, hence deg(λ) > 2.

This completes the proof of part A of the theorem.

3.2. Proof of part B. Here, we are interested in the case where L = Q and deg(λ) = 4. We begin by
recalling the following lemma of Emery, Ratcliffe, and Tschantz:

Lemma 7 ([ERT19], Lemma 8.2 (2)). Let λ be a Salem number of degree 4 and p(x) its minimal polynomial.
Then λ is square-rootable over Q if and only if p(−1) is a square in Z.

Our goal is to count those λ’s of degree 4 that are square-rootable. Thus, we wish to count polynomials

p(x) = x4 + ax3 + bx2 + ax+ 1 ∈ Z[x]

such that

(a) p(x) is irreducible;
(b) p(x) is a Salem polynomial, that is, its roots are λ, λ−1, µ, µ−1 with λ ∈ R>1 and µ 6∈ R, |µ| = 1;
(c) p(−1) = k2 for k ∈ Z;
(d) λ ≤ Q.

We remark that k above must be different from 0, since −1 cannot be a root of p(x). Thus we can assume
that k > 0.

Condition (c) is equivalent to

(1) 2 + b− 2a = k2, for k ∈ Z, k > 0.

Now we focus on condition (b). Our first observation is that

−a = λ+ λ−1 + µ+ µ−1 < λ+ 3 ≤ Q+ 3.
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In addition, λ+ λ−1 ≥ 2 implies that

−a = λ+ λ−1 + µ+ µ−1 > 0.

Therefore,

(2) 0 < −a < Q+ 3.

Write y = x+ x−1 and consider the polynomial

r(y) = y2 + ay + b− 2.

Then it is immediate to see that x2r(x + x−1) = p(x). Condition (b) is equivalent to asking that r(y) has
two real roots, with one > 2 and the other in the interval (−2, 2). Writing the roots as

−a±
√
a2 − 4(b− 2)

2
,

we see that we need

(3) a2 > 4b− 8.

Combining with condition (1), we have

(4) (a− 4)2 > 4k2.

In addition, we can rewrite

2 <
−a+

√
a2 − 4(b− 2)

2
as 4 + a <

√
a2 − 4(b− 2), and

2 >
−a−

√
a2 − 4(b− 2)

2
> −2 as 4− a >

√
a2 − 4(b− 2) > −4− a.

Combining the above lower bounds for the square-root, we have

(5) a2 − 4(b− 2) > (4 + a)2, which simplifies to − 2a > 2 + b.

Similarly, the upper bound gives us

(4− a)2 > a2 − 4(b− 2), which simplifies to 2 + b > 2a,

but this condition is already a consequence of (1).
Combining (1) with (5) we obtain

(6) k2 < −4a.

Notice that −16a < (a− 4)2, and therefore equations (3) and (4) are consequences of (6).
In sum, we have the following conditions

b = k2 + 2a− 2, k2 < −4a, 0 < −a < Q+ 3.

The number of solutions for this is given by

Q+2∑
j=1

(d
√

4je − 1) = 2

∫ Q+2

1

√
xdx+O(Q) =

4

3
Q3/2 +O(Q).

We have not yet taken into account condition (a). The only way for p(x) to be reducible is to have

p(x) = (x2 + αx+ 1)(x2 + βx+ 1)

in Z[x], where one of the factors (say, the first) is the minimal polynomial of µ. Since |µ| = 1, we conclude
that |α| < 2 and therefore the only possible values for α are 0,±1. Choosing the value of α and comparing
the conditions on the coefficients a, b of p(x), we have

α = 0 and b = 2;

α = 1 and b = a+ 1;

α = −1 and 1 = a+ b.

There are O(Q) choices of a and b satisfying the three equations above, which completes the proof of
part B. �
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3.3. We remark that we can simplify our reasoning from the previous section to recover the result of Götze
and Gusakova for the case where m = 1 (which corresponds to Salem numbers of degree 4). Indeed, we must
again count the possible polynomials p(x), this time without condition (c). From the previous discussion,
we have the conditions

−2a > 2 + b > 2a, 0 < −a < Q+ 3.

We also have a2 > 4b−8, but it is easy to see that this condition is a consequence of the first equation above.
The number of solutions for the above inequalities is

Q+2∑
j=1

(4j − 1) = 2Q2 +O(Q),

and this recovers Theorem 3 for m = 1.

4. Cocompact case

In this section we consider a generalization of Theorem 1 to compact orbifolds. Here the results are less
precise and conditional on the gap conjecture of Marklof:

Conjecture 8 ([Mar96], Conjecture 1). Let ΓD be an arithmetic quaternion group. Then the number of
gaps in the complex length spectrum of H3/ΓD up to length ` = log x is given by

G(x) = κx+ o(x), x→∞,
where κ ≥ 0 is a constant depending only on ΓD, and small compared to 22d−3π|Da|−1/2. It could even be the
case that κ = 0 for all ΓD. (Here d denotes the degree of the field of definition K and Da is the discriminant
of a = tr D.)

The conjecture is known to be true (with κ = 0) when ΓD = PSL(2, oK) is a Bianchi group, but it
remains open even for the other arithmetic groups of the simplest type. The main result of this section is
the following theorem.

Theorem 9. A. Let ΓD be an arithmetic quaternion group of the simplest type with the totally real field
of definition L, and let OD = H3/ΓD. Assume that Conjecture 8 holds for ΓD. Then OD generates

c1Q
1/2 + o(Q1/2), Q→∞

Salem numbers of degree 4 over L that are square-rootable over L, where c1 = 22d−3π
|Da| −

κ
4 with the

notation as in Conjecture 8.
B. Let L be a totally real number field. There exists a constant c2 = c2(L) ≥ 0 such that the number of

Salem numbers of degree 4 over L that are square-rootable over L and less than or equal to Q is

c2Q
3/2 + o(Q3/2).

Proof. A. This part of the proof is similar to the argument in Section 3.1. The only difference is that instead
of Marklof’s Theorem 4(b) cited there we now apply his Theorem 4(a) together with the gap conjecture
[Mar96]. Note that in Theorem 4(a) [loc. cit.] there is an additional assumption that the set of traces tr D1

is invariant under complex conjugation. This assumption allows us to prove Lemma 2 [loc. cit.] which is then
used in the proof of the theorem. It is well known that arithmetic groups of the simplest type always have a
totally real index two subfield of their complex field of definition (see [MR03, Section 10.2]). Therefore, we
are not required to impose the aforementioned extra assumption on the traces. The rest of the argument is
the same as in Section 3.1.

B. We now use the general form of square-rootable Salem numbers given in Definition 4. We work over
an arbitrary totally real field L, but consider only the Salem numbers λ with degL(λ) = 4. The latter
assumption allows us to apply the method from Section 3.2.

First recall a more general lemma from [ERT19] (compare with Lemma 7):

Lemma 10 ([ERT19], Lemma 8.2 (1)). Let λ be a Salem number, let L ⊂ Q(λ+λ−1) a subfield, and let p(x)
be the minimal polynomial of λ over L. If p(x) = x4 + ax3 + bx2 + ax+ 1 ∈ oL[x], then λ is square-rootable
over L if and only if there is a positive element k of L such that p(−1) = k2 and 4 − a ± 2k is a totally
positive element of L, in which case λ is square-rootable over L via 4− a± 2k.
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As before, we seek to count the Salem numbers λ of degree 4 over L that are square-rootable. This
amounts to counting the polynomials

p(x) = x4 + ax3 + bx2 + ax+ 1 ∈ oL[x]

for which

(a) p(x) is irreducible;
(b) its root λ is a Salem number of degree 4[L : Q], that is, the roots are λ, λ−1, µ, µ−1 with λ ∈ R>1

and µ 6∈ R, |µ| = 1, and for all non-identity places σ : L→ R the roots of pσ(x) have absolute value
one (cf. [ERT19, Proof of Theorem 5.2(1)]);

(c) p(−1) = k2 for k ∈ oL, k > 0;
(d) 4− a+ 2k or 4− a− 2k is totally positive;
(e) λ ≤ Q.

The proof proceeds much as in Section 3.2. Here, condition (c) is equivalent to

(7) 2 + b− 2a = k2, for k ∈ oL, k > 0.

Now we turn our attention to condition (b), which allows us to deduce that

−a = λ+ λ−1 + µ+ µ−1 < λ+ 3 ≤ Q+ 3,

where the final inequality follows from condition (e). Moreover, since λ is a Salem number, we know that
λ+ λ−1 ≥ 2, hence

−a = λ+ λ−1 + µ+ µ−1 > 0.

Combining the two displayed inequalities for −a yields

0 < −a < Q+ 3.(8)

Furthermore, since pσ(x) has all of the roots with absolute value one, it must be the case that |aσ| < 4 for
any non-identity σ : L→ R.

Next, we perform a change of variable, writing y = x+ x−1. Then, if we define

r(y) = y2 + ay + b− 2,

we see that p(x) can be expressed in terms of this new polynomial: x2r(x + x−1) = p(x). In other words,
condition (b) amounts to requiring that r(y) has two real roots, with one > 2 and the other in the interval
(−2, 2), whose σ-conjugates are all in the interval (−2, 2). The roots of r(y) are of the form

−a±
√
a2 − 4(b− 2)

2
.

As a result, we need

(9) (aσ)2 > 4bσ − 8 for all σ : L→ R.

Combining this with condition (7) yields

(10) (aσ − 4)2 > 4(kσ)2.

Hence, from (8), for all non-identity σ : L→ R we have

(11) −4 < kσ < 4.

We need to impose some additional assumptions on kσ in order to satisfy condition (d). More precisely, we
have that either

aσ − 4

2
< kσ < 4

for all non-identity σ : L→ R or that

−4 < kσ <
4− aσ

2

for all non-identity σ : L→ R. In both cases, this condition replaces (11).
7



Furthermore, taking into account the roots of r(y) and the intervals that they live in, we deduce the
following inequalities:

2 <
−a+

√
a2 − 4(b− 2)

2
i.e., 4 + a <

√
a2 − 4(b− 2);

2 >
−a−

√
a2 − 4(b− 2)

2
> −2 i.e., 4− a >

√
a2 − 4(b− 2) > −4− a; and

for all non-identity σ : L→ R have 4± aσ >
√

(aσ)2 − 4(bσ − 2) > −4± aσ.

Next, we combine the lower bounds for the square-root that we obtained above, which yields

(12) a2 − 4(b− 2) > (4 + a)2, which simplifies to − 2a > 2 + b.

Likewise, we combine the upper bounds, which gives us

(4− a)2 > a2 − 4(b− 2), which simplifies to 2 + b > 2a.

Note that this inequality is already a consequence of (7).
For the conjugates, taking into account (8), we only have a non-trivial upper bound for the square root,

which gives

2 + bσ > ±2aσ.

Next, we combine (7) with (12), which produces a simple inequality

(13) k2 < −4a.

Observe that −16a < (a− 4)2, which means that equations (9) and (10) are consequences of (13).
To summarize, we have shown that the following inequalities must simultaneously hold:

b = k2 + 2a− 2;

k2 < −4a;

(14)
aσ − 4

2
< kσ < 4 or − 4 < kσ <

4− aσ

2
;

0 < −a < Q+ 3, −4 < aσ < 4.

Condition (14) should be interpreted as aσ−4
2 < kσ < 4 for all non-identity σ or −4 < kσ < 4−aσ

2 for all
non-identity σ.

The number of solutions can be counted in a manner similar to [Mar96, p. 525], following standard
methods from the geometry of numbers (see, for example, [Lan94, Theorem 1, Chapter V]). The count that
we obtain is of the form c2Q

3/2 + o(Q3/2), where c2 is a nonnegative constant. We include some details of
this computation in the next lemma.

Observe that we still have not used condition (a) in our count. As in the previous section, the only way
for p(x) to be reducible is for it to factor into a product of quadratics, i.e.,

p(x) = (x2 + αx+ 1)(x2 + βx+ 1)

in oL[x], with one of them being the minimal polynomial of µ. Without loss of generality, suppose that
the first factor has this property. Since its roots have absolute value 1 for all σ : L → R, we conclude that
|ασ| < 2 for all σ. This gives finitely many choices for α ∈ oL, and hence O(Q) choices for p(x). �

In fact, we can use the geometry of numbers to give a bound for c2. Let h = [L : Q]. Then we have h
embeddings of L into R given by σ1 = 1, σ2, . . . , σh. Consider the function

ϕ : L→ Rh

ϕ(x) = (xσ1 , xσ2 , . . . , xσh).

It is well-known that the image of oL is a full lattice whose fundamental domain φL is a parallelotope of
volume |DL|1/2.
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Lemma 11. Let c2 be as in Theorem 9.B. Then

c2 ≤
22h+2(12 + 7δ + δ2)h−1

3|DL|
,

where

δ = 2 min
φL

max
diagonal

φL.

In other words, δ is twice the minimal value of the maximal diagonals of all the possible parallelotopes φL
corresponding to fundamental domains of the lattice given by oL.

Proof. We concentrate on counting the number of a, k ∈ oL such that

(15)


0 < −a < Q+ 3,

−4 < aσ < 4 ∀σ 6= 1,

k2 < −4a,
aσ−4

2 < kσ < 4 ∀σ 6= 1.

The result with −4 < kσ < 4−aσ
2 is analogous and will yield the same number.

Now we consider two coordinates, namely ϕ̃ : L×L→ R2h given by ϕ̃(a, k) = (ϕ(a), ϕ(k)). The image of

oL × oL is a full lattice in R2h whose fundamental parallelotope φ̃L has volume |DL|.
The number of solutions to (15) is approximated by the number of translates of φ̃L by the image of oL×oL

that fit in the set SL(Q, 0), where

SL(Q, δ) =
{

(x,y) ∈ R2h
∣∣∣ − δ < −x1 < Q+ 3 + δ, |xi| < 4 + δ, |y1| <

√
−4x1 + δ,

xi − 4

2
− δ < yi < 4 + δ, i = 2, . . . , h

}
.

More precisely, let n(Q, δ) be the number of translations of φ̃L which are contained in SL(Q, δ), and let

m(Q, δ) be the number of translations of φ̃L which intersect SL(Q, δ). Let `(Q) be the number of lattice
points in SL(Q, 0). Then we have

(16) n(Q, δ)Vol(φ̃L) ≤ Vol(S(Q, δ)) ≤ m(Q, δ)Vol(φ̃L)

and

n(Q, 0) ≤ `(Q) ≤ m(Q, 0).

Let δ be equal to the length of the longest diagonal of φ̃L. Thus m(Q, 0) ≤ n(Q, δ). This yields

(17) n(Q, 0) ≤ `(Q) ≤ m(Q, 0) ≤ n(Q, δ).

In textbook applications, one also normally writes m(Q,−δ) ≤ n(Q, 0). However, we are not able to do this
here because our set SL(Q, δ) is thin compared with the size of δ in the directions where σ 6= 1. This is the
reason why we get an upper bound, but no lower bound.

Combining equations (16) and (17), we obtain

(18) `(Q) ≤ Vol(S(Q, δ))

Vol(φ̃L)
.

Notice that

Vol(SL(Q, δ)) =

∫ δ

−Q−3−δ

∫ 4+δ

−4−δ
· · ·
∫ 4+δ

−4−δ
2(
√
−4x1 + δ)

h∏
i=2

(
6− xi

2
+ 2δ

)
dx1 . . . dxh

=(48 + 28δ + 4δ2)h−1
8

3
Q3/2 +Oδ(Q).

Combining with (18), we arrive at the claimed expression for δ, which is the maximal diagonal of φ̃L and
can therefore be bounded by twice the maximal diagonal of φL.

�
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5. Comments about other dimensions

5.1. We can consider the two dimensional case using the previous work of Bolte [Bol93] instead of Marklof.
Let O be a non-compact arithmetic 2-orbifold with associated group Γ. By [ERT19, Theorem 1.1], for every
hyperbolic element γ ∈ Γ with λ = e`(γ), we have that λ is a Salem number of degree 2 (recall that the
Salem numbers have even degree). It follows that a non-compact arithmetic hyperbolic 2-orbifold generates
Q1/2 +O(1) different Salem numbers of degree 2 that are less than or equal to Q.

On the arithmetic side, the counting here is very simple. For degree 2, we have m = 0, and the problem
of counting Salem number reduces to counting irreducible polynomials of the form x2 + ax+ 1 ∈ Z[x] under
the condition that 0 < −a < Q + 1. It is also easy to see that the case a = −1 does not yield real roots,
while a = −2 gives λ = 1. It follows that the number of Salem numbers of degree 2 less than or equal to Q
is Q− 2.

So, in the logarithmic scale, a given non-compact arithmetic 2-orbifold O generates asymptotically 1/2 of
all Salem numbers of degree 2.

5.2. Now consider an arbitrary dimension n > 1. By the prime geodesic theorem of Margulis [Mar69] the
number of geodesics of a compact hyperbolic n-manifold of length at most ` grows like e(n−1)`/(n− 1)`. If
the geodesics all had distinct lengths, then in dimensions 2 and 3 we would have about cQ different Salem
numbers defined by a single arithmetic manifold M. This is a much larger number than what we expect to
obtain from Theorem 9. The issue here is not in the compactness of M but rather it stems from the fact
that the geodesic spectra of arithmetic manifolds tend to have large multiplicities.

Determining the multiplicity of geodesics with a given length is known to be a very difficult problem.
For example, Sarnak [Sar82] studied this problem for the modular surfaces H2/Γ, where Γ is a congruence
subgroup of PSL(2,Z), in which case the multiplicities are the class numbers of indefinite binary quadratic
forms. He used Selberg’s trace formula to determine the asymptotic growth of their average sizes. Subsequent
papers by Bolte and Marklof cited above treat the mean multiplicities in the spectra of 2 and 3-dimensional
arithmetic orbifolds. Very little is known about multiplicities in higher dimensions. The relation between
the geodesic spectrum and the distribution of Salem numbers that we investigate in this paper allows us to
obtain many new multiplicity bounds. For example, we can now can prove Proposition 2, which we restate
below.

Proposition 2. Let O be a non-compact arithmetic hyperbolic orbifold of even dimension n ≥ 4. Then the
mean multiplicities in the length spectrum of O have a strong exponential growth rate of at least

〈g(`)〉 ∼ ce
(n2−1)`

`
, `→∞,

where c is a positive constant.

Proof. The number of closed geodesics of O of length at most ` is ∼ e(n−1)`/(n−1)`. Note that O is not com-
pact and has singularities so we cannot apply Margulis’ theorem; we refer instead to [GW80, Porposition 5.4]
where the result is obtained in this setting. Now by [ERT19, Theorem 1.1] each geodesic corresponds to a
Salem number e` of degree ≤ n (here we use that n is even and that the degrees of the Salem numbers are
even). By [GG19, Theorem 1.1] the total number of such Salem numbers is bounded by ce(n/2)`. Hence, on
average, the geodesic lengths have to appear with multiplicity at least ∼ e(n/2−1)`/(n− 1)`. �

Extending this result to compact orbifolds and to odd dimensions requires finer counting of square-rootable
Salem numbers and relative Salem numbers, i.e., those λ for which Q(λ+ λ−1) contains a fixed field L. We
leave these intriguing problems for future research. It would also be interesting to find the proportion of
Salem numbers defined by a given arithmetic manifold or orbifold. At this point, we cannot discount the
possibility that in large dimensions the exponent of the growth function of such Salem numbers is the same
as the exponent in the total growth of the admissible Salem numbers.
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[Wei60] André Weil, Algebras with involutions and the classical groups, J. Indian Math. Soc. (N.S.) 24 (1960), 589–623 (1961).

MR 0136682

IMPA, Estrada Dona Castorina, 110, 22460-320 Rio de Janeiro, Brazil

Email address: mbel@impa.br
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