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Mahler measure of multivariate polynomials

Definition 1 For P ∈ C[x±1
1 , . . . , x±1

n ], the (logarithmic) Mahler measure is defined by

m(P ) =
1

(2πi)n

∫

Tn

log |P (x1, . . . , xn)|dx1

x1
. . .

dxn

xn
,

T
n = S1 × . . . × S1.

For example, Smyth [Smy1] computed

m(1 + x + y) =
3
√

3

4π
L(χ−3, 2) = L′(χ−3,−1)

L(χ−3, s) =
∞

∑

n=1

χ−3(n)

ns
χ−3(n) =







1 n ≡ 1 mod 3
−1 n ≡ −1 mod 3
0 n ≡ 0 mod 3

.

The mixed sparse resultant

Let A0, . . . ,An ⊂ Z
n be finite sets of integer vectors, Ai := {aij}j=1,...,ki

, which jointly
span the lattice Z

n.
Consider the system

Fi(t1, . . . , tn) :=

ki
∑

j=1

xijt
aij = 0 i = 0, . . . , n (1)

of Laurent polynomials, where ta = ta1

1 ta2

2 . . . tan
n for a = (a1, . . . , an).

The associated mixed sparse resultant ResA0,...,An
∈ Z[X0, . . . , Xn] is an irreducible

polynomial in n + 1 groups Xi := {xij ; 1 ≤ j ≤ ki} of ki variables each. The resultant
vanishes on a specialization of the xij in an algebraically closed field K iff the system (1)
has a common solution in (K \ {0})n. See definitions in [CLO, Stu],

Examples

• If we choose, A0 = {0, . . . , d0}, A1 = {0, . . . , d1} ⊂ Z, then ResA0,A1
is the Sylvester

resultant of two univariate polynomials of degree d0 and d1.
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• If we choose A0 = A1 = . . . = An = {(0, . . . , 0), (1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}, then
we obtain a system of linear equations

xi0 + xi1t1 + . . . + xintn = 0 i = 0, . . . , n

and ResA0,...,An
= det(xij).

Previous work

Some previous work include

• Theorem 2 (Sombra [Som])

h(ResA0,...,An
), m(ResA0,...,An

) ≤ 1

[Zn : LA]

n
∑

i=0

MV (Q0, . . . , Qi−1, Qi+1, . . . , Qn) log(#Ai)

Where LA ⊂ Z
n denotes the Z-module spanned by the pointwise sum

∑n
i=0 Ai, Qi is

the convex hull of Ai, and MV denotes the mixed volume function.

Implies, for the Sylvester resultant,

H(Res(f(m), g(n))) ≤ (m + 1)n(n + 1)m

• D’Andrea and Hare [DH] computed the height of the Sylvester resultant of two poly-
nomials, H(Res(f, g)), when one of the polynomials is quadratic and found a tight
estimate when one of the polynomials is cubic. In particular,

H(Res(f0 + f1x + f2x
2, g(n))) ∼

2.3644√
nπ

1.6180n − O

(

1.6180n

n
√

n

)

H(Res(f0 + f1x + f2x
2 + f3x

3, g(n))) ∼
8.13488

nπ
1.83928n − O

(

1.83928n

n2

)

Mahler measure and heights differ

Mahler measures and heights behave completely different in resultants. For instance, take
n = 1, A0 = {0, 1}, A1 = {0, 1, . . . , `}, then

ResA0,A1
= ±

∑̀

j=0

(−1)jx1jx
`−j
00 x

j
01,

so h(ResA0,A1
) = 0.

But setting yj = (−1)jx1jx
`−j
00 x

j
01,

m(ResA0,A1
) = m





∑̀

j=0

yj



 .

m(ResA0,...,An
) when the Newton polytope has low dimension

Our work focuses on explicit computations for cases when N(ResA0,...,An
) has low dimen-

sion. We use the following Theorem
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Theorem 3 (Sturmfelds, [Stu])

dim(N(ResA0,...,An
)) = k − 2n − 1,

where k =
∑n

i=0 ki.

Using this Theorem we can prove

• Theorem 4

m(ResA0,...,An
) = 0 ⇐⇒ dim(N(ResA0,...,An

)) = 1.

(Because the system must be like xj1t
ηj

j − xj2 for j = 0, . . . , n).

• When dim(N(ResA0,...,An
)) = 2, we can assume k0 = 3, k1 = . . . = kn = 2 by the

Theorem above. We can think of the system as

F0(t1, . . . , tn) = x01t
a01 + x02t

a02 + x03t
a03

F1(t1, . . . , tn) = x11t1
η1 − x12,

. . . . . . . . .

Fn(t1, . . . , tn) = xn1tn
ηn − xn2.

(2)

Let η := η1 + η2 + . . . + ηn, then

Theorem 5 For systems having support as in (2),

m(ResA0,...,An
) = η L′(χ−3,−1).

Theorem 6 With the notation established above, for systems as

F0 = x01t
a01 + x02t

a02 + . . . + x0`t
a0l ,

F1 = x11t1
η1 − x12,

. . . . . . . . .

Fn = xn1tn
ηn − xn2.

(3)

we have
m(ResA0,...,An

) = η m(1 + s1 + s2 + . . . + s`−1).

Asymptotics for these Mahler measures were studied in [Smy1, R-VTV].

• Finally, we study the case where dim(N(ResA0,...,An
)) = 3. We have two possibilities:

1. k0 = 4, k1 = k2 = . . . = kn = 2. This is a system of the form (3), and hence we
have that

m(ResA0,...,An
) = η

7

2π2
ζ(3),

2. k0 = k1 = 3, k2 = k3 = . . . = kn = 2.
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F0 = x01t
a01 + x02t

a02 + x03t
a03 ,

F1 = x11t
a11 + x12t

a12 + x13t
a13 ,

F2 = x21t2
η2 − x22,

. . . . . . . . .

Fn = xn1tn
ηn − xn2.

(4)

This case can be reduced to

Theorem 7

m(ResA0,...,An
) = η m(ResA′

0
,A′

1
)

where
A′

0 := {α01, α02, α03},A′
1 := {α11, α12, α13}

and αij ∈ Z is the first coordinate of the vector aij , i = 0, 1, j = 1, 2, 3.

m(ResA′

0
,A′

1
) seems to be hard to compute. We have obtained the following partial

result:

Theorem 8 Suppose that A′
0 = A′

1, both having cardinality three, w.l.o.g. we can
suppose that A′

0 = {0, p, q}, with p < q and gcd(p, q) = 1.

Then,

m(ResA′

0
,A′

1
) =

2

π2
(−pL3(ϕ

q) − qL3(−ϕp) + pL3 (φq) + qL3 (φp))

where ϕ is the real root of xq + xq−p − 1 = 0 such that 0 ≤ ϕ ≤ 1, and φ is the real
root of xq − xq−p − 1 = 0 such that 1 ≤ φ. Finally,

L3(z) = Re

(

Li3(z) − log |z|Li2(z) +
1

3
log2 |z|Li1(z)

)

.

is a modified version of the trilogarithm.

In particular,

m(Res{{0,1,2},{0,1,2}}) =
4
√

5ζ
Q(

√
5)(3)

π2ζ(3)

The proof rests in writing the resultant as z − (1−x)p(1−y)q−p

(1−xy)q .

• We studied also an example in dimension 4. Take n = 2 and

A0 = A1 = A2 = A := {(0, 0), (1, 0), (0, 1)}.

Then the resultant is the 3x3 determinant. We have

Theorem 9

m(ResA,A,A) =
9ζ(3)

2π2
.
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The proof consists in writing the resultant as (x − 1)(y − 1) − (z − 1)(w − 1).

Why should we expect such values?

Let X be the irreducible surface in C
k defined by X := {ResA0,...,An

= 0}.

Theorem 10 The symbol

{x01, . . . , x0k0
, . . . , xn1, . . . , xnkn

} ∈ KM
k (C(X ))Q (5)

is trivial.

This implies that the tame symbols of the facets are trivial and that the first regulator is
exact. This is the first step that may led to a Mahler measure involving special values of
polylogarithms [RV, Lal2].
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