On the Mahler measure of resultants in small dimensions

AMS Joint Mathematics Meeting - San Antonio, TX
Special session in Mahler Measure and Heights January 13th, 2006
Matilde N. Lalín (joint work with Carlos D'Andrea)

Mahler measure of multivariate polynomials

Definition 1 For $P \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, the (logarithmic) Mahler measure is defined by

$$
\begin{aligned}
& m(P)= \frac{1}{(2 \pi \mathrm{i})^{n}} \int_{\mathbb{T}^{n}} \log \left|P\left(x_{1}, \ldots, x_{n}\right)\right| \frac{\mathrm{d} x_{1}}{x_{1}} \ldots \frac{\mathrm{~d} x_{n}}{x_{n}}, \\
& \mathbb{T}^{n}=S^{1} \times \ldots \times S^{1} .
\end{aligned}
$$

For example, Smyth [Smy1] computed

$$
\begin{gathered}
m(1+x+y)=\frac{3 \sqrt{3}}{4 \pi} \mathrm{~L}\left(\chi_{-3}, 2\right)=\mathrm{L}^{\prime}\left(\chi_{-3},-1\right) \\
\mathrm{L}\left(\chi_{-3}, s\right)=\sum_{n=1}^{\infty} \frac{\chi_{-3}(n)}{n^{s}} \quad \chi_{-3}(n)=\left\{\begin{array}{cl}
1 & n \equiv 1 \bmod 3 \\
-1 & n \equiv-1 \bmod 3 \\
0 & n \equiv 0 \bmod 3
\end{array} .\right.
\end{gathered}
$$

The mixed sparse resultant

Let $\mathcal{A}_{0}, \ldots, \mathcal{A}_{n} \subset \mathbb{Z}^{n}$ be finite sets of integer vectors, $\mathcal{A}_{i}:=\left\{a_{i j}\right\}_{j=1, \ldots, k_{i}}$, which jointly span the lattice \mathbb{Z}^{n}.

Consider the system

$$
\begin{equation*}
F_{i}\left(t_{1}, \ldots, t_{n}\right):=\sum_{j=1}^{k_{i}} x_{i j} \mathbf{t}^{a_{i j}}=0 \quad i=0, \ldots, n \tag{1}
\end{equation*}
$$

of Laurent polynomials, where $\mathbf{t}^{a}=t_{1}^{a_{1}} t_{2}^{a_{2}} \ldots t_{n}^{a_{n}}$ for $a=\left(a_{1}, \ldots, a_{n}\right)$.
The associated mixed sparse resultant $\operatorname{Res}_{\mathcal{A}_{0}, \ldots, \mathcal{A}_{n}} \in \mathbb{Z}\left[X_{0}, \ldots, X_{n}\right]$ is an irreducible polynomial in $n+1$ groups $X_{i}:=\left\{x_{i j} ; 1 \leq j \leq k_{i}\right\}$ of k_{i} variables each. The resultant vanishes on a specialization of the $x_{i j}$ in an algebraically closed field K iff the system (1) has a common solution in $(K \backslash\{0\})^{n}$. See definitions in [CLO, Stu],

Examples

- If we choose, $\mathcal{A}_{0}=\left\{0, \ldots, d_{0}\right\}, \mathcal{A}_{1}=\left\{0, \ldots, d_{1}\right\} \subset \mathbb{Z}$, then $\operatorname{Res}_{\mathcal{A}_{0}, \mathcal{A}_{1}}$ is the Sylvester resultant of two univariate polynomials of degree d_{0} and d_{1}.
- If we choose $\mathcal{A}_{0}=\mathcal{A}_{1}=\ldots=\mathcal{A}_{n}=\{(0, \ldots, 0),(1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)\}$, then we obtain a system of linear equations

$$
x_{i 0}+x_{i 1} t_{1}+\ldots+x_{i n} t_{n}=0 \quad i=0, \ldots, n
$$

and $\operatorname{Res}_{\mathcal{A}_{0}, \ldots, \mathcal{A}_{n}}=\operatorname{det}\left(x_{i j}\right)$.

Previous work

Some previous work include

- Theorem 2 (Sombra [Som])
$h\left(\operatorname{Res}_{\mathcal{A}_{0}, \ldots, \mathcal{A}_{n}}\right), m\left(\operatorname{Res}_{\mathcal{A}_{0}, \ldots, \mathcal{A}_{n}}\right) \leq \frac{1}{\left[\mathbb{Z}^{n}: L_{\mathcal{A}}\right]} \sum_{i=0}^{n} M V\left(Q_{0}, \ldots, Q_{i-1}, Q_{i+1}, \ldots, Q_{n}\right) \log \left(\# \mathcal{A}_{i}\right)$
Where $L_{\mathcal{A}} \subset \mathbb{Z}^{n}$ denotes the \mathbb{Z}-module spanned by the pointwise sum $\sum_{i=0}^{n} \mathcal{A}_{i}, Q_{i}$ is the convex hull of \mathcal{A}_{i}, and $M V$ denotes the mixed volume function.
Implies, for the Sylvester resultant,

$$
H\left(\operatorname{Res}\left(f_{(m)}, g_{(n)}\right)\right) \leq(m+1)^{n}(n+1)^{m}
$$

- D'Andrea and Hare $[\mathrm{DH}]$ computed the height of the Sylvester resultant of two polynomials, $H(\operatorname{Res}(f, g))$, when one of the polynomials is quadratic and found a tight estimate when one of the polynomials is cubic. In particular,

$$
\begin{gathered}
H\left(\operatorname{Res}\left(f_{0}+f_{1} x+f_{2} x^{2}, g_{(n)}\right)\right) \sim \frac{2.3644}{\sqrt{n \pi}} 1.6180^{n}-O\left(\frac{1.6180^{n}}{n \sqrt{n}}\right) \\
H\left(\operatorname{Res}\left(f_{0}+f_{1} x+f_{2} x^{2}+f_{3} x^{3}, g_{(n)}\right)\right) \sim \frac{8.13488}{n \pi} 1.83928^{n}-O\left(\frac{1.83928^{n}}{n^{2}}\right)
\end{gathered}
$$

Mahler measure and heights differ

Mahler measures and heights behave completely different in resultants. For instance, take $n=1, \mathcal{A}_{0}=\{0,1\}, \mathcal{A}_{1}=\{0,1, \ldots, \ell\}$, then

$$
\operatorname{Res}_{\mathcal{A}_{0}, \mathcal{A}_{1}}= \pm \sum_{j=0}^{\ell}(-1)^{j} x_{1 j} x_{00}^{\ell-j} x_{01}^{j}
$$

so $h\left(\operatorname{Res}_{\mathcal{A}_{0}, \mathcal{A}_{1}}\right)=0$.
But setting $y_{j}=(-1)^{j} x_{1 j} x_{00}^{\ell-j} x_{01}^{j}$,

$$
m\left(\operatorname{Res}_{\mathcal{A}_{0}, \mathcal{A}_{1}}\right)=m\left(\sum_{j=0}^{\ell} y_{j}\right) .
$$

$m\left(\operatorname{Res}_{\mathcal{A}_{0}, \ldots, \mathcal{A}_{n}}\right)$ when the Newton polytope has low dimension
Our work focuses on explicit computations for cases when $N\left(\operatorname{Res}_{\mathcal{A}_{0}, \ldots, \mathcal{A}_{n}}\right)$ has low dimension. We use the following Theorem

Theorem 3 (Sturmfelds, [Stu])

$$
\operatorname{dim}\left(N\left(\operatorname{Res}_{\mathcal{A}_{0}, \ldots, \mathcal{A}_{n}}\right)\right)=k-2 n-1,
$$

where $k=\sum_{i=0}^{n} k_{i}$.
Using this Theorem we can prove

- Theorem 4

$$
m\left(\operatorname{Res}_{\mathcal{A}_{0}, \ldots, \mathcal{A}_{n}}\right)=0 \Longleftrightarrow \operatorname{dim}\left(N\left(\operatorname{Res}_{\mathcal{A}_{0}, \ldots, \mathcal{A}_{n}}\right)\right)=1
$$

(Because the system must be like $x_{j 1} t_{j}^{\eta_{j}}-x_{j 2}$ for $j=0, \ldots, n$).

- When $\operatorname{dim}\left(N\left(\operatorname{Res}_{\mathcal{A}_{0}, \ldots, \mathcal{A}_{n}}\right)\right)=2$, we can assume $k_{0}=3, k_{1}=\ldots=k_{n}=2$ by the Theorem above. We can think of the system as

$$
\begin{align*}
F_{0}\left(t_{1}, \ldots, t_{n}\right) & =x_{01} \mathbf{t}^{a_{01}}+x_{02} \mathbf{t}^{a_{02}}+x_{03} \mathbf{t}^{a_{03}} \\
F_{1}\left(t_{1}, \ldots, t_{n}\right) & =x_{11} t_{1} \eta_{1}-x_{12}, \tag{2}\\
\ldots & \ldots \ldots \\
F_{n}\left(t_{1}, \ldots, t_{n}\right) & =x_{n 1} t_{n}^{\eta_{n}}-x_{n 2} .
\end{align*}
$$

Let $\eta:=\eta_{1}+\eta_{2}+\ldots+\eta_{n}$, then
Theorem 5 For systems having support as in (2),

$$
m\left(\operatorname{Res}_{\mathcal{A}_{0}, \ldots, \mathcal{A}_{n}}\right)=\eta \mathrm{L}^{\prime}\left(\chi_{-3},-1\right) .
$$

Theorem 6 With the notation established above, for systems as

$$
\begin{align*}
& F_{0}=x_{01} \mathbf{t}^{a_{01}}+x_{02} \mathbf{t}^{a_{02}}+\ldots+x_{0 \ell} \mathbf{t}^{a_{0 l}}, \\
& F_{1}=x_{11} t_{1} \eta_{1}-x_{12} \tag{3}\\
& \ldots \\
& \ldots \\
& F_{n}=x_{n 1} t_{n} \eta_{n}-x_{n 2}
\end{align*}
$$

we have

$$
m\left(\operatorname{Res}_{\mathcal{A}_{0}, \ldots, \mathcal{A}_{n}}\right)=\eta m\left(1+s_{1}+s_{2}+\ldots+s_{\ell-1}\right) .
$$

Asymptotics for these Mahler measures were studied in [Smy1, R-VTV].

- Finally, we study the case where $\operatorname{dim}\left(N\left(\operatorname{Res}_{\mathcal{A}_{0}, \ldots, \mathcal{A}_{n}}\right)\right)=3$. We have two possibilities:

1. $k_{0}=4, k_{1}=k_{2}=\ldots=k_{n}=2$. This is a system of the form (3), and hence we have that

$$
m\left(\operatorname{Res}_{\mathcal{A}_{0}, \ldots, \mathcal{A}_{n}}\right)=\eta \frac{7}{2 \pi^{2}} \zeta(3),
$$

2. $k_{0}=k_{1}=3, k_{2}=k_{3}=\ldots=k_{n}=2$.

$$
\begin{align*}
F_{0} & =x_{01} \mathbf{t}^{a_{01}}+x_{02} \mathbf{t}^{a_{02}}+x_{03} \mathbf{t}^{a_{03}} \\
F_{1} & =x_{11} \mathbf{t}^{a_{11}}+x_{12} \mathbf{t}^{a_{12}}+x_{13} \mathbf{t}^{a_{13}} \\
F_{2} & =x_{21} t_{2}{ }^{\eta_{2}}-x_{22} \tag{4}\\
\cdots & \cdots \\
F_{n} & =x_{n 1} t_{n}{ }^{\eta_{n}}-x_{n 2}
\end{align*}
$$

This case can be reduced to

Theorem 7

$$
m\left(\operatorname{Res}_{\mathcal{A}_{0}, \ldots, \mathcal{A}_{n}}\right)=\eta m\left(\operatorname{Res}_{\mathcal{A}_{0}^{\prime}, \mathcal{A}_{1}^{\prime}}\right)
$$

where

$$
\mathcal{A}_{0}^{\prime}:=\left\{\alpha_{01}, \alpha_{02}, \alpha_{03}\right\}, \mathcal{A}_{1}^{\prime}:=\left\{\alpha_{11}, \alpha_{12}, \alpha_{13}\right\}
$$

and $\alpha_{i j} \in \mathbb{Z}$ is the first coordinate of the vector $a_{i j}, i=0,1, j=1,2,3$.
$m\left(\operatorname{Res}_{\mathcal{A}_{0}^{\prime}, \mathcal{A}_{1}^{\prime}}\right)$ seems to be hard to compute. We have obtained the following partial result:

Theorem 8 Suppose that $\mathcal{A}_{0}^{\prime}=\mathcal{A}_{1}^{\prime}$, both having cardinality three, w.l.o.g. we can suppose that $\mathcal{A}_{0}^{\prime}=\{0, p, q\}$, with $p<q$ and $\operatorname{gcd}(p, q)=1$.
Then,

$$
m\left(\operatorname{Res}_{\mathcal{A}_{0}^{\prime}, \mathcal{A}_{1}^{\prime}}\right)=\frac{2}{\pi^{2}}\left(-p \mathcal{L}_{3}\left(\varphi^{q}\right)-q \mathcal{L}_{3}\left(-\varphi^{p}\right)+p \mathcal{L}_{3}\left(\phi^{q}\right)+q \mathcal{L}_{3}\left(\phi^{p}\right)\right)
$$

where φ is the real root of $x^{q}+x^{q-p}-1=0$ such that $0 \leq \varphi \leq 1$, and ϕ is the real root of $x^{q}-x^{q-p}-1=0$ such that $1 \leq \phi$. Finally,

$$
\mathcal{L}_{3}(z)=\operatorname{Re}\left(\operatorname{Li}_{3}(z)-\log |z| \operatorname{Li}_{2}(z)+\frac{1}{3} \log ^{2}|z| \operatorname{Li}_{1}(z)\right)
$$

is a modified version of the trilogarithm.

In particular,

$$
m\left(\operatorname{Res}_{\{\{0,1,2\},\{0,1,2\}\}}\right)=\frac{4 \sqrt{5} \zeta_{\mathbb{Q}(\sqrt{5})}(3)}{\pi^{2} \zeta(3)}
$$

The proof rests in writing the resultant as $z-\frac{(1-x)^{p}(1-y)^{q-p}}{(1-x y)^{q}}$.

- We studied also an example in dimension 4. Take $n=2$ and

$$
\mathcal{A}_{0}=\mathcal{A}_{1}=\mathcal{A}_{2}=\mathcal{A}:=\{(0,0),(1,0),(0,1)\}
$$

Then the resultant is the $3 x 3$ determinant. We have

Theorem 9

$$
m\left(\operatorname{Res}_{\mathcal{A}, \mathcal{A}, \mathcal{A}}\right)=\frac{9 \zeta(3)}{2 \pi^{2}}
$$

The proof consists in writing the resultant as $(x-1)(y-1)-(z-1)(w-1)$.

Why should we expect such values?

Let \mathcal{X} be the irreducible surface in \mathbb{C}^{k} defined by $\mathcal{X}:=\left\{\operatorname{Res}_{\mathcal{A}_{0}, \ldots, \mathcal{A}_{n}}=0\right\}$.
Theorem 10 The symbol

$$
\begin{equation*}
\left\{x_{01}, \ldots, x_{0 k_{0}}, \ldots, x_{n 1}, \ldots, x_{n k_{n}}\right\} \in K_{k}^{M}(\mathbb{C}(\mathcal{X}))_{\mathbb{Q}} \tag{5}
\end{equation*}
$$

is trivial.
This implies that the tame symbols of the facets are trivial and that the first regulator is exact. This is the first step that may led to a Mahler measure involving special values of polylogarithms [RV, Lal2].

References

[CLO] Cox, David; Little, John; O'Shea, Donal. Using algebraic geometry. Graduate Texts in Mathematics, 185. Springer-Verlag, New York, 1998.
[DH] D'Andrea, Carlos; Hare, Kevin. On the height of the Sylvester resultant. Experiment. Math. 13 (2004), no. 3, 331-341.
[Lal2] Lalín, Matilde. An algebraic integration for Mahler measure. Preprint September 2005.
[RV] Rodriguez-Villegas, Fernando. Modular Mahler measures I. Topics in number theory (University Park, PA 1997), 17-48, Math. Appl., 467, Kluwer Acad. Publ. Dordrecht, 1999.
[R-VTV] Rodriguez-Villegas, Fernando; Toledano, Ricardo; Vaaler, Jeffrey. Estimates for Mahler's measure of a linear form. Proc. Edinb. Math. Soc. (2) 47 (2004), no. 2, 473-494.
[Smy1] Smyth, Christopher J. On measures of polynomials in several variables. Bull. Austral. Math. Soc. 23 (1981), no. 1, 49-63. Corrigendum: Myerson G.;Smyth, C. J. 26 (1982), 317-319.
[Som] Sombra, Martín. The height of the Mixed Sparse resultant. Amer. J. Math. 126 (2004), no. 6, 1253-1260.
[Stu] Sturmfels, Bernd. On the Newton polytope of the resultant. J. Algebraic Combin. 3 (1994), no. 2, 207-236.

