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Abstract. We extend the heuristic introduced by Conrey, Farmer, Keating, Rubinstein
and Snaith [CFK+05] in order to formulate conjectures for the (k, `)-moments of L-functions
of elliptic curves twisted by cubic characters. We also apply the work of Keating and Snaith
[KS00] on the (k, `)-moments of characteristic polynomials of unitary matrices to extend
our conjecture to k, ` ∈ C such that Re(k),Re(`), and Re(k + `) > −1. Our conjectures are
then numerically tested for two families.

1. Introduction

We present in this paper conjectures for the general moments of L-functions of elliptic
curves twisted by cubic characters, and test them numerically. More precisely, let E be a
fixed elliptic curve over Q with conductor NE and L-function L(s, E) as defined by (13). This
is the normalized L-function such that the functional equation relates L(s, E) to L(1− s, E)
and the central critical value is L(1/2, E). Let FE is the set of primitive cubic characters
defined over Q with conductor co-prime to 3NE. We also denote by FE(D) the subset of
FE consisting of characters with conductor less or equal to D. For any χ ∈ FE, the twisted
L-function is defined by

L(s, E, χ) =
∞∑
n=1

anχ(n)

ns
, where L(s, E) =

∞∑
n=1

an
ns
.

By the Hasse bound, both series converge for Re(s) > 1, and have analytic continuation to
the whole complex plane by the work of Wiles [Wil95].

We define the general (k, `)-moment as〈
L(1/2, E, χ)kL(1/2, E, χ)`

〉
D

:=
1

#FE(D)

∑
χ∈FE(D)

L(1/2, E, χ)kL(1/2, E, χ)`.

There are few results in the literature for moments of cubic twists of L-functions. For cubic
twists of L-functions attached to automorphic representations of GL(2,AK), where K =
Q(
√
−3), a weighted non-sieved first moment was computed was computed by Brubacker,

Friedberg, and Hoffstein in [BFH05]. This is the only result for cubic twist of L-functions
of elliptic curves. For Dirichlet cubic twists, the first moment (the (1, 0)-moment) for cubic
characters over Q was computed by Baier and Young [BY10] (the non-Kummer case), and
by Luo for a subset of the cubic characters over Q(

√
−3) [Luo04] (the Kummer case). For
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the case of function fields, the first moment was computed by David, Florea, and Laĺın in
both the Kummer and non-Kummer case [DFL19]. The scarcity of results for moments of
L-functions twisted by cubic characters, compared to the abundance of results for moments
of L-functions twisted by quadratic characters, can be explained by the fact that the sign of
the functional equation of cubic twists involves cubic Gauss sums which are chaotic objects.

We conjecture that as D →∞,〈
L(1/2, E, χ)kL(1/2, E, χ)`

〉
D
∼ gk,` ak,`

(k`)!
logk`D,

where gk,` is given by (1) and depends only on the symmetry type of the family (coming
from random matrix theory), and the arithmetic factor ak,` is given by (3) and depends on
the arithmetic of the family. In fact, we make a conjecture for all the powers of logD and
we compute explicitly the first two terms, see Conjecture 1.1.

The division by (k`)! is a standard normalization which makes the random matrix factor
gk,` an integer. Families of cubic twists are unitary families, and for unitary families, previous
literature considers mostly the (k, k)-moments, which in our case would be

1

#FE(D)

∑
χ∈FE(D)

|L(1/2, E, χ)|2k .

In the case of cubic twists, all moments are real, even if the special values L(1/2, E, χ)

are complex numbers, since L(1/2, E, χ) = L(1/2, E, χ), and it is natural to consider all
(k, `)-moments.

Independently of our conjecture, the random matrix factor gk,` can be deduced from the
work of Keating and Snaith [KS00], as we explain in Section 2. In both cases, this gives

gk,` := (k`)!

∏k−1
h=0 h!

∏`−1
h=0 h!∏k+`−1

h=0 h!
.(1)

Notice that

gk,k = (k2)!
k−1∏
j=0

j!

(j + k)!
,(2)

which is the usual gk associated with the (k, k) -moments of unitary matrices, as computed
in [KS00].

We now state our main result, a conjecture for the (k, `)-moments of cubic twists of elliptic
curves L-functions, with an explicit formula for the first 2 terms.

Conjecture 1.1. As D →∞,

1

#FE(D)

∑
χ∈FE(D)

L(1/2, E, χ)kL(1/2, E, χ)` = Pk`(logD) +O(D−δ),

for some δ > 0, and where Pk`(x) = ck`x
k` + ck`−1x

k`−1 + · · · + c0 is a polynomial of degree
k` with

ck` =
gk,` ak,`
(k`)!

and ak,` = 2k`AE,k,`(0, 0),(3)
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where
AE,k,`(z1, z2) =

∏
p

AE,k,`(z1, z2; p),

and the Euler factors are defined by (35). Furthermore, we also compute that

ck`−1 =gk,`2
k`−1

×
((

γ(k + `− 2) + log

(
NE

4π2

)
− 2

)
AE,k,`(0, 0) +

(
1

k

∂AE,k,`
∂z1

(0, 0)− 1

`

∂AE,k,`
∂z2

(0, 0)

))
.

We deduce our conjectures from a general framework based on the paper [CFK+05] often
called “the recipe” (see also [AK14, RW15] for the function field setting). It is based on
computing the shifted moments, and using the combinatorics given by the shifts to get the
conjecture for the moments. There is a strong analogy with shifted moments of unitary
random matrices as explained in Section 2. The recipe leads to the conjecture (16) stated
at the beginning of Section 4. In Section 5, we proceed to compute formulas for the first
2 coefficients from (16), generalizing the work of [CFK+05] to the case k 6= ` to compute
the first coefficient ck`, and extending our formulas to compute the second coefficient ck`−1.
We remark that Conrey, Farmer, Keating, Rubinstein, and Snaith [CFK+08] computed the
first 10 coefficients for the case of the zeta function, which also corresponds to the unitary
case, while Rubinstein and Yamagishi [RY15] obtained the first 170 coefficients numerically
in this case. In fact, our formula for ck`−1 is analogous to formula (2.71) from [CFK+08],
but in our case, we have k 6= ` and the arithmetic factor is considerably different. Goulden,
Huynh, Rishikesh, and Rubinstein [GHRR13] computed several coefficients for quadratic
Dirichlet L-functions and L-functions associated to quadratic twists of an elliptic curve over
Q, corresponding to symplectic and orthogonal families.

Our work differs from the works cited above because we consider cubic characters and
our situation allows for the possibility of k 6= `, leading to considerations of entirely new
moments. The case where either k or ` are 0 is much simpler, and is presented in Section 6.

The random matrix theory factor is naturally extended to all k, ` ∈ C such that Re(k),Re(`),
and Re(k+`) > −1, since all (k, `)-moments of characteristic polynomials of unitary random
matrices can be computed in this region from the work of Keating and Snaith [KS00], as
explained in Section 2. Our formulas for the second coefficient ck`−1 are written in such a
way that they can also be extended for non-integer values of k and `, and we speculate that
Conjecture 1.1 could also be extended to k, ` ∈ C such that Re(k),Re(`), and Re(k+`) > −1
in Section 7. In that case, Pk`(x) is the power series ck`x

k` + ck`−1x
k`−1 + · · · . We remark

that the extension to non-integral powers was already considered in [CFK+08] for the zeta
function. Our case differs because having k 6= ` allows for the possibility that one of the
parameters is negative, such as in the case of k = 1/2, ` = −1/2.

We present in Section 8 numerical tests for several values of (k, `), including real non-
integers, and cases involving a negative values for one or two parameters, and complex
parameters, for two elliptic curves. As explained in Section 8, the amount of data that
can be obtained for cubic twists is unfortunately limited compared to the case of quadratic
twists, but the numerical tests still show a good fit with the conjectures.

Acknowledgments: The authors would like to thank Hershy Kisilevsky for many useful
discussions, Andrew Granville for suggesting the formula of Lemma 2.2 to show that gk,` is
an integer, Jon Keating and Michael Rubinstein for bringing our attention to the status of
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2. Moments of characteristic polynomials of random matrices

In their influential work, Keating and Snaith concentrated on the (k, k)-moments of unitary
matrices [KS00]. For a unitary matrix U let ZU(s) be the characteristic polynomial

ZU(s) = det (I − Us) .

For any positive integer k, they prove that the moments over the set of all N × N unitary
matrices (denoted U(N)) with respect to the Haar measure satisfy〈

|ZU |2k
〉
U(N)

:=

∫
U(N)

∣∣ZU(e−iθ)
∣∣2k dHaar(U) ∼

k−1∏
j=0

j!

(j + k)!
Nk2 =

gk,k
k2!

Nk2

as N →∞ [KS00, Equations (15, 16), page 60]. Notice that the answer is independent of the
choice of θ. We now show how to deduce deduce from their work that for the (k, `)-moments,

(4)
〈
Zk
UZ

`

U

〉
U(N)

∼ G(k + 1)G(`+ 1)

G(k + `+ 1)
Nk`

as N →∞ (for any k, ` ∈ C such that Re(k),Re(`),Re(k + `) > −1).
In the above, G denotes the Barnes G-function, which is given by the following Weierstrass

product

G(z + 1) = (2π)z/2 exp

(
−z + z2(1 + γ)

2

) ∞∏
k=1

{(
1 +

z

k

)k
exp

(
z2

2k
− z
)}

,

where γ is the Euler–Mascheroni constant.
It satisfies the following crucial properties

(5) G(z + 1) = Γ(z)G(z), G(0) = 0, G(1) = 1, G(n) =
n−2∏
j=0

j!

Writing

(6)
〈
Zk
UZU

`
〉
U(N)

=
〈
|ZU |k+`ei(k−`)Im logZU

〉
U(N)

,

and using [KS00, Equation (71), page 71], we get

(7)
〈
Zk
UZU

`
〉
U(N)

=
N∏
j=1

Γ(j)Γ(k + `+ j)

Γ(j + k)Γ(j + `)
.

Proposition 2.1. As N →∞,

N∏
j=1

Γ(j)Γ(k + `+ j)

Γ(j + k)Γ(j + `)
∼ G (k + 1)G (`+ 1)

G(k + `+ 1)
Nk`.
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Proof. First notice that

N∏
j=1

Γ(j)Γ(k + `+ j)

Γ(j + k)Γ(j + `)
=
G (k + 1)G (`+ 1)

G(k + `+ 1)

G(N + 1)G(k + `+N + 1)

G(k +N + 1)G(`+N + 1)
.

We use Barnes’ formula

(8) logG(z + 1) =
z2

2
log z − 3z2

4
+
z

2
log(2π)− 1

12
log z +

(
1

12
− logA

)
+O

(
1

z2

)
to estimate the quotient of the Barnes G-functions evaluated at N . Thus we consider

lim
N→∞

logG(N + 1) + logG(k + `+N + 1)− logG(k +N + 1)− logG(`+N + 1).

All the terms approach zero when N →∞, except for those coming from −3z2

4
and z2

2
log z.

The terms of the form −3z2

4
give

−3

4

(
N2 + (k + `+N)2 − (k +N)2 − (`+N)2

)
= −3k`

2
,

and the terms of the form z2

2
log z give

1

2

(
N2 logN + (k + `+N)2 log(k + `+N)− (k +N)2 log(k +N)− (`+N)2 log(`+N)

)
∼− k`

2
+ 2k`+ k` log(k + `+N).

Combining everything, we get

log

(
G(N + 1)G(k + `+N + 1)

G(k +N + 1)G(`+N + 1)

)
∼ k` log(k + `+N)

and we deduce the result by taking the exponential and observing that (N + k + `)k` ∼ Nk`

as N →∞. �

Using Proposition 2.1 in (7), we get (4), and using (5) it follows that for k, ` ∈ Z〈
ZkZ

`
〉
U(N)

∼ gk,`
(k`)!

Nk`.

For the sake of completeness, we include the proof that gk,` is an integer, which follows by
a counting argument (see the work of Connery and Farmer [CF00] for the proof in the case
k = `).

Lemma 2.2. For any positive integer q, let k ≡ kq mod q and ` ≡ `q mod q with 1 ≤ kq, `q ≤
q. Then,

gk,` =
∏
q=pn

pe(q),(9)

where the product runs over prime powers, and

e(q) =


[
kq`q
q

]
kq + `q ≤ q,

[
(q−kq)(q−`q)

q

]
kq + `q > q.

(10)
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It follows that for k, ` ∈ Z>0, gk,` ∈ Z.

Proof. We write

gk,` =
k` · (k`− 1) . . . 1 · 1k−12k−2 . . . (k − 1) · 1 · 1`−12`−2 . . . (`− 1)

1k+`−12k+`−2 . . . (k + `− 1)
.

For any positive integer q, let n(q) and d(q) be the number of integers (counted with mul-
tiplicities) on the numerator, respectively the denominator, which are multiples of q. Let
e(q) = n(q)− d(q). Then, gk,` is given by (9), and we have to show the formulas for e(p) as
stated in the lemma. We have that

n(q) =

[
k`

q

]
+

[(k−1)/q]∑
i=1

(k − qi) +

[(`−1)/q]∑
i=1

(`− qi)

d(q) =

[(k+`−1)/q]∑
i=1

(k + `− qi)

We write k = qaq + kq and ` = qbq + `q where 1 ≤ kq, `q ≤ q. Then,

[(k − 1)/q] = aq

[(`− 1)/q] = bq

[(k + `− 1)/q] =

{
aq + bq kq + `q ≤ q

aq + bq + 1 kq + `q > q.

[k`/q] = qaqbq + aq`q + kqbq + [kq`q/q](11)

We first suppose that kq + `q ≤ q. In that case,

e(q) =

[
k`

q

]
+ kaq + `bq − (k + `)(aq + bq)−

q

2
(aq(aq + 1) + bq(bq + 1)− (aq + bq)(aq + bq + 1))

=

[
k`

q

]
− (aqq + kq)bq − (bqq + `q)aq + qaqbq

=

[
kq`q
q

]
,

where the last line follows by using (11).
If kq + `q > q, we have

e(q) =

[
k`

q

]
+ kaq + `bq − (k + `)(aq + bq + 1)− q

2
(aq(aq + 1) + bq(bq + 1)

−(aq + bq + 1)(aq + bq + 2))

=

[
k`

q

]
− (aqq + kq)bq − (bqq + `q)aq − (k + `) + qaqbq + q(aq + bq + 1)

=

[
kq`q
q

]
+ qaq + qbq + q − k − `

=

[
(q − kq)(q − `q)

q

]
.
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Since e(q) ≥ 0 for all q, it follows that gk,` is an integer.
�

An alternative proof that gk,` ∈ Z for k, ` ∈ Z>0 can be obtained by observing that gk,`
counts the number of rectangular standard Young tableaux of k × `, which can be deduced
from the Hook length formula.

Finally, we state the result for the shifted (k, `)-moments of unitary random matrices which
is the base for the recipe, where analogous computations are performed on the L-functions.
This is the extension of [CFK+05, Theorem 1.5.2], which is stated for the (k, k)-moments.
Since U is unitary, we have the functional equation

ZU(s) = ε(U)sNZU∗(s−1),

where U∗ is the transpose conjugate matrix, and the sign of the functional equation is
ε(U) = (−1)N detU. Let

ZU(s) = ε(U)−1/2s−N/2ZU(s).

The following theorem is proven in [CFK+03]. The integrand contains terms of the form
(1 − e−zh+zk+m)−1, which have simple poles at zk+m = zh. For the L-functions, the simple
poles will come from the arithmetic factor, which contains the terms ζ(1 + zh − zk+m) after
extracting the poles. See (28). In both cases (the theorem below for random matrices and
the conjecture for L-functions), the formulas are derived from Lemma 4.3 (Lemma 2.5.3 from
[CFK+05]) and they involve the Vandermonde determinant

(12) ∆(z1, . . . , zm) =

∣∣∣∣∣∣∣∣
1 · · · 1
z1 · · · zm
...

. . .
...

zm−1
1 · · · zm−1

m

∣∣∣∣∣∣∣∣ =
∏

1≤i<j≤m

(zj − zi).

Theorem 2.3. Let α = (α1, . . . , αk, αk+1, . . . , αk+`) and

G(z1, . . . , zk+`) =
k∏

h=1

∏̀
m=1

(
1− e−zh+zk+m

)−1
.

Then,〈
ZU(e−α1) · · · ZU(e−αk)ZU∗(eαk+1) · · · ZU∗(eαk+`)

〉
U(N)

=
(−1)(k+`)(k+`−1)/2

k!`!

1

(2πi)k+`
×

×
∮
· · ·
∮
G(z1, . . . , zk+`)∆(z1, . . . , zk+`)

2∏k+`
h=1

∏k+`
m=1(zh − αm)

e
N
2 (

∑k
h=1 zh−

∑`
m=1 zk+m) dz1 . . . dzk+`,

where the integration takes place over small circles around α1, . . . , αk+`.

3. Estimates for the number of characters and moments of conductors

Let E be an elliptic curve with conductor NE and let L(s, E) be its L-function

(13) L(s, E) =
∏
p-NE

(
1− app−s + p−2s

)−1
∏
p|NE

(
1− app−s

)−1
,
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where we take

(14) ap =


p+1−#E(Fp)√

p
p - NE,

± 1√
p
, 0 p | NE.

Notice that this is the normalization such that the central critical value is L (1/2, E). From
the Hasse bound, the L-function converges absolutely for Re(s) > 1, and from [Wil95,
TW95], it has analytic continuation for all s ∈ C and it satisfies the functional equation

L(s, E) = ωE
Γ
(

3
2
− s
)

Γ
(
s+ 1

2

) (4π2

NE

)s− 1
2

L(1− s, E),

where the sign of the functional equation is ωE = ±1.
For any fixed integer N , let FN be the set of primitive cubic characters with conductor

co-prime to 3N , and let FN(D) be the subset of those characters with conductor less or equal
to D. This following lemma can be found in [Coh54] for the family of all cubic characters,
but in our case the constant is slightly different as we are excluding characters of conductor
not co-prime to 3N .

Lemma 3.1.

#FN(D) ∼ c3(N)D,

where

c3(N) =

√
3

2π

∏
p≡1 (mod 3)

(p+ 2)(p− 1)

p(p+ 1)

∏
p≡1 (mod 3)

p|N

(
1 +

2

p

)−1

.

Proof. Let ζK(s) is the Dedekind zeta function of K = Q(
√
−3), which is

ζK(s) =

(
1− 1

3s

)−1 ∏
p≡1 (mod 3)

(
1− 1

ps

)−2 ∏
p≡2 (mod 3)

(
1− 1

p2s

)−1

.

It has a simple pole at s = 1 with residue π
3
√

3
. We write the generating series for #FN(D)

as

GN(s) =
∏

p≡1 (mod 3)
p-3N

(
1 +

2

ps

)
= ζK(s)FN(s),

where

FN(s) =

(
1− 1

3s

) ∏
p≡1 (mod 3)

(
1 +

2

ps

)(
1− 1

ps

)2 ∏
p≡2 (mod 3)

(
1− 1

p2s

) ∏
p≡1 (mod 3)

p|N

(
1 +

2

ps

)−1

is analytic for Re(s) > 1/2. Using the Tauberian theorem, this shows the result. Using
Perron’s formula and bounding ζK(s) in the critical critical strip gives a power saving error
term, but we do not need this in our heuristic argument. �
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Corollary 3.2. As D →∞,

#FmN(D)

#FN(D)
∼

∏
p≡1 (mod 3)
p|m,p-N

(
1 +

2

p

)−1

.

For any function f(d) defined on positive integers, let

〈f(d)〉D =
1

#F(D)

∑
χ∈F(D)

f(cond(χ)).

Then for h a real number and n a nonnegative integer,〈
logh d

〉
D
∼

n∑
j=0

(−1)jh(h− 1) · · · (h− j + 1) logh−j D +O
(
logh−n−1D

)
.(15)

Moreover, when h is a nonnegative integer and n = h, we have〈
logh d

〉
D
∼ h!

h∑
j=0

(−1)j

(h− j)!
logh−j D.

Proof. We have that
#FmN(D)

#FN(D)
∼ c3(mN)

c3(N)
,

and the first result follows.
For the average of logh d results, using partial summation, we have that∑
χ∈FN (D)

logh d ∼ c3(N)D loghD − h
∫ D

1

c3(N) logh−1 t dt

∼ c3(N)D loghD − c3(N)hD
n∑
j=1

(−1)j−1(h− 1) · · · (h− j + 1) logh−j D

+O
(
D logh−n−1D

)
and the result follows. �

4. Shifted moments

We explain in this section how the recipe of [CFK+05] leads to the conjecture〈
L(1/2, E, χ)kL(1/2, E, χ)`

〉
D
∼ 〈Υk,`(2 log d)〉D ,(16)

where

Υk,`(x) =
(−1)(k+`)(k+`−1)/2

k!`!(2πi)k+`

∮
· · ·
∮
G(z1, . . . , zk+`)∆(z1, . . . , zk+`)

2

(z1 · · · zk+`)k+`
e
x
2 (

∑k
h=1 zh−

∑`
m=1 zk+m)dz1 . . . dzk+`,

and G(z1, . . . , zk+`) is defined by (27).
This is obtained by considering shifted moments and solving the combinatorics of the shifts

as in the corresponding random matrix theorem (Theorem 2.3). Taking the limit when the
shifts go to 0 leads to (16).

We assume that k ≥ ` ≥ 1. The case where ` = 0 is much simpler, and it is treated in
Section 6.
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Let χ be a character of conductor d. The functional equation for the twist of L(s, E) by
χ is given by

L(s, E, χ) = ε(E,χ)
Γ
(

3
2
− s
)

Γ
(
s+ 1

2

) (4π2

NE

)s− 1
2

d1−2sL(1− s, E, χ),(17)

where NE is the conductor of E. The sign of the functional equation is

ε(E,χ) =
ωEχ(NE)τ(χ)2

d
,(18)

where τ(χ) is the Gauss sum of the character. We take

Z(s, E, χ) = X (s, E, d)−1/2L(s, E, χ),

where

X (s, E, d) =
Γ
(

3
2
− s
)

Γ
(
s+ 1

2

) (4π2

NE

)s− 1
2

d1−2s =: X(s, E) d1−2s,(19)

and the functional equation becomes

Z(s, E, χ) = ε(E,χ)Z(1− s, E, χ).

We remark the following result, which will be useful later.

Lemma 4.1.
∂

∂s
(X(s, E)−1/2)

∣∣∣∣
s= 1

2

= −γ +
1

2
log

(
NE

4π2

)
,

where γ is the Euler–Mascheroni constant.

Proof. First notice that

X ′(s, E) =
−Γ′

(
3
2
− s
)

Γ
(
s+ 1

2

)
− Γ

(
3
2
− s
)

Γ′
(
s+ 1

2

)
Γ
(
s+ 1

2

)2

(
4π2

NE

)s− 1
2

+
Γ
(

3
2
− s
)

Γ
(
s+ 1

2

) (4π2

NE

)s− 1
2

log

(
4π2

NE

)
.

Therefore,

∂

∂s
(X(s, E)−1/2)

∣∣∣∣
s= 1

2

=− X ′(1/2, E)

2X(1/2, E)3/2
= −1

2
X ′(1/2, E)

=− γ +
1

2
log

(
NE

4π2

)
,

where we have used the fact that Γ′(1) = −γ.
�

The approximate functional equation gives

Z(s, E, χ) = X (s, E, d)−1/2
∑ anχ(n)

ns
+ ε(E,χ)X (1− s, E, d)−1/2

∑ anχ(n)

n1−s(20)

10



and

Z(s, E, χ) = X (s, E, d)−1/2
∑ anχ(n)

ns
+ ε(E,χ)X (1− s, E, d)−1/2

∑ anχ(n)

n1−s ,(21)

where we have used the fact that (18) implies that

ε(E,χ) = ε(E,χ).

In the approximate functional equations above, we neglected the smoothing and the bounds
on the sum. For the exact formula we refer to Exercise 2 in page 99 in [IK04].

Notice that X (1/2, E, d) = 1 implies that〈
L(1/2, E, χ)kL(1/2, E, χ)`

〉
D

=
〈
Z(1/2, E, χ)kZ(1/2, E, χ)`

〉
D
,(22)

and therefore we can work with the average of Z instead of L.
Let α = (α1, . . . , αk+`). We consider the shifted moment〈
Z(1/2, E, χ)kZ(1/2, E, χ)`

〉(α)

D
:=

〈Z(1/2 + α1, E, χ) · · ·Z(1/2 + αk, E, χ)Z(1/2− αk+1, E, χ) · · ·Z(1/2− αk+`, E, χ)〉D .
Notice that the αj’s with the conjugate characters are negative in accordance to Theorem

2.3. This pairs principal terms with principal terms and dual terms with dual terms and
simplifies the computation.

We apply the approximate functional equations (20) and (21) to evaluate the products
of L-functions. We obtain a sum of 2k+` terms, but we keep only the terms where there is
no oscillation on the product of signs of the functional equation, as we conjecture that the
terms with oscillation do not contribute to the moment. This means that the product of
the ε(E,χ) and ε(E,χ) is 1, i.e. we keep only the terms where there is the same number
of each. To make that precise, let 0 ≤ m ≤ ` be the number of times that we are choosing
the second factor of the approximate functional equation (21). Then, we must also choose
the second factor of the approximate functional equation (20) m times, and this gives the
average of terms of the following form:

k∏
j=1

X (1/2 + ejαj, E, d)−1/2
∏̀
j=1

X (1/2 + ej+kαj+k, E, d)−1/2
∑

n1,...,nk+`

an1 · · · ank+` χe1(n1) · · ·χek+`(nk+`)

n
1/2+e1α1

1 · · ·n1/2+ek+`αk+`
k+`

,

where (e1, . . . , ek+`) ∈ {±1}k+` with the property that exactly ` of the ei are equal to −1,
which is independent of m. For example, for m = 0, we have

M(1/2;α1, . . . , αk+`) =
k∏
j=1

X (1/2 + αj, E, d)−1/2
∏̀
j=1

X (1/2− αj+k, E, d)−1/2

×
∑

n1,...,nk+`

an1 · · · ank+` χ(n1) · · ·χ(nk)χ(nk+1) · · ·χ(nk+`)

n
1/2+α1

1 · · ·n1/2+αk
k n

1/2−αk+1

k+1 · · ·n1/2−αk+`
k+`

.(23)

Summing over all m, and counting the number of ways that we can choose the second factor
of (21) m times, and the second factor of (20) m times, there is a total of∑̀

m=0

(
`

m

)(
k

m

)
=

(
k + `

`

)
11



summands, which naturally recovers the number of (k + `)-uples (e1, . . . , ek+`).
We write the summands by permuting the shifts in M(1/2;α1, . . . , αk+`). Notice that

M(1/2;α1, . . . , αk+`) is symmetric in α1, . . . , αk and in αk+1, . . . , αk+`. Then, to get all the
summands, it suffices to consider all the permutations in the cosets of Sym(k)× Sym(`) as
a subgroup of Sym(k + `). We then conjecture that〈

Z(1/2, E, χ)kZ(1/2, E, χ)`
〉(α)

D
=

〈 ∑
σ∈Ξk,`

M(1/2;ασ(1), . . . , ασ(k+`))

〉
D

,(24)

where
Ξk,` = Sym(k + `)/Sym(k)× Sym(`).

According to the recipe of [CFK+05], we now replace

χ(n1) . . . χ(nk)χ(nk+1) . . . χ(nk+`)

in (23) by the average over the family using the following result.

Lemma 4.2. As D →∞,

〈χ(n1) · · ·χ(nk)χ(nk+1) · · ·χ(nk+`)〉D =〈χ(n1) · · ·χ(nk)χ(n2
k+1) · · ·χ(n2

k+`)〉D

=


∏

p| ,p-NE
p≡1 (mod 3)

(
1 + 2

p

)−1

n1 · · ·nkn2
k+1 · · ·n2

k+` = ,

o(1) otherwise.

Proof. Assume that n is a cube and write n = m3. Then χ(m3) = 1 for (d,m) = 1 and 0 if
(d,m) > 1. We have ∑

χ∈FNE (D)

χ(m3) =
∑

χ∈FmNE (D)

1,

and the result follows by Corollary 3.2. Assume now that n is not a cube. For any a, b ∈ Z[ξ3],
we use the notation (a

b

)
3

to denote the cubic residue symbol defined over the Eisenstein ring Z[ξ3]. If a, b ∈ Z, by
cubic reciprocity (since integers are primary Eisenstein integers), we have that(a

b

)
3

=

(
b

a

)
3

.

Using cubic reciprocity, we write the generating series for∑
χ∈FNE (D)

χ(n)

as ∏
p≡1 (mod 3)

p=ππ

(
1 +

(
π
n

)
3

ps
+

(
π
n

)
3

ps

)
= L(s, χn)L(s, χn)F (s),

where F (s) is analytic for Re(s) > 1/2 + ε. We recall that

L(s, χn) =

(
1− χn(3)

3s

) ∏
p≡1 (mod 3)

(
1− χn(π)

ps

)−1(
1− χn(π)

ps

)−1 ∏
p≡2 (mod 3)

(
1− χn(p)

p2s

)−1

12



and is analytic for all s ∈ C. This shows the result.
�

Let

δp =


2
p+2

p ≡ 1 (mod 3),

0 otherwise.

Replacing the product of the characters by its average, we replace M(1/2;α1, . . . , αk+`)
by

k∏
j=1

X (1/2 + αj, E, d)−1/2
∏̀
j=1

X (1/2− αj+k, E, d)−1/2RE,k,`(1/2, α1, . . . , αk+`),

where

RE,k,`(1/2, α1, . . . , αk+`) =
∏
p

RE,k,`(1/2, α1, . . . , αk+`; p)

where for p - NE,

RE,k,`(1/2, α1, . . . , αk+`; p)

= 1 + (1− δp)
∞∑
j=1

∑
e1+···+ek+2ek+1+···+2ek+`=3j

k∏
h=1

apeh

peh(1/2+αh)

k+∏̀
h=k+1

apeh

peh(1/2−αh)
(25)

and for p | NE,
(26)

RE,k,`(1/2, α1, . . . , αk+`; p) = 1+
∞∑
j=1

∑
e1+···+ek+2ek+1+···+2ek+`=3j

k∏
h=1

apeh

peh(1/2+αh)

k+∏̀
h=k+1

apeh

peh(1/2−αh)
.

In order to evaluate the above expression, we have to determine the poles when the shifts
αi tend to zero. Let

G(α1, . . . , αk+`) :=
k∏
j=1

X(1/2 + αj, E)−1/2
∏̀
j=1

X(1/2− αj+k, E)−1/2RE,k,`(1/2, α1, . . . , αk+`),(27)

where we recall that X(s, E) is defined by (19). Looking at the Euler factors (25) and (26),
the poles come from the terms where j = 1, eh = 1 for exactly one value of h, and ek+m = 1
for exactly one value of m, and the rest of the ei are zero, and this is for all the possible
combinations (h, k + m) with 1 ≤ h ≤ k and 1 ≤ m ≤ `. Then, we rewrite G(α1, . . . , αk+`)

13



as

G(α1, . . . , αk+`) =F (α1, . . . , αk+`)
k∏

h=1

∏̀
m=1

ζ(1 + αh − αk+m)

=
k∏
j=1

X(1/2 + αj, E)−1/2
∏̀
j=1

X(1/2− αj+k, E)−1/2AE,k,`(α1, . . . , αk+`)

×
k∏

h=1

∏̀
m=1

ζ(1 + αh − αk+m),(28)

where

AE,k,`(α1, . . . , αk+`; p) =
k∏

h=1

∏̀
m=1

(
1− 1

p1+αh−αk+m

)
RE,k,`(1/2, α1, . . . , αk+`; p).(29)

Replacing in (24), we conjecture that
(30)〈

Z(1/2, E, χ)kZ(1/2, E, χ)`
〉(α)

D
=

〈 ∑
σ∈Ξk,`

d
∑k
j=1 ασ(j)−

∑k+`
j=k+1 ασ(j)G(ασ(1), . . . , ασ(k+`))

〉
D

.

Recall Lemma 2.5.3 from [CFK+05].

Lemma 4.3. Suppose that F1(a1, . . . , ak, b1, . . . , b`) is symmetric in the variables aj and in
the variables bj and is regular near (0, . . . , 0). Suppose that f(s) = 1

s
+ c+ · · · and let

G1(a1, . . . , ak, b1, . . . , b`) = F1(a1, . . . , b`)
k∏
i=1

∏̀
j=1

f(ai − bj).

If for all i, j, we have αi − αk+j is contained in the region of analyticity of f(s) then
Then∑

σ∈Ξk,`

G1(ασ(1), . . . , ασ(k), ασ(k+1), . . . , ασ(k+`))

=
(−1)(k+`)(k+`−1)/2

k!`!

∑
τ∈Sym(k+`)

Res(z1,...,zk+`)=(ατ(1),...,ατ(k+`))
G1(z1, . . . , zk+`)∆(z1, . . . , zk+`)

2∏k+`
h=1

∏k+`
m=1(zh − αm)

=
(−1)(k+`)(k+`−1)/2

k!`!

1

(2πi)k+`

∮
· · ·
∮
G1(z1, . . . , zk+`)∆(z1, . . . , zk+`)

2∏k+`
h=1

∏k+`
m=1(zh − αm)

dz1 · · · dzk+`,

where we are integrating over small circles around α1, . . . , αk+`.

Applying Lemma 4.3 in (30) for

G1(α1, . . . , αk+`) = d
∑k
j=1 αj−

∑k+`
j=k+1 αjG(α1, . . . , αk+`)

we conjecture that 〈
Z(1/2, E, χ)kZ(1/2, E, χ)`

〉(α)

D
=
〈

Υ
(α)
k,` (2 log d)

〉
D
,

14



where

Υ
(α)
k,` (x) =

(−1)(k+`)(k+`−1)/2

k!`!(2πi)k+`

∮
· · ·
∮
G(z1, . . . , zk+`)∆(z1, . . . , zk+`)

2∏k+`
h=1

∏k+`
m=1(zh − αm)

e
x
2 (

∑k
h=1 zh−

∑`
m=1 zk+m)dz1 . . . dzk+`.

This is in accordance to Theorem 2.3, where x is the conductor of L(s, E, χ), which is
log(NEd

2). Since NE is constant, we use x = N = 2 log d.
Now we let αi → 0 in order to obtain the conjecture stated at the beginning of the section,

recalling that we can replace Z by L in light of (22).

5. The first two coefficients for k, ` positive integers

We show in this section that

〈Υk,`(2 log d)〉D =gk,`AE,k,`(0, . . . , 0)
2k`

(k`)!
〈logk` d〉D

+ gk,`

(
γ(k + `− 2) + log

(
NE

4π2

))
AE,k,`(0, . . . , 0)

2k`−1

(k`− 1)!
〈logk`−1 d〉D

+ gk,`

(
∂AE,k,`
∂zk

(0, . . . , 0)− ∂AE,k,`
∂zk+`

(0, . . . , 0)

)
2k`−1

(k`− 1)!
〈logk`−1 d〉D

+O
(
logk`−2D

)
.(31)

It is not hard to see that Υk,`(x) is a polynomial of degree (at most) k`, and we compute
the coefficients of xk` and xk`−1. To compute the coefficient of xk`, we adapt the proof of
[CFK+05] to the case ` 6= k. In doing so, we consider a more general integral (Lemma 5.2)
that allows us to go one step further and compute a general formula the coefficient of xk`−1.

Conjecture 1.1 will then follow using the summation formulas of Section 3 in (31).
15



We now proceed to prove (31). After making the change of variables zi → zi
x/2

, and writing

ζ(1 + s) = 1/s+ γ + · · · , we get

Υk,`(x) =
(−1)(k+`)(k+`−1)/2

k!`!(2πi)k+`

∮
· · ·
∮ F

(
z1
x/2
, . . . , zk+`

x/2

)∏k
h=1

∏`
m=1 ζ

(
1 + zh

x/2
− zk+m

x/2

)
(z1 · · · zk+`)k+`

×∆(z1, . . . , zk+`)
2e

∑k
h=1 zh−

∑`
m=1 zk+mdz1 . . . dzk+`

=
(−1)(k+`)(k+`−1)/2

k!`!(2πi)k+`

∮
· · ·
∮
F

(
z1

x/2
, . . . ,

zk+`

x/2

)(x
2

)k`
×

(
1 +

γ

x/2

(
`

k∑
h=1

zh − k
∑̀
m=1

zk+m

)
+O(x−2)

)

× ∆(z1, . . . , zk+`)
2∏k

h=1

∏`
m=1(zh − zk+m)(z1 · · · zk+`)k+`

e
∑k
h=1 zh−

∑`
m=1 zk+mdz1 . . . dzk+`

=
(−1)(k+`)(k+`−1)/2xk`

2k`k!`!(2πi)k+`

∮
· · ·
∮
F

(
z1

x/2
, . . . ,

zk+`

x/2

)
×

(
1 +

2γ

x

(
`

k∑
h=1

zh − k
∑̀
m=1

zk+m

)
+O(x−2)

)

×∆(z1, . . . , zk+`)∆(z1, . . . , zk)∆(zk+1, . . . , zk+`)

(z1 · · · zk+`)k+`
e
∑k
h=1 zh−

∑`
m=1 zk+mdz1 . . . dzk+`.

This shows that Υk,`(x) is a polynomial of degree k`. The following lemma allows us how
to extract the coefficients from the integrals.

Lemma 5.1. Let H(z1, . . . , zh) be a function that is analytic around (z1, . . . , zh) = (0, . . . , 0),
and let L1(z1, . . . , zh), L2(z1, . . . , zh), and P (z1, . . . , zh) be polynomials.

(a)

lim
x→∞

1

(2πi)h

∮
· · ·
∮
H(z1/x, . . . , zh/x)

(
1 +

L1(z1, . . . , zh)

x
+O(x−2)

)
× P (z1, . . . , zh)

(z1 · · · zh)h
eL2(z1,...,zh)dz1 . . . dzh

=
H(0, . . . , 0)

(2πi)h

∮
· · ·
∮
P (z1, . . . , zh)

(z1 · · · zh)h
eL2(z1,...,zh)dz1 . . . dzh

16



(b)

lim
x→∞

x

(2πi)h

∮
· · ·
∮

(H(z1/x, . . . , zh/x)−H(0, . . . , 0))

(
1 +

L1(z1, . . . , zh)

x
+O(x−2)

)
× P (z1, . . . , zh)

(z1 · · · zh)h
eL2(z1,...,zh)dz1 . . . dzh

=
H(0, . . . , 0)

(2πi)h

∮
· · ·
∮
L1(z1, . . . , zh)

P (z1, . . . , zh)

(z1 · · · zh)h
eL2(z1,...,zh)dz1 . . . dzh

+
h∑
j=1

∂H

∂zj
(0, . . . , 0)

1

(2πi)h

∮
· · ·
∮
zjP (z1, . . . , zh)

(z1 · · · zh)h
eL2(z1,...,zh)dz1 . . . dzh.

Proof. (a) The term involving L1(z1, . . . , zh) goes to zero when x goes to ∞. The same is
true for O(x−2). We note that the term H(z1/x, . . . , zh/x) will tend to H(0, . . . , 0) in the
limit and can be extracted as a constant.

(b) The term involving L1(z1, . . . , zh) contributes because of the cancelation of x and 1
x
.

Then there is another possible contribution coming from first derivatives ofH(z1/x, . . . , zh/x).
More precisely, we have

lim
x→∞

x

(2πi)h

∮
· · ·
∮

(H(z1/x, . . . , zh/x)−H(0, . . . , 0))
P (z1, . . . , zh)

(z1 · · · zh)h
eL2(z1,...,zh)dz1 . . . dzh

=
1

(2πi)h

∮
· · ·
∮

lim
x→∞

H(z1/x, . . . , zh/x)−H(0, . . . , 0)

1/x

P (z1, . . . , zh)

(z1 · · · zh)h
eL2(z1,...,zh)dz1 . . . dzh.

By considering the Taylor expansion we have

H(z1/x, . . . , zh/x)−H(0, . . . , 0)

1/x
= x

h∑
j=1

zj
x

∂H

∂zj
(0, . . . , 0).

Since the terms ∂H
∂zj

(0, . . . , 0) are constant, they can be extracted from the integral. �

We now proceed to the computation, following the technique from (2.7.11) in [CFK+05].
By Lemma 5.1 (a), the main coefficient of the polynomial Υk,`(x) is given by g0

k,`F (0, . . . , 0),

where g0
k,` is a constant arising from the integral. Expanding the Vandermonde determinant

(12), we proceed as follows.

g0
k,` := lim

x→∞

Υk,`(x)

F (0, . . . , 0)xk`
=

(−1)(k+`)(k+`−1)/2+k`

2k`k!`!(2πi)k+`

∮
· · ·
∮
e
∑k
h=1 zh−

∑`
m=1 zk+m

×

(∑
σ

sgn(σ)z
σ(0)
1 · · · zσ(k−1)

k z
σ(k)
k+1 · · · z

σ(k+`−1)
k+`

)(∑
τ

sgn(τ)z
τ(0)
1 · · · zτ(k−1)

k

)

×

(∑
ρ

sgn(ρ)z
ρ(0)
k+1 · · · z

ρ(`−1)
k+`

)
(z1 · · · zk+`)

−(k+`)dz1 · · · dzk+`.

Here σ, τ , and ρ are permutations of {0, . . . , k + ` − 1}, {0, . . . , k − 1} and {0, . . . , ` − 1}
respectively. Since the integrand is symmetric with respect to the z1, . . . , zk and with respect
to the zk+1, . . . , zk+`, we can permute the variables z1, . . . , zk so that zj appears with exponent
j − 1 in the sum over τ . This redefines the permutations inside the sum over σ and changes
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the sign by canceling the sgn(τ). We can do the same over ρ. We are left with k!`! copies of
the sum over the permutations σ, and then

g0
k,` =

(−1)(k+`)(k+`−1)/2+k`

2k`(2πi)k+`

∮
· · ·
∮
e
∑k
h=1 zh−

∑`
m=1 zk+m

×

(∑
σ

sgn(σ)z
−(k+`−σ(0))
1 z

−(k+`−σ(1)−1)
2 · · · z−(k+`−σ(k−1)−(k−1))

k

z
−(k+`−σ(k))
k+1 z

−(k+`−σ(k+1)−1)
k+2 · · · z−(k+`−σ(k+`−1)−(`−1))

k+`

)
dz1 · · · dzk+`.

Instead of computing g0
k,`, we will consider a more general integral. This will help us

compute the coefficient of xk`−1 later.

Lemma 5.2. Let

gk,`(u, v) :=
(−1)(k+`)(k+`−1)/2+k`

2k`(2πi)k+`

∮
· · ·
∮
eu

∑k
h=1 zh−v

∑`
m=1 zk+m

×

(∑
σ

sgn(σ)z
−(k+`−σ(0))
1 z

−(k+`−σ(1)−1)
2 · · · z−(k+`−σ(k−1)−(k−1))

k

z
−(k+`−σ(k))
k+1 z

−(k+`−σ(k+1)−1)
k+2 · · · z−(k+`−σ(k+`−1)−(`−1))

k+`

)
dz1 · · · dzk+`.

Then we have

gk,`(u, v) =

∏k−1
h=0 h!

∏`−1
h=0 h!∏k+`−1

h=0 h!

(
u+ v

2

)k`
.

We remark that g0
k,` = gk,`(1, 1).

Proof. Since

1

Γ(z)
=

1

2πi

∫
C

(−t)−ze−t(−dt),

where the path of integration C starts at +∞ on the real axis, circles the origin in the
counterclockwise direction, and returns to the starting point, the integral defining gk,`(u, v)
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can be rewritten as

gk,`(u, v) =
(−1)(k+`)(k+`−1)/2

2k`

∑
σ

sign(σ)uk+`−σ(0)−1uk+`−σ(1)−2 · · ·uk+`−σ(k−1)−k

× vk+`−σ(k)−1vk+`−σ(k+1)−2 · · · vk+`−σ(k+`−1)−`

×
(

Γ(k + `− σ(0)) Γ(k + `− σ(1)− 1) · · ·Γ(k + `− σ(k − 1)− (k − 1))

× (−1)σ(k)Γ(k + `− σ(k)) (−1)σ(k+1)+1Γ(k + `− σ(k + 1)− 1) · · ·

× (−1)σ(k+`−1)+`−1Γ(k + `− σ(k + `− 1)− (`− 1))
)−1

=
(−1)(k+`)(k+`−1)/2

2k`

×

∣∣∣∣∣∣∣∣∣∣

u`+k−1

Γ(`+k)
u`+k−2

Γ(`+k−1)
· · · u`

Γ(`+1)
vk+`−1

Γ(k+`)
−vk+`−2

Γ(k+`−1)
· · · (−1)`−1vk

Γ(k+1)
u`+k−2

Γ(`+k−1)
u`+k−3

Γ(`+k−2)
· · · u`−1

Γ(`)
−vk+`−2

Γ(k+`−1)
vk+`−3

Γ(k+`−2)
· · · (−1)`vk−1

Γ(k)
...

...
. . .

...
...

...
. . .

...
u0

Γ(1)
u−1

Γ(0)
· · · u1−k

Γ(2−k)
(−1)k+`−1v0

Γ(1)
(−1)k+`v−1

Γ(0)
· · · (−1)k+2`−2v1−`

Γ(2−`)

∣∣∣∣∣∣∣∣∣∣
.

Notice that 1
Γ(−k)

= 0 for k = 0, 1, . . . . We proceed by multiplying the first row by

(`+ k − 1)!, the second row by (`+ k − 2)! and so on. We divide the first column by 0!, the
second column by 1!, up to the k column by (k− 1)!, then the k+ 1 column by 0!, the k+ 2
column by 1! until the k + ` column by (`− 1)!. We get

gk,`(u, v) =
(−1)(k+`)(k+`−1)/2

2k`

∏k−1
h=0 h!

∏`−1
h=0 h!∏k+`−1

h=0 h!
×

×

∣∣∣∣∣∣∣∣∣

(
k+`−1

0

)
uk+`−1 · · ·

(
k+`−1
k−1

)
u`

(
k+`−1

0

)
vk+`−1 −

(
k+`−1

1

)
vk+`−2 · · · (−1)`−1

(
k+`−1
`−1

)
vk(

k+`−2
0

)
uk+`−2 · · ·

(
k+`−2
k−1

)
u`−1 −

(
k+`−2

0

)
vk+`−2

(
k+`−2

1

)
vk+`−3 · · · (−1)`

(
k+`−2
`−1

)
vk−1

...
. . .

...
...

...
. . .

...(
0
0

)
u0 · · ·

(
0

k−1

)
u1−k (−1)k+`−1

(
0
0

)
v0 (−1)k+`

(
0
1

)
v−1 · · · (−1)k+2`−2

(
0
`−1

)
v1−`

∣∣∣∣∣∣∣∣∣ .
Notice that the terms of the form

(
a
b

)
with a < b are equal to zero.

We reverse the order of the rows. We also multiply the columns k + 1, k + 2, . . . , k + ` by
(−1)k+`−1. We get

(32) gk,`(u, v) =
(−1)(k+`)(k+`−1)/2

2k`

∏k−1
h=0 h!

∏`−1
h=0 h!∏k+`−1

h=0 h!
(−1)(k+`)(k+`−1)/2(−1)(k+`−1)`×

∣∣∣∣∣∣∣∣∣

(
0
0

)
u0 · · ·

(
0

k−1

)
u1−k (

0
0

)
v0 −

(
0
1

)
v−1 · · · (−1)`−1

(
0
`−1

)
v1−`

...
. . .

...
...

...
. . .

...(
k+`−2

0

)
uk+`−2 · · ·

(
k+`−2
k−1

)
u`−1 (−1)k+`−2

(
k+`−2

0

)
vk+`−2 (−1)k+`−1

(
k+`−2

1

)
vk+`−3 · · · (−1)k+2`−3

(
k+`−2
`−1

)
vk−1(

k+`−1
0

)
uk+`−1 · · ·

(
k+`−1
k−1

)
u` (−1)k+`−1

(
k+`−1

0

)
vk+`−1 (−1)k+`

(
k+`−1

1

)
vk+`−2 · · · (−1)k+2`−2

(
k+`−1
`−1

)
vk

∣∣∣∣∣∣∣∣∣ .
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Now, the first k columns of the above matrix are the same as the first k columns of

M(u) =


(

0
0

)
u0

(
0
1

)
u−1 · · ·

(
0

k+`−1

)
u1−k−`

...
...

. . .
...(

k+`−1
0

)
uk+`−1

(
k+`−1

1

)
uk+`−2 · · ·

(
k+`−1
k+`−1

)
u0

 ,

which is a lower triangular matrix of determinant 1. Its inverse is N(u), where

N(v) =


(

0
0

)
v0 −

(
0
1

)
v−1 · · · (−1)k+`−1

(
0

k+`−1

)
v1−k−`

−
(

1
0

)
v1

(
1
1

)
v0 · · · (−1)k+`

(
1

k+`−1

)
v1−k`

...
...

. . .
...

(−1)k+`−1
(
k+`−1

0

)
vk+`−1 (−1)k+`

(
k+`−1

1

)
vk+`−2 · · ·

(
k+`−1
k+`−1

)
v0

 .

The columns k + 1, . . . , k + ` in (32) are the same as the first ` columns of the above
matrix.

We multiply (32) by detM(v) and this does not change its value. Thus,

gk,`(u, v) =
(−1)k`

2k`

∏k−1
h=0 h!

∏`−1
h=0 h!∏k+`−1

h=0 h!

×

∣∣∣∣∣∣∣
(

0
0

)
v0

(
0
1

)
v−1 · · ·

(
0

k+`−1

)
v1−k−`

...
...

. . .
...(

k+`−1
0

)
vk+`−1

(
k+`−1

1

)
vk+`−2 · · ·

(
k+`−1
k+`−1

)
v0

∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣

(
0
0

)
u0 · · ·

(
0

k−1

)
u1−k (

0
0

)
v0 · · · (−1)`−1

(
0
`−1

)
v1−`

...
. . .

...
...

. . .
...(

k+`−2
0

)
uk+`−2 · · ·

(
k+`−2
k−1

)
u`−1 (−1)k+`−2

(
k+`−2

0

)
vk+`−2 · · · (−1)k+2`−3

(
k+`−2
`−1

)
vk−1(

k+`−1
0

)
uk+`−1 · · ·

(
k+`−1
k−1

)
u` (−1)k+`−1

(
k+`−1

0

)
vk+`−1 · · · (−1)k+2`−2

(
k+`−1
`−1

)
vk

∣∣∣∣∣∣∣∣∣
=

(−1)k`

2k`

∏k−1
h=0 h!

∏`−1
h=0 h!∏k+`−1

h=0 h!

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(u+ v)0
(

0
0

)
(u+ v)−1

(
0
1

)
· · · (u+ v)1−k( 0

k−1

)
1 0 · · · 0

(u+ v)1
(

1
0

)
(u+ v)0

(
1
1

)
· · · (u+ v)2−k( 1

k−1

)
0 1 · · · 0

...
...

. . .
...

...
...

. . .
...

(u+ v)`−1
(
`−1

0

)
(u+ v)`−2

(
`−1

1

)
· · · (u+ v)`−k

(
`−1
k−1

)
0 0 · · · 1

(u+ v)`
(
`
0

)
(u+ v)`−1

(
`
1

)
· · · (u+ v)`+1−k( `

k−1

)
0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

(u+ v)k+`−1
(
k+`−1

0

)
(u+ v)k+`−2

(
k+`−1

1

)
· · · (u+ v)`

(
k+`−1
k−1

)
0 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

20



Computing the determinant by blocks,

gk,`(u, v) =
(−1)k`

2k`

∏k−1
h=0 h!

∏`−1
h=0 h!∏k+`−1

h=0 h!

× (−1)k`

∣∣∣∣∣∣∣
(u+ v)`

(
`
0

)
(u+ v)`−1

(
`
1

)
· · · (u+ v)`+1−k( `

k−1

)
...

...
. . .

...

(u+ v)k+`−1
(
k+`−1

0

)
(u+ v)k+`−2

(
k+`−1

1

)
· · · (u+ v)`

(
k+`−1
k−1

)
∣∣∣∣∣∣∣ .

Reversing the order of the rows,

gk,`(u, v) =
1

2k`

∏k−1
h=0 h!

∏`−1
h=0 h!∏k+`−1

h=0 h!

× (−1)k(k−1)/2

∣∣∣∣∣∣∣
(u+ v)k+`−1

(
k+`−1

0

)
(u+ v)k+`−2

(
k+`−1

1

)
· · · (u+ v)`

(
k+`−1
k−1

)
...

...
. . .

...

(u+ v)`
(
`
0

)
(u+ v)`−1

(
`
1

)
· · · (u+ v)`+1−k( `

k−1

)
∣∣∣∣∣∣∣ .

Extracting the powers of (u+ v),

gk,`(u, v) =
1

2k`

∏k−1
h=0 h!

∏`−1
h=0 h!∏k+`−1

h=0 h!

× (−1)k(k−1)/2(u+ v)k`

∣∣∣∣∣∣∣
(
k+`−1

0

) (
k+`−1

1

)
· · ·

(
k+`−1
k−1

)
...

...
. . .

...(
`
0

) (
`
1

)
· · ·

(
`

k−1

)
∣∣∣∣∣∣∣ .

Now the matrix can be decomposed as
(
k+`−1

0

) (
k+`−1

1

)
· · ·

(
k+`−1
k−1

)
...

...
. . .

...(
`
0

) (
`
1

)
· · ·

(
`

k−1

)


=


(
k−1

0

) (
k−1

1

)
· · ·

(
k−1
k−1

)(
k−2

0

) (
k−2

1

)
· · ·

(
k−2
k−1

)
...

...
. . .

...(
0
0

) (
0
1

)
· · ·

(
0

k−1

)
×


(
`
0

) (
`
1

)
· · ·

(
`

k−1

)(
`
−1

) (
`
0

)
· · ·

(
`

k−2

)
...

...
. . .

...(
`

1−k

) (
`

2−k

)
· · ·

(
`
0

)
 .

The first matrix on the right-hand side is left upper triangular, with determinant (−1)k(k−1)/2.
The second matrix on the right-hand side is right upper triangular with determinant 1. Thus
we have

gk,`(u, v) =

∏k−1
h=0 h!

∏`−1
h=0 h!∏k+`−1

h=0 h!

(
u+ v

2

)k`
.

�

For the main coefficient, applying Lemma 5.1 (a), we set u = v = 1 and therefore

g0
k,` =

∏k−1
h=0 h!

∏`−1
h=0 h!∏k+`−1

h=0 h!
.

21



If we normalize this coefficient by multiplying by (k`)! so that it becomes an integer, we
recover gk,` from (1)

gk,` = (k`)!g0
k,`.

For the coefficient of xk`−1, Lemma 5.1 (b) implies that this coefficient equals

g1
k,`F (0, . . . , 0) +

k∑
j=1

g1,1
k,`,j

∂F

∂zj
(0, . . . , 0)−

∑̀
m=1

g1,2
k,`,k+m

∂F

∂zm
(0, . . . , 0).

By Lemma 5.1 (b), we have

g1
k,` :=

2γ(−1)(k+`)(k+`−1)/2+k`

2k`k!`!(2πi)k+`

∮
· · ·
∮
e
∑k
h=1 zh−

∑`
m=1 zk+m

(
`

k∑
h=1

zh − k
∑̀
m=1

zk+m

)

× ∆(z1, . . . , zk+`)∆(z1, . . . , zk)∆(zk+1, . . . , zk+`)

(z1 · · · zk+`)k+`
dz1 . . . dzk+`

=2γ`
∂gk,`
∂u

(1, 1) + 2γk
∂gk,`
∂v

(1, 1)

=γ

∏k−1
h=0 h!

∏`−1
h=0 h!∏k+`−1

h=0 h!
k`(k + `).

For the g1,1
k,`,j, g

1,2
k,`,k+m, since ∂F

∂z1
(0, . . . , 0) = · · · = ∂F

∂zk
(0, . . . , 0) and ∂F

∂zk+1
(0, . . . , 0) = · · · =

∂F
∂zk+`

(0, . . . , 0), it suffices to compute

k∑
j=1

g1,1
k,`,j =

2(−1)(k+`)(k+`−1)/2

2k`k!`!(2πi)k+`

∮
· · ·
∮
e
∑k
j=1 zj−

∑`
m=1 zk+m

(
k∑
j=1

zj

)

× ∆(z1, . . . , zk+`)∆(z1, . . . , zk)∆(zk+1, . . . , zk+`)

(z1 · · · zk+`)k+`
dz1 . . . dzk+`

=2
∂gk,`
∂u

(1, 1)

=

∏k−1
h=0 h!

∏`−1
h=0 h!∏k+`−1

h=0 h!
k`.

We remark that the factor of 2 in front of the integral comes from the fact that we have

F
(
z1
x/2
, . . . , zk+`

x/2

)
instead of F

(
z1
x
, . . . , zk+`

x

)
inside the integral and that yields a factor of 2

upon differentiation and application of Lemma 5.1 (b).
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Analogously,

∑̀
m=1

g1,2
k,`,k+m =

(−1)(k+`)(k+`−1)/2

k!`!(2πi)k+`

∮
· · ·
∮
e
∑k
j=1 zj−

∑`
m=1 zk+m

(
−
∑̀
m=1

zk+m

)

× ∆(z1, . . . , zk+`)∆(z1, . . . , zk)∆(zk+1, . . . , zk+`)

(z1 · · · zk+`)k+`
dz1 . . . dzk+`

=2
∂gk,`
∂v

(1, 1)

=

∏k−1
h=0 h!

∏`−1
h=0 h!∏k+`−1

h=0 h!
k`.

Putting everything together, and recalling from (28) that

F (α1, . . . , αk+`) =
k∏
j=1

X(1/2 + αj, E)−1/2
∏̀
j=1

X(1/2− αj+k, E)−1/2AE,k,`(α1, . . . , αk+`),

the contribution from the derivatives equals

2
∂gk,`
∂u

(1, 1)
∂F

∂zk
(0, . . . , 0)− 2

∂gk,`
∂v

(1, 1)
∂F

∂zk+`

(0, . . . , 0)

=2
∂gk,`
∂u

(1, 1)
∂AE,k,`
∂zk

(0, . . . , 0)− 2
∂gk,`
∂v

(1, 1)
∂AE,k,`
∂zk+`

(0, . . . , 0)

− AE,k,`(0, . . . , 0)

(
∂gk,`
∂u

(1, 1)X ′(1/2, E)− ∂gk,`
∂v

(1, 1)X ′(1/2, E)

)
=

∏k−1
h=0 h!

∏`−1
h=0 h!∏k+`−1

h=0 h!
k`

(
∂AE,k,`
∂zk

(0, . . . , 0)− ∂AE,k,`
∂zk+`

(0, . . . , 0)

)
+ AE,k,`(0, . . . , 0)

∏k−1
h=0 h!

∏`−1
h=0 h!∏k+`−1

h=0 h!
k`

(
−γ +

1

2
log

(
NE

4π2

))
,

where we have used Lemma 4.1 in order to evaluate X ′(1/2, E).
We have then proven (31).
We remark that in the symplectic and orthogonal cases it suffices to differentiate

gk(u) =

(
k(k + 1)

2

)
!
k∏

h=1

h!

(2h)!
u
k(k+1)

2 and gk(u) = 2k−1

(
k(k − 1)

2

)
!
k−1∏
h=1

h!

(2h)!
u
k(k−1)

2 .

respect to u and do an analogous treatment to the previous page in order to get the second
(and higher) geometric coefficients.

6. The case ` = 0

In the previous session, we assume that both k, ` > 0. Now we consider the case when
` = 0. This case is different because RE,k,0(1/2, α1, . . . , αk) does not have poles when the
shifts are zero.
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Indeed, we have for p - NE,

RE,k,0(1/2, α1, . . . , αk; p) = 1 + (1− δp)
∞∑
j=1

∑
e1+···+ek=3j

k∏
h=1

apeh

peh(1/2+αh)

and for p | NE,

RE,k,0(1/2, α1, . . . , αk; p) = 1 +
∞∑
j=1

∑
e1+···+ek=3j

k∏
h=1

apeh

peh(1/2+αh)
.

We then work with the expression

G(α1, . . . , αk) :=
k∏
j=1

X(1/2 + αj, E, d)−1/2RE,k,0(1/2, α1, . . . , αk),

and the conjecture from (30) is that

(33)
〈
Z(1/2, E, χ)k

〉(α)

D
=
〈
d
∑k
j=1 αjG(α1, . . . , αk)

〉
D
.

Now, we can take directly αi → 0 as G(0, . . . , 0) = AE,k,0(0, . . . , 0) is defined, and therefore,
we conjecture that as D →∞

(34)
〈
Z(1/2, E, χ)k

〉
D
∼ AE,k,0(0, . . . , 0).

7. The sum of the first two terms

We prove in this section the formulas for the coefficients ck` and ck`−1 in Conjecture 1.1.
In doing our computations, we write the formulas in such a way to allow the generalization
to k, ` 6∈ Z.

Combining equations (31) and (34) with Corollary 3.2, we have

〈Υk,`(2 log d)〉D =gk,`AE,k,`(0, . . . , 0)2k`
k∑̀
j=0

(−1)j logk`−j D

(k`− j)!

+ gk,`

(
γ(k + `− 2) + log

(
NE

4π2

))
AE,k,`(0, . . . , 0)2k`−1

k`−1∑
j=0

(−1)j logk`−1−j D

(k`− 1− j)!

+ gk,`

(
∂AE,k,`
∂zk

(0, . . . , 0)− ∂AE,k,`
∂zk+`

(0, . . . , 0)

)
2k`−1

k`−1∑
j=0

(−1)j logk`−1−j D

(k`− 1− j)!

+O
(
logk`−2D

)
,

where it is understood that the second term is not present if ` = 0.
24



By formula (29), the Euler factors of AE,k,`(z1, . . . , zk+`) can be rewritten using (25) and
(26) as

AE,k,`(z1, . . . , zk+`; p) =
k∏

h=1

∏̀
m=1

(
1− 1

p1+zh−zk+m

)
(1− γpδp)

×

(
γpδp

1− δp
+

1

3

(
k∏

h=1

Lp
(

1

p1/2+zh

) ∏̀
m=1

Lp
(

1

p1/2−zk+m

)

+
k∏

h=1

Lp
(

ξ3

p1/2+zh

) ∏̀
m=1

Lp
(

ξ2
3

p1/2−zk+m

)
+

k∏
h=1

Lp
(

ξ2
3

p1/2+zh

) ∏̀
m=1

Lp
(

ξ3

p1/2−zk+m

)))
,

where ξ3 is a primitive third root of unity,

δp =


2
p+2

p ≡ 1 (mod 3),

0 otherwise,
γp =

 1 p - NE,

0 p | NE,

and the Lp(u) are the Euler factors of the L-function, namely

Lp(u) =

 (1− apu+ u2)−1 p - NE,

(1− apu)−1 p | NE,

and ap is normalized as in (14).
In order to simplify the notation we collapse the first k variables and the second ` variables

into just two variables. This change of notation is crucial to extend the formulas for k, `
non-integral. Thus, we consider

AE,k,`(z1, z2; p) =

(
1− 1

p1+z1−z2

)k`
(1− γpδp)

(
γpδp

1− δp
+

1

3

(
Lp
(

1

p1/2+z1

)k
Lp
(

1

p1/2−z2

)`(35)

+Lp
(

ξ3

p1/2+z1

)k
Lp
(

ξ2
3

p1/2−z2

)`
+ Lp

(
ξ2

3

p1/2+z1

)k
Lp
(

ξ3

p1/2−z2

)`))
.

With this new convention, we obtain

〈Υk,`(2 log d)〉D =gk,`AE,k,`(0, 0)2k`
k∑̀
j=0

(−1)j logk`−j D

(k`− j)!

+ gk,`

(
γ(k + `− 2) + log

(
NE

4π2

))
AE,k,`(0, 0)2k`−1

k`−1∑
j=0

(−1)j logk`−1−j D

(k`− 1− j)!

+ gk,`

(
1

k

∂AE,k,`
∂z1

(0, 0)− 1

`

∂AE,k,`
∂z2

(0, 0)

)
2k`−1

k`−1∑
j=0

(−1)j logk`−1−j D

(k`− 1− j)!

+O
(
logk`−2D

)
.(36)

This gives Conjecture 1.1.
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Now we focus on extending this construction for k and ` real. Recall from equation (4) in
the introduction that Keating and Snaith [KS00] considered

(37)
G(k + 1)G(`+ 1)

G(k + `+ 1)
, for Re(k),Re(`),Re(k + `) > −1.

In our experiments with k, ` ∈ C and satisfying the conditions of [KS00], we have encoun-
tered an additional difficulty in the cases where the term

(38) L(1/2, E, χ)kL(1/2, E, χ)`

is not defined when L(1/2, E, χ) = 0. For example, this issue arises when k+ ` is a negative
real number or when either k or ` is purely imaginary. We have conducted numerical evalua-
tions excluding these terms (so that we divide by the number of χ such that L(1/2, E, χ) 6= 0),
and the model still matches the numerical results.

The above discussion, together with Remark 8.1, allow us to extend formula (36) in the
following way for k, ` ∈ C, Re(k),Re(`), and Re(k + `) > −1:

〈Υk,`(2 log d)〉D ∼
G(k + 1)G(`+ 1)

G(k + `+ 1)
AE,k,`(0, 0)

2k`

D
|Γ(k`+ 1,− logD)|

+
G(k + 1)G(`+ 1)

G(k + `+ 1)
k`

(
γ(k + `− 2) + log

(
NE

4π2

))
AE,k,`(0, 0)

2k`−1

D
|Γ(k`,− logD)|

+
G(k + 1)G(`+ 1)

G(k + `+ 1)
k`

(
1

k

∂AE,k,`
∂z1

(0, 0)− 1

`

∂AE,k,`
∂z2

(0, 0)

)
× 2k`−1

D
|Γ(k`,− logD)|.(39)

We remark that we have replaced the polynomial
〈
logh d

〉
D

by the incomplete Γ-function,
and this will be explained in Section 8.

If, in addition to the conditions k, ` ∈ C, Re(k),Re(`) >, and Re(k + `) > −1, we also
have k` 6∈ Z<0, then we can extend gk,`

gk,` := Γ(k`+ 1)
G(k + 1)G(`+ 1)

G(k + `+ 1)
.

This allows us to write the previous formula as

〈Υk,`(2 log d)〉D ∼gk,`AE,k,`(0, 0)
2k`

D

|Γ(k`+ 1,− logD)|
Γ(k`+ 1)

+ gk,`

(
γ(k + `− 2) + log

(
NE

4π2

))
AE,k,`(0, 0)

2k`−1

D

|Γ(k`,− logD)|
Γ(k`)

+ gk,`

(
1

k

∂AE,k,`
∂z1

(0, 0)− 1

`

∂AE,k,`
∂z2

(0, 0)

)
2k`−1

D

|Γ(k`,− logD)|
Γ(k`)

.(40)

When k` ∈ Z<0, gk,` is not defined, but we can still evaluate (39). Thus, the condition
k` 6∈ Z<0 is inessential.

We close this section by computing the derivatives of AE,k,`(z1, z2) by logarithmic dif-
ferentiation. The derivatives will also be needed for numerical computations in the next
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section.
∂AE,k,`
∂z1

(0, 0)

AE,k,`(0, 0)
=
∑
p-NE

k` log p

p− 1
+ kp−1/2 log p

×
(2p−1/2 − ap)Lp

(
1

p1/2

)k+`+1

+ ξ3(2ξ3p
−1/2 − ap)Lp

(
ξ3
p1/2

)k+1

Lp
(

ξ23
p1/2

)`
+ ξ2

3(2ξ2
3p
−1/2 − ap)Lp

(
ξ23
p1/2

)k+1

Lp
(

ξ3
p1/2

)`
3δp

1−δp +

(
Lp
(

1
p1/2

)k+`

+ Lp
(

ξ3
p1/2

)k
Lp
(

ξ23
p1/2

)`
+ Lp

(
ξ23
p1/2

)k
Lp
(

ξ3
p1/2

)`)

+
∑
p|NE

k` log p

p− 1
− kapp−1/2 log p

(
Lp
(

1
p1/2

)k+`+1

+ ξ3Lp
(

ξ3
p1/2

)k+1

Lp
(

ξ23
p1/2

)`
+ ξ2

3Lp
(

ξ23
p1/2

)k+1

Lp
(

ξ3
p1/2

)`)
Lp
(

1
p1/2

)k+`

+ Lp
(

ξ3
p1/2

)k
Lp
(

ξ23
p1/2

)`
+ Lp

(
ξ23
p1/2

)k
Lp
(

ξ3
p1/2

)`
and
∂AE,k,`
∂z2

(0, 0)

AE,k,`(0, 0)
=
∑
p-NE

k` log p

1− p
− `p−1/2 log p

×
(2p−1/2 − ap)Lp

(
1

p1/2

)k+`+1

+ ξ3(2ξ3p
−1/2 − ap)Lp

(
ξ3
p1/2

)`+1

Lp
(

ξ23
p1/2

)k
+ ξ2

3(2ξ2
3p
−1/2 − ap)Lp

(
ξ23
p1/2

)`+1

Lp
(

ξ3
p1/2

)k
3δp

1−δp +

(
Lp
(

1
p1/2

)k+`

+ Lp
(

ξ3
p1/2

)k
Lp
(

ξ23
p1/2

)`
+ Lp

(
ξ23
p1/2

)k
Lp
(

ξ3
p1/2

)`)

+
∑
p|NE

k` log p

1− p
+ `app

−1/2 log p

(
Lp
(

1
p1/2

)k+`+1

+ ξ3Lp
(

ξ3
p1/2

)`+1

Lp
(

ξ23
p1/2

)k
+ ξ2

3Lp
(

ξ23
p1/2

)`+1

Lp
(

ξ3
p1/2

)k)
Lp
(

1
p1/2

)k+`

+ Lp
(

ξ3
p1/2

)k
Lp
(

ξ23
p1/2

)`
+ Lp

(
ξ23
p1/2

)k
Lp
(

ξ3
p1/2

)` .

8. Numerical experiments

In this section we conduct some experiments comparing numerical formulas for the k, `-
moment

〈
L(1/2, E, χ)kL(1/2, E, χ)`

〉
D

, with the approximation predicted by our model us-
ing equations (36) (when k, ` are nonnegative integers) and more generally (39) under the
conditions

(41) k, ` ∈ C,Re(k),Re(`), and Re(k + `) > −1.

We continue to use the convention that Re(k) ≥ Re(`).
The experiments are done for the elliptic curves 11a1 and 14a1 and for D = 3 · 106. The

amount of data that can be obtained for cubic twists is unfortunately limited compared
to the case of quadratic twists, where one can use powerful results of Waldspurger [Wal80]
and Kohnen–Zagier [KZ81] which relate the values of L(1/2, E, χ) to the Fourier coefficients
of a weight 3/2 modular form. For the case of cubic twists, one has to rely on using the
approximate functional equation to compute the value of L(1/2, E, χ).

To compute L(1/2, E, χd) for a primitive quadratic Dirichlet character χd, where d is a
fundamental discriminant, Mao, Rodriguez-Villegas, and Tornaŕıa [MRVT07] used general-
ized theta series associated to positive definite ternary quadratic forms. With their method,
the computational complexity to compute the values L(1/2, E, χd) for |d| ≤ D is O(D3/2).
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To compute L(1/2, E, χ) for a primitive cubic Dirichlet character of conductor d, we use
the approximate functional equation to write the critical L-value as

(42) L(1/2, E, χ) =
2π

d
√
NE

∞∑
n=1

(χ(n) + ε(E,χ)χ(n))
an
n

exp

(
− 2πn

d
√
NE

)
.

To obtain L(1/2, E, χ) with a desired precision, we need to take roughly O(d) terms in the
sum of (42). Thus, with this method, the computational complexity to compute the values
L(1/2, E, χ) for χ ∈ FE(D) is O(D2).

The numerical values of L(1/2, E, χ) for 11a1 and 14a1 for 2 · 106 ≤ D ≤ 3 · 106 were
obtained by using 40 threads in the cluster of the Centre de Recherches Mathématiques
(CRM) for a couple of months. The codes to evaluate L(1/2, E, χ) were created by using
Cython built in SageMath [The12]. Moreover, those L-values up to D = 2 · 106 were already
computed by Jack Fearnley for the paper [DFK04], and we used his L-values. At least 9
decimal place accuracy is maintained in the numerical moments.

Finally, when doing numerical tests for a case when k + ` < 0 or when there is a purely
imaginary exponent involved, we use the nonvanishing subfamily F ′E(D) instead of FE(D)
defined as

F ′E(D) := {χ ∈ FE(D) | L(1/2, E, χ) 6= 0}
on computing

〈
L(1/2, E, χ)kL(1/2, E, χ)`

〉
D

. For D = 3 ·106, we have the following numbers
of twists for FE(D) and F ′E(D):

E #FE(D) #F ′E(D)

11a1 778150 775686

14a1 605256 597822

Table 0. #FE(D) and #F ′E(D) for 11a1 and 14a1 for D = 3 · 106.

Regarding equation (36), we recall that k, ` are nonnegative integers and if ` = 0, then
only the first term is considered. We also evaluate moments in cases where k, ` are not
integers but still satisfy conditions (41). For this, we evaluate equation (39). The poly-

nomial (k`)!
∑k`

j=0
(−1)j logk`−j D

(k`−j)! is replaced by the incomplete Gamma function which is well

implemented in standard mathematical software. The incomplete Gamma function is defined
by

Γ(a, z) =

∫ ∞
z

th−1e−tdt.

Γ(a, z) satisfies for a ∈ C and n fixed

Γ(a, z) = za−1e−z

(
n−1∑
k=0

a(a− 1) · · · (a− k + 1)

zk
+Oa(z

−n)

)
, as z →∞, | arg z| < 3π

2
.

Moreover, the formula is exact for a ∈ Z>0 (see formulas 6.5.32 and 6.5.13 in [AS64]). By
setting a = h+ 1 and z = − logD above and combining with Corollary 3.2, we conclude the
following.

Remark 8.1. For h ∈ R, 〈
logh d

〉
D
∼ 1

D
|Γ(h+ 1,− logD)|.
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8.1. Results for k, ` nonnegative integers. We have computed the moments for (k, `) =
(1, 0), (2, 0), (1, 1), and (2, 1). In the cases of (k, `) = (1, 0), (2, 0) our conjecture predicts that
Pk`(x) is a constant. When (k, `) = (1, 1), a polynomial of degree 1 is predicted, and for the
case of (k, `) = (2, 1), we expect a polynomial of degree 2. Since we have only considered
the first two coefficients, our computation of Pk`(x) is missing the constant coefficient for
(2, 1). Nevertheless, the approximation is still good. Our results are recorded in Tables 1
and 2. We present two ways of predicting the moment. The first one, indicated as “logk`”,
is calculated with

gk,`AE,k,`(0, 0)2k`
logk`D

(k`)!
,

while the one denoted by “logk` + logk`−1” is calculated from equation (36). Of course, when
k` = 0, the conjecture simply predicts the constant ak`. The column “moment” indicates the
numerical moment. The column “quotient” indicates the quotient between the numerical
moment and the one predicted in column “logk` + logk`−1”. We see in general that using two
terms is a better approximation than simply using the main term.

In Figures 1 and 2, the quotient is plotted as a function of all values of D up to 3 · 106

sampled at intervals of size 104. Note that the outliers (which all lie in D ≤ 5 · 105) are
removed in those figures. We see that the convergence is relatively slow compared to the
usual cases involving quadratic twists.

(k, `) gk,`
11a1

ak` logk` logk` + logk`−1 moment quotient

(1, 0) 1 0.9369 0.9369 0.9369 0.9410 1.0044

(2, 0) 1 −1.9659 −1.9659 −1.9659 −1.9648 0.9994

(1, 1) 1 1.6516 24.632 24.015 24.100 1.0035

(2, 1) 1 0.8744 97.372 111.96 111.97 1.0001

Table 1. Integral moments for 11a1 with D = 3 · 106.
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Figure 1. Convergence of integral moments for 11a1 with D ≤ 3 · 106.

(k, `) gk,`
14a1

ak` logk` logk` + logk`−1 moment quotient

(1, 0) 1 1.0394 1.0394 1.0394 1.0369 0.9976

(2, 0) 1 0.6467 0.6467 0.6467 0.6247 0.9660

(1, 1) 1 0.8899 13.277 13.188 13.240 1.0039

(2, 1) 1 0.4987 55.540 65.580 65.344 0.9964

Table 2. Integral moments for 14a1 with D = 3 · 106.
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Figure 2. Convergence of integral moments for 14a1 with D ≤ 3 · 106

8.2. Results for other real values of k, `. The numerical evaluation of non-integral mo-
ments presents some computational challenges due to having to specify a choice for the
branch of the logarithm. For the moments of the Riemann zeta function, log ζ(1/2 + it)
and then arg ζ(1/2 + it) are defined by continuous variation of the imaginary part t, and
similarly in the work of Keating and Snaith for the moments of Z(U, θ) where argZ(U, θ)
is defined by continuous variation of θ, and (6) indicates a clear choice for the arguments
defining the moments. In our case, we are dealing with moments of a discrete family (there
is no continuous variation of the conductor). When doing numerical testing, the value of
L(1/2, E, χ)kL(1/2, E, χ)` is obtained with the principal branch of the logarithm, i.e. with
argument in (−π, π]. Furthermore, the conjectural prediction for the moments involves the
Euler product (35), where the numerical computations are performed at the level of each
factor. We then have to restrict our computations to cases where both computations lead
the same results.

To see the influence of both L(1/2, E, χ)kL(1/2, E, χ)` and the Euler product, let L = L1e
iδ

be a nonzero complex number with L1 = |L| and −π ≤ δ < π such that L = AB. Similarly
write A = A1e

iα and B = B1e
iα with A1 = |A|, B1 = |B| and −π ≤ α, β < π. On the one

hand, equation (6) indicates that we should consider

(43) LkL
`

= Lk+`ei(k−`)δ = Lk+`ei[(k−`)δ][−π,π) ,

where [x][−π,π) indicates the representative of x in the interval [−π, π), namely, the unique
x+ 2πn ∈ [−π, π) for n ∈ Z.

On the other hand,

(44) (AkA
`
)(BkB

`
) = (AB)k+`ei[(k−`)α][−π,π)ei[(k−`)β][−π,π) .
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However, we have that

[(k − `)δ][−π,π) = [(k − `)[α + β][−π,π)][−π,π) and [(k − `)α][−π,π) + [(k − `)β][−π,π)

do not always have the same representative in [−π, π) when k, ` are not integers.
The conjecture requires that all the computations be performed as in equation (43), but the

numerical computations of the product L(1/2, E, χ)kL(1/2, E, χ)` and of the Euler product
(35) are performed at the level of each factor, resulting in computations as in equation (44).

A way to avoid this issue is to explore cases of (k, `) where both computations yield the
same result when performed by standard software. This could happen in cases in which
(43) and (44) yield always the same result (such as k = `, k = ` + 1), or in cases in which
the discrepancy is very small and there is a clear default in how the software computes the
arguments because the factors in the Euler product are close to 1 (for example, when ` = 0
with k small, or k + ` = 0, k + ` = 1 with |`| small).

We have computed the moments for k, ` real nonnegative for (k, `) = (1/n, 0) for n =
2, . . . , 10. As before, in this case the model predicts a constant polynomial. Our results are
recorded in Tables 3 and 4. The last column of each table, denoted by “quotient”, indicates
the quotient of the numerical value for the moment and the prediction ak,`.

Figures 3 and 4 illustrate the convergence for the values (1/n, 0). The values seem to be
quite regular and stable. However, we notice that they do not seem to approach 1 as n goes
to infinity, specially in the case of 14a1. We speculate that this is due to insufficient data,
namely, that our D is too small.

(k, `)
11a1

ak` moment quotient

(1/2, 0) 1.0924352 1.1064131 1.012795

(1/3, 0) 1.0736431 1.0809212 1.006779

(1/4, 0) 1.0579795 1.0619068 1.003712

(1/5, 0) 1.0472890 1.0493806 1.001997

(1/6, 0) 1.0397736 1.0407432 1.000932

(1/7, 0) 1.0342601 1.0344846 1.000217

(1/8, 0) 1.0300620 1.0297604 0.999707

(1/9, 0) 1.0267666 1.0260758 0.999327

(1/10, 0) 1.0241146 1.0231252 0.999034

Table 3. Rational moments with a positive and a zero parameter for 11a1
with D = 3 · 106.
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Figure 3. Rational moments with a positive and a zero parameter for 11a1
with D ≤ 3 · 106.

(k, `)
14a1

ak` moment quotient

(1/2, 0) 1.0450753 1.0499353 1.0046504

(1/3, 0) 1.0323368 1.0333675 1.0009984

(1/4, 0) 1.0246570 1.0230284 0.9984105

(1/5, 0) 1.0198069 1.0163783 0.9966380

(1/6, 0) 1.0165123 1.0118002 0.9953645

(1/7, 0) 1.0141414 1.0084705 0.9944081

(1/8, 0) 1.0123583 1.0059443 0.9936643

(1/9, 0) 1.0109705 1.0039639 0.9930694

(1/10, 0) 1.0098607 1.0023704 0.9925828

Table 4. Rational moments with a positive and a zero parameter for 14a1
with D = 3 · 106.
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Figure 4. Rational moments with a positive and a zero parameter for 14a1
with D ≤ 3 · 106.

We have also computed the moments of the form (1/n, 1/n) for n = 2, . . . , 10, as well as
(3/2, 3/2). As discussed earlier, these moments correspond to powers of the absolute value
|L(1/2, E, χ)|. The results are recorded in Tables 5 and 6. As before, the column “logk`”
denotes

gk,`AE,k,`(0, 0)2k`
logk`D

Γ(k`+ 1)
,

while the column “logk` + logk`−1” is calculated from equation (40). Again, using the first
two terms (together with the incomplete Gamma function) is a better approximation than
simply using the first term.

Figures 5 and 6 illustrate the convergence. In these graphs and all the subsequent figures in
the article, the quotient has been computed using the first coefficient, namely, the value from
the column “logk`”. This is a slightly less good approximation than using the computation
of column “logk` + logk`−1”, but it is sufficient to see the convergence towards the value
D = 3 · 106 indicated in the corresponding tables. We see that the data seems to approach
1, and that the data is still very unstable for the moment (3/2, 3/2).
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(k, `) gk,`
11a1

ak` logk` logk` + logk`−1 moment quotient

(3/2, 3/2) 1.1444 1.3693 268.69 313.98 317.49 1.0112

(1/2, 1/2) 1.0362 1.3685 3.0748 2.9792 2.9852 1.0020

(1/3, 1/3) 1.0341 1.2266 1.8086 1.7778 1.7787 1.0005

(1/4, 1/4) 1.0264 1.1596 1.4567 1.4415 1.4415 1.0000

(1/5, 1/5) 1.0203 1.1222 1.3038 1.2947 1.2943 0.9997

(1/6, 1/6) 1.0158 1.0985 1.2216 1.2156 1.2149 0.9994

(1/7, 1/7) 1.0126 1.0823 1.1715 1.1671 1.1664 0.9994

(1/8, 1/8) 1.0103 1.0706 1.1383 1.1350 1.1341 0.9992

(1/9, 1/9) 1.0085 1.0618 1.1149 1.1124 1.1113 0.9990

(1/10, 1/10) 1.0071 1.0549 1.0978 1.0957 1.0945 0.9990

Table 5. Positive moments of |L(1/2, E, χ)| for 11a1 with D = 3 · 106.

Figure 5. Positive moments of |L(1/2, E, χ)| for 11a1 with D ≤ 3 · 106.
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(k, `) gk,`
14a1

ak` logk` logk` + logk`−1 moment quotient

(3/2, 3/2) 1.1444 0.5207 102.19 122.76 124.97 1.0180

(1/2, 1/2) 1.0362 1.0526 2.3650 2.3046 2.3116 1.0028

(1/3, 1/3) 1.0341 1.0504 1.5487 1.5262 1.5274 1.0008

(1/4, 1/4) 1.0264 1.0419 1.3087 1.2969 1.2962 0.9994

(1/5, 1/5) 1.0203 1.0351 1.2026 1.1953 1.1934 0.9984

(1/6, 1/6) 1.0158 1.0300 1.1454 1.1404 1.1375 0.9975

(1/7, 1/7) 1.0126 1.0261 1.1106 1.1070 1.1034 0.9967

(1/8, 1/8) 1.0103 1.0230 1.0877 1.0849 1.0807 0.9961

(1/9, 1/9) 1.0085 1.0206 1.0717 1.0696 1.0648 0.9955

(1/10, 1/10) 1.0071 1.0187 1.0601 1.0583 1.0530 0.9950

Table 6. Positive moments of |L(1/2, E, χ)| for 14a1 with D = 3 · 106.

Figure 6. Positive moments of |L(1/2, E, χ)| for 14a1 with d ≤ 3 · 1066.

We have similarly computed the moments of the form (1 + 1/n, 1/n) for n = 1, . . . , 10.
These moments correspond to powers of |L(1/2, E, χ)| combined with powers of L(1/2, E, χ).
The results are recorded in Tables 7 and 8.

Figures 7 and 8 illustrate the convergence. We see that the data is quite unstable, but it
still could approach 1 with some delay.
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(k, `) gk,`
11a1

ak` logk` logk` + logk`−1 moment quotient

(3/2, 1/2) 0.9312 1.0634 8.1802 8.0262 8.0627 1.0045

(4/3, 1/3) 0.9568 1.0444 3.7503 3.6524 3.6745 1.0061

(5/4, 1/4) 0.9719 1.0234 2.5839 2.5233 2.5385 1.0060

(6/5, 1/5) 0.9804 1.0081 2.0810 2.0387 2.0506 1.0058

(7/6, 1/6) 0.9857 0.9970 1.8074 1.7754 1.7854 1.0057

(8/7, 1/7) 0.9891 0.9888 1.6371 1.6116 1.6205 1.0055

(9/8, 1/8) 0.9914 0.9825 1.5216 1.5005 1.5085 1.0054

(10/9, 1/9) 0.9931 0.9776 1.4383 1.4203 1.4278 1.0053

(11/10, 1/10) 0.9943 0.9736 1.3755 1.3599 1.3669 1.0052

Table 7. Positive moments of the form L(1/2, E, χ)|L(1/2, E, χ)|` for 11a1
with D = 3 · 106.

Figure 7. Positive moments of the form L(1/2, E, χ)|L(1/2, E, χ)|` for 11a1
with D ≤ 3 · 106.
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(k, `) gk,`
14a1

ak` logk` logk` + logk`−1 moment quotient

(3/2, 1/2) 0.9312 0.8596 6.6120 6.5848 6.5569 0.99576

(4/3, 1/3) 0.9568 0.9465 3.3987 3.3410 3.3340 0.99790

(5/4, 1/4) 0.9719 0.9800 2.4743 2.4322 2.4281 0.99830

(6/5, 1/5) 0.9804 0.9967 2.0575 2.0259 2.0224 0.99829

(7/6, 1/6) 0.9857 1.0064 1.8244 1.7994 1.7963 0.99828

(8/7, 1/7) 0.9891 1.0127 1.6767 1.6562 1.6532 0.99820

(9/8, 1/8) 0.9914 1.0171 1.5751 1.5578 1.5549 0.99813

(10/9, 1/9) 0.9931 1.0203 1.5011 1.4861 1.4833 0.99813

(11/10, 1/10) 0.9943 1.0227 1.4449 1.4317 1.4290 0.99808

Table 8. Positive moments of the form L(1/2, E, χ)|L(1/2, E, χ)|` for 14a1
with D = 3 · 106.

Figure 8. Positive moments of the form L(1/2, E, χ)|L(1/2, E, χ)|` for 14a1
with D ≤ 3 · 106.

In addition we have considered several fractional exponents satisfying k > 0 > `. This
was done by removing the terms L(1/2, E, χ) = 0. As explained after equation (38), this
was not an issue if we chose k + ` ≥ 0 and those terms could be safely ignored. The (k, `)
were again chosen in such a way that equations (43) and (44) yield the same numbers. We
obtained good matches for large n, as illustrated in Tables 9 and 10, and Figures 9 and
10, corresponding to (1/n,−1/n), and 11 and 12 and Figures 11 and 12, corresponding to
(1 + 1/n,−1/n).
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(k, `) gk,`
11a1

ak` logk` logk` + logk`−1 moment quotient

(1/2,−1/2) 0.7904 0.8322 0.2732 0.2860 0.2871 1.0039

(1/3,−1/3) 0.8973 0.9316 0.5744 0.5870 0.6021 1.0258

(1/4,−1/4) 0.9402 0.9627 0.7349 0.7441 0.7565 1.0166

(1/5,−1/5) 0.9611 0.9765 0.8220 0.8286 0.8372 1.0104

(1/6,−1/6) 0.9728 0.9838 0.8731 0.8780 0.8837 1.0065

(1/7,−1/7) 0.9799 0.9882 0.9052 0.9090 0.9127 1.0041

(1/8,−1/8) 0.9845 0.9909 0.9267 0.9296 0.9319 1.0025

(1/9,−1/9) 0.9878 0.9929 0.9417 0.9440 0.9453 1.0014

(1/10,−1/10) 0.9900 0.9942 0.9525 0.9544 0.9549 1.0005

Table 9. Positive moments of L(1/2,E,χ)
L(1/2,E,χ)

for 11a1 with D = 3 · 106.

Figure 9. Positive moments of the form L(1/2,E,χ)
L(1/2,E,χ)

for 11a1 with D ≤ 3 · 106.
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(k, `) gk,`
14a1

ak` logk` logk` + logk`−1 moment quotient

(1/2,−1/2) 0.7904 1.0333 0.3391 0.3543 0.3549 1.0017

(1/3,−1/3) 0.8973 1.0159 0.6264 0.6389 0.6430 1.0065

(1/4,−1/4) 0.9402 1.0091 0.7704 0.7791 0.7793 1.0002

(1/5,−1/5) 0.9611 1.0059 0.8468 0.8529 0.8497 0.9963

(1/6,−1/6) 0.9728 1.0041 0.8911 0.8956 0.8901 0.9939

(1/7,−1/7) 0.9799 1.0030 0.9189 0.9223 0.9152 0.9923

(1/8,−1/8) 0.9845 1.0023 0.9373 0.9400 0.9318 0.9913

(1/9,−1/9) 0.9878 1.0018 0.9502 0.9523 0.9433 0.9906

(1/10,−1/10) 0.9900 1.0015 0.9594 0.9612 0.9516 0.9900

Table 10. Positive moments of L(1/2,E,χ)
L(1/2,E,χ)

for 14a1 with D = 3 · 106.

Figure 10. Positive moments of the form L(1/2,E,χ)
L(1/2,E,χ)

for 14a1 with D ≤ 3 · 106.
40



(k, `) gk,`
11a1

ak` logk` logk` + logk`−1 moment quotient

(3/2,−1/2) 2.0725 −1.2263 −0.0923 −0.1042 −0.1044 1.0019

(4/3,−1/3) 1.1901 −0.1717 −0.0384 −0.0430 −0.0866 2.0140

(5/4,−1/4) 1.0801 0.2071 0.0729 0.0740 0.0277 0.3743

(6/5,−1/5) 1.0440 0.3968 0.1786 0.1826 0.1417 0.7760

(7/6,−1/6) 1.0278 0.5095 0.2673 0.2728 0.2371 0.8691

(8/7,−1/7) 1.0192 0.5838 0.3400 0.3461 0.3153 0.9110

(9/8,−1/8) 1.0139 0.6364 0.3997 0.4060 0.3793 0.9342

(10/9,−1/9) 1.0106 0.6754 0.4492 0.4555 0.4321 0.9486

(11/10,−1/10) 1.0083 0.7056 0.4907 0.4969 0.4763 0.9585

Table 11. Positive moments of the form L(1/2, E, χ)
(
L(1/2,E,χ)
L(1/2,E,χ)

)`
for 11a1

with D = 3 · 106.

Figure 11. Positive moments of the form L(1/2, E, χ)
(
L(1/2,E,χ)
L(1/2,E,χ)

)`
for 11a1

with D ≤ 3 · 106.
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(k, `) gk,`
14a1

ak` logk` logk` + logk`−1 moment quotient

(3/2,−1/2) 2.0725 0.8750 0.0658 0.0705 0.0721 1.0231

(4/3,−1/3) 1.1901 0.9663 0.2161 0.2255 0.2074 0.9200

(5/4,−1/4) 1.0801 0.9951 0.3503 0.3612 0.3406 0.9430

(6/5,−1/5) 1.0440 1.0084 0.4539 0.4648 0.4454 0.9582

(7/6,−1/6) 1.0278 1.0157 0.5330 0.5433 0.5257 0.9676

(8/7,−1/7) 1.0192 1.0204 0.5943 0.6040 0.5881 0.9737

(9/8,−1/8) 1.0139 1.0235 0.6429 0.6520 0.6375 0.9778

(10/9,−1/9) 1.0106 1.0258 0.6823 0.6907 0.6774 0.9808

(11/10,−1/10) 1.0083 1.0275 0.7147 0.7226 0.7103 0.9830

Table 12. Positive moments of the form L(1/2, E, χ)
(
L(1/2,E,χ)
L(1/2,E,χ)

)`
for 14a1

with D = 3 · 106.

Figure 12. Positive moments of the form L(1/2, E, χ)
(
L(1/2,E,χ)
L(1/2,E,χ)

)`
for 14a1

with D ≤ 3 · 106.

Finally, we have also considered some cases within the conditions (41) with k ≥ 0 > ` and
k + ` < 0. These cases present difficulties as discussed after equation (38). For example,
we must divide by #F ′E(D) instead of #FE(D), since we must completely ignore the zero
terms.

The values we obtained are very stable. We list them in Tables 13 and 14 and Figures 13
and 14, where (0,−1/n) is considered, and Tables 15 and 16 and Figures 15 and 16, where
(−1/n,−1/n) is considered.
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(k, `)
11a1

ak` moment quotient

(0,−1/2) 0.9158795 0.8954299 0.9776721

(0,−1/3) 0.9320485 0.9261987 0.9937238

(0,−1/4) 0.9456153 0.9421381 0.9963229

(0,−1/5) 0.9551282 0.9524591 0.9972055

(0,−1/6) 0.9619489 0.9597014 0.9976636

(0,−1/7) 0.9670249 0.9650543 0.9979622

(0,−1/8) 0.9709315 0.9691658 0.9981814

(0,−1/9) 0.9740236 0.9724195 0.9983531

(0,−1/10) 0.9765285 0.9750568 0.9984929

Table 13. Rational moments with a negative and a zero parameter for 11a1
with D = 3 · 106.

Figure 13. Rational moments with a negative and a zero parameter for 11a1
with D ≤ 3 · 106.
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(k, `)
14a1, D = 3 · 106

ak` moment quotient

(0,−1/2) 0.96782787 0.90653233 0.9366669

(0,−1/3) 0.97368552 0.94499539 0.9705345

(0,−1/4) 0.97878866 0.96018439 0.9809926

(0,−1/5) 0.98241577 0.96863406 0.9859716

(0,−1/6) 0.98503776 0.97408115 0.9888770

(0,−1/7) 0.98700029 0.97790152 0.9907814

(0,−1/8) 0.98851726 0.98073453 0.9921269

(0,−1/9) 0.98972207 0.98292110 0.9931284

(0,−1/10) 0.99070076 0.98466066 0.9939032

Table 14. Rational moments with a negative and a zero parameter for 14a1
with D = 3 · 106.

Figure 14. Rational moments with a negative and a zero parameter for 14a1
with D ≤ 3 · 106.
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(k, `) gk,`
11a1

ak` logk` logk` + logk`−1 moment quotient

(−1/3,−1/3) 1.4284 0.9207 1.8752 1.8265 1.5295 0.8374

(−1/4,−1/4) 1.1553 0.9254 1.3082 1.2898 1.2121 0.9398

(−1/5,−1/5) 1.0805 0.9329 1.1479 1.1377 1.1015 0.9682

(−1/6,−1/6) 1.0492 0.9400 1.0796 1.0731 1.0514 0.9798

(−1/7,−1/7) 1.0331 0.9461 1.0447 1.0401 1.0251 0.9856

(−1/8,−1/8) 1.0238 0.9512 1.0248 1.0213 1.0102 0.9891

(−1/9,−1/9) 1.0179 0.9554 1.0126 1.0100 1.0011 0.9912

(−1/10,−1/10) 1.0139 0.9591 1.0048 1.0027 0.9954 0.9927

Table 15. Negative moments of |L(1/2, E, χ)| for 11a1 with D = 3 · 106.

Figure 15. Negative moments of |L(1/2, E, χ)| for 11a1 with D ≤ 3 · 106.

(k, `) gk,`
14a1

ak` logk` logk` + logk`−1 moment quotient

(−1/3,−1/3) 1.4284 0.9371 1.9085 1.8619 1.4466 0.7770

(−1/4,−1/4) 1.1553 0.9520 1.3459 1.3282 1.1954 0.9000

(−1/5,−1/5) 1.0805 0.9613 1.1827 1.1731 1.1031 0.9403

(−1/6,−1/6) 1.0492 0.9676 1.1113 1.1051 1.0596 0.9588

(−1/7,−1/7) 1.0331 0.9722 1.0735 1.0692 1.0360 0.9690

(−1/8,−1/8) 1.0238 0.9756 1.0511 1.0479 1.0221 0.9753

(−1/9,−1/9) 1.0179 0.9783 1.0368 1.0344 1.0133 0.9796

(−1/10,−1/10) 1.0139 0.9805 1.0272 1.0252 1.0075 0.9827

Table 16. Negative moments of |L(1/2, E, χ)| for 14a1 with D = 3 · 106.
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Figure 16. Negative moments of |L(1/2, E, χ)| for 14a1 with D ≤ 3 · 106.

8.3. Results for complex values of k, `. We consider several purely imaginary moments.
As in the case of k+ ` < 0, we must divide by #F ′E(D) instead of #FE(D) when computing
the numerical moment, since we have to completely ignore the zero terms.

The first family that we consider is (k, `) = (ni, 0), for n = 1, 2 as well as 1/n = 2, . . . , 10.
The results are listed in Tables 17 and 18 and Figures 17 and 18.

Then we consider (i/n,−i/n) and (i/n, i/n) for n = 1, . . . , 10. The results are listed in
Tables 19, 20, 21, and 22 and Figures 19, 20, 21, and 22. The case (i, i) satisfies that k` = −1
and therefore gi,i is not well-defined. We record the value of gi,i/Γ(0) in its place.

In all the tables, the word “quotient” indicates the absolute value of the quotient of the
numerical moment and the moment predicted by the conjecture. As before, in the figures,
the quotient is computed by using the first coefficient, namely, the value from the column
“logk`”. We see that these purely imaginary results are very stable.

(k, `)
11a1, D = 3 · 106

ak` moment quotient

(2i, 0) −0.1151 + 1.6647i −1.1425 + 0.8930i 0.8690

(i, 0) 0.9025 + 0.4665i 0.7676 + 0.4864i 0.8944

(i/2, 0) 0.9877 + 0.1507i 0.9688 + 0.1568i 0.9823

(i/3, 0) 0.9955 + 0.0893i 0.9891 + 0.0940i 0.9941

(i/4, 0) 0.9976 + 0.0639i 0.9945 + 0.0679i 0.9972

(i/5, 0) 0.9985 + 0.0500i 0.9967 + 0.0534i 0.9984

(i/6, 0) 0.9990 + 0.0412i 0.9978 + 0.0441i 0.9989

(i/7, 0) 0.9993 + 0.0350i 0.9984 + 0.0375i 0.9992

(i/8, 0) 0.9994 + 0.0305i 0.9988 + 0.0327i 0.9995

(i/9, 0) 0.9995 + 0.0270i 0.9991 + 0.0290i 0.9996

(i/10, 0) 0.9996 + 0.0242i 0.9992 + 0.0261i 0.9997
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Table 17. Complex moment with a zero parameter for 11a1 with D = 3 · 106.

Figure 17. Complex moment with a zero parameter for 11a1 with D ≤ 3 · 106.

(k, `)
14a1, D = 3 · 106

ak` moment quotient

(2i, 0) 0.6458 + 0.8093i 0.2451 + 0.8760i 0.8785

(i, 0) 0.9606 + 0.1743i 0.9286 + 0.2159i 0.9765

(i/2, 0) 0.9923 + 0.0579i 0.9982 + 0.0782i 1.0073

(i/3, 0) 0.9967 + 0.0350i 1.0010 + 0.0507i 1.0050

(i/4, 0) 0.9982 + 0.0253i 1.0010 + 0.0378i 1.0032

(i/5, 0) 0.9988 + 0.0199i 1.0008 + 0.0302i 1.0022

(i/6, 0) 0.9992 + 0.0164i 1.0006 + 0.0252i 1.0015

(i/7, 0) 0.9994 + 0.0140i 1.0004 + 0.0216i 1.0012

(i/8, 0) 0.9995 + 0.0122i 1.0003 + 0.0189i 1.0009

(i/9, 0) 0.9996 + 0.0108i 1.0003 + 0.0168i 1.0008

(i/10, 0) 0.9997 + 0.0097i 1.0002 + 0.0151i 1.0006

Table 18. Complex moment with a zero parameter for 14a1 with D = 3 · 106.
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Figure 18. Complex moment with a zero parameter for 14a1 with D ≤ 3 · 106.

(k, `) gk,`
11a1

ak` logk` logk` + logk`−1 moment quotient

(i,−i) 3.2540 1.2527 60.801 48.511 22.948 0.4730

(i/2,−i/2) 1.3008 1.1201 3.1593 2.9982 2.6168 0.8728

(i/3,−i/3) 1.1204 1.0589 1.6918 1.6537 1.5707 0.9498

(i/4,−i/4) 1.0654 1.0342 1.3484 1.3314 1.2962 0.9736

(i/5,−i/5) 1.0411 1.0222 1.2120 1.2022 1.1827 0.9838

(i/6,−i/6) 1.0283 1.0156 1.1432 1.1369 1.1243 0.9889

(i/7,−i/7) 1.0207 1.0115 1.1257 1.0990 1.0902 0.9920

(i/8,−i/8) 1.0158 1.0088 1.0784 1.0750 1.0685 0.9940

(i/9,−i/9) 1.0124 1.0070 1.0615 1.0589 1.0539 0.9952

(i/10,−i/10) 1.0100 1.0057 1.0495 1.0474 1.0435 0.9962

Table 19. Complex moments of L(1/2,E,χ)
L(1/2,E,χ)

for 11a1 with D = 3 · 106.
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Figure 19. Complex moments of L(1/2,E,χ)
L(1/2,E,χ)

for 11a1 with D ≤ 3 · 106.

(k, `) gk,`
14a1

ak` logk` logk` + logk`−1 moment quotient

(i,−i) 3.2540 0.8050 39.070 32.025 18.186 0.5679

(i/2,−i/2) 1.3008 0.9587 2.7038 2.5815 2.3578 0.9133

(i/3,−i/3) 1.1204 0.9825 1.5697 1.5381 1.4877 0.9673

(i/4,−i/4) 1.0654 0.9903 1.2911 1.2765 1.2548 0.9830

(i/5,−i/5) 1.0411 0.9939 1.1783 1.1698 1.1576 0.9896

(i/6,−i/6) 1.0283 0.9957 1.1209 1.1153 1.1074 0.9929

(i/7,−i/7) 1.0207 0.9969 1.0876 1.0836 1.0781 0.9949

(i/8,−i/8) 1.0158 0.9976 1.0664 1.0634 1.0593 0.9962

(i/9,−i/9) 1.0124 0.9981 1.0522 1.0498 1.0466 0.9970

(i/10,−i/10) 1.0100 0.9985 1.0421 1.0402 1.0377 0.9976

Table 20. Complex moments of L(1/2,E,χ)
L(1/2,E,χ)

for 14a1 with D = 3 · 106.
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Figure 20. Complex moments of L(1/2,E,χ)
L(1/2,E,χ)

for 14a1 with D ≤ 3 · 106.
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