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Abstract. We define spherical Heron triangles (spherical triangles with “rational” side-
lengths and angles) and parametrize them via rational points of certain families of elliptic
curves. We show that the congruent number problem has infinitely many solutions for most
areas in the spherical setting and we find a spherical Heron triangle with rational medians.
We also explore the question of spherical triangles with a single rational median or a single
a rational area bisector (median splitting the triangle in half), and discuss various problems
involving isosceles spherical triangles.

1. Introduction

Problem D21 in Guy’s book [Guy95] asks whether there are any triangles whose area
is rational and whose sides and medians have rational lengths. The question of rational
medians was already considered by Euler [Eul01], who parametrized triangles whose medians
are rational, but without imposing the other conditions. To this day Guy’s problem D21
remains open. Buchholz and Rathbun [BR97, BR98] parametrized families with two rational
medians using elliptic curves. Other authors have worked with the elliptic curves that appear
from this problem [DP13, DP14, Ism20]. More generally, Heron triangles (triangles with
rational side lengths and rational area) have been extensively studied by various authors
[Sas99, KL00, GM06, Bre06, vL07, ILS07, SSSG+13, BS15, HH20]. More general cevians
were studied in [Buc89, LL21].

In [HvL08] Hartshorne and van Luijk introduced the idea of studying rationality of lengths
in hyperbolic triangles. The second and third named authors followed this idea and studied
various problems related to finding rational cevians in hyperbolic triangles [LM21]. It should
be noted that a slightly different notion of rationality for hyperbolic triangles was considered
by Brody and Schettler in [BS16].

In this work we study some analogous problems for spherical triangles. To do this, we
need to define the idea of rationality in this context. A spherical triangle is a triangle on the
surface of the unit sphere whose sides are given by arcs in great circles, i.e., it is determined
by the intersections of three planes passing through the center of the sphere with the surface
of the sphere. We will focus on proper triangles, which satisfy that the sides a, b, c and the
angles α, β, γ are smaller than π. Thus, in a proper spherical triangle, we have

π < α + β + γ < 3π
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Figure 1. A spherical triangle.

and
0 < a+ b+ c < 2π.

The Gauss–Bonnet theorem implies that the area of such spherical triangle is given by

(1) A = α + β + γ − π.
Following a convention analogous to what was adopted in [HvL08, LM21], we will call an
angle ω, the area A, or a length x rational if and only if the sines and cosines of these
quantities are rational, or equivalently, if eiω, eiA, or eix ∈ Q(i). In particular, notice that if
α, β, and γ are rational, equation (1) implies that so is the area A.

Recall that eix ∈ Q(i) if and only if cos(x) = 1−t2
1+t2

and sin(x) = 2t
1+t2

for some t ∈ Q.
Indeed, we have

(2) eix =
i− t
i+ t

∈ Q(i)⇐⇒ t =
sin(x)

1 + cos(x)
∈ Q⇐⇒ (cos(x), sin(x)) =

(
1− t2

1 + t2
,

2t

1 + t2

)
.

By abuse of terminology we will call t the rational side (resp. rational angle) of a spherical
triangle if its side (resp. angle) is x.

In sum, a spherical triangle with area A, angles α, β, γ and sides a, b, c is a spherical Heron
triangle or spherical rational triangle if

eia, eib, eic, eiα, eiβ, eiγ ∈ Q(i),

and this implies that eiA ∈ Q(i) as well.
One of the goals of this article is to compare the situation in the spherical and hyperbolic

worlds. In this sense, some of our results will be analogous to the ones in [LM21].
First we treat the generation of spherical Heron triangles. If we fix two sides, we obtain

the following result.

Theorem 1. For all but finitely many choices of rational sides with parameters u and v there
are infinitely many spherical triangles such that the third side and the angles are rational.

This result is completely analogous to [LM21, Theorem 3]. It is achieved by parametrizing
such triangles with points in the elliptic curve

y2 = x(x− (v + v−1)2)(x− (w + w−1)2)

and showing that for most values of v, w ∈ Q, this elliptic curve has positive rank.
Another approach, which follows naturally from extending the congruent number problem

and the techniques of [GM06], is to fix an angle and the area. While this was achieved for
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the hyperbolic case in [LM21, Theorem 1, Corollary 2], we encounter a difficulty here, as we
are not able to construct the corresponding elliptic curve over Q. Instead, we consider some
particular cases. For the spherical congruent number problem, we obtain

Theorem 2. For all rational areas m 6= 1 there are infinitely many area m right spherical
triangles with rational angles and sides. Thus, the spherical congruent number problem has
a positive solution.

This is achieved by working with the elliptic curve

y2 = x(x− 2m(m2 + 1))(x− 4m(m2 + 1)).

It is also known that the congruent number problem has a positive solution in the hyperbolic
space [LM21]. Thus, the Euclidean plane is very special from this point of view.

We also consider the case of a isosceles triangle in this context, and likewise obtain infinitely
many Heron isosceles triangles with prescribed area and repeated angle, for most choices of
the parameters.

A surprising result in the spherical setting is that problem D21 has a positive solution.

Theorem 3. There exists a unique rational equilateral spherical Heron triangle whose sides
have lengths π

2
and whose angles measure π

2
. The medians of this triangle measure π

2
and

are, therefore, rational.

This is contrary to the Euclidean plane and hyperbolic settings, where such equilateral
triangle do not exist. More precisely, this is the first setting in which a positive solution can
been found for the problem D21.

We also explore and find positive results for the existence of triangles with rational sides
and one rational median, isosceles triangles with rational sides and two rational medians,
and certain existence results involving a rational area bisector. The results are analogous to
what is known for the hyperbolic case.

Finally we embark on a detailed study of isosceles triangles with meridians and equators as
sides. For these particular triangles, one has a guaranteed rational median/bisector/height,
and the goal is to find that the other two cevians are rational. We obtain a positive result
with infinitely many solutions for the heights, while the medians and bisectors reduce to only
one solution given by the equilateral triangle from the D21 problem. We also consider the
area bisector and obtain a negative result in this case. The problem in this case depends on
a non-trivial argument (originally due to Flynn and Wetherell [FW99]) for finding all the
rational points of a bielliptic curve of genus 2.

The main geometric tools we will use are the following basic results of spherical trigonom-
etry. A basic reference is [Tod86]. Consider a spherical triangle with area A, angles α, β,
and γ and side lengths a, b, and c, where a (resp. b, c) is opposite to α (resp. β, γ).

The spherical law of cosines says

(3) cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(γ),

and similarly for cos(a), cos(b).
The dual of (3) is the supplemental law of cosines, which says

(4) cos(γ) = − cos(α) cos(β) + sin(α) sin(β) cos(c),

and analogously for cos(α), cos(β).
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The spherical law of sines gives

(5)
sin(α)

sin(a)
=

sin(β)

sin(b)
=

sin(γ)

sin(c)
.

This paper is organized as follows. Section 2 and Section 3 cover the parametrization of
spherical Heron triangles in terms of angles and sides respectively. Section 4 is focused on
medians in the simple case of equilateral triangles and includes the proof of Theorem 3. Sec-
tion 5 includes the parametrization of spherical triangles with rational side lengths and one
rational median, while Section 6 is devoted to the dual computation of the parametrization of
spherical Heron triangles with one rational area bisector. Isosceles triangles with meridians
and equator as sides are considered in Section 7. We close the paper with Section 8, where
we discuss variations of the definition of rationality that could lead to future directions of
research.

2. Spherical Heron triangles - Angle parametrization

In this section we give a parametrization of spherical Heron triangles in terms of angles
and area. We consider a triangle with angles α, β, γ ∈ (0, π) that are rational (as defined in
the introduction). Since the area is given by equation (1), it is also rational.

The supplemental spherical law of cosines (4) implies that the cosines of the sides are also
rational, and it remains to check that the sines of the sides are rational.

The spherical law of sines (5) implies that

sin(a) sin(β) sin(γ) = sin(b) sin(α) sin(γ) = sin(c) sin(α) sin(β).

We call this common quantity ∆1; observe that it is rational if and only if the sines of all
the sides are rational. Squaring the supplemental spherical law of cosines (4), we get

sin2(α) sin2(β)(1− sin2(c)) = (cos(γ) + cos(α) cos(β))2.

This leads to

(6) ∆2
1 = sin2(α) sin2(β)− (cos(γ) + cos(α) cos(β))2 ∈ Q.

We remark that this expression is very similar to [LM21, Eq. (6)], except that there is a sign
difference on the right-hand side. From this point we can follow the treatment from [LM21].
Using trigonometric identities, we can rewrite this as a symmetric expression in α, β, γ:

2∆2
1 =− cos(−α + β + γ)− cos(α− β + γ)− cos(α + β − γ)

− cos(α + β + γ)− cos(2α)− cos(2β)− cos(2γ)− 1.

Substituting for γ = A + π − α − β, expanding the cosines, and writing cA = cos(A), sA =
sin(A), etc, we have

2∆2
1 =− (c2

A − s2
A)
[
(cαcβ − sαsβ)2 − (cαsβ + cβsα)2

]
(7)

− 4cAsA
[
cαsα(c2

β − s2
β) + cβsβ(c2

α − s2
α)
]

+ cA
[
(cαcβ − sαsβ)2 − (cαsβ + cβsα)2 + 2c2

α + 2c2
β − 1

]
+ 4sA(cαsαc

2
β + cβsβc

2
α)− 2c2

α − 2c2
β + 1.
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Since we wish to express this in terms of rational angles, we set

t =
sin(α)

1 + cos(α)
, u =

sin(β)

1 + cos(β)
, m =

sin(A)

1 + cos(A)
,

and w = (m2 + 1)(u2 + 1)(t2 + 1)∆1, equation (7) rewrites as:

w2 =− 4m(mu2 −m+ 2u)(mt2 + 2t−m)
[
(mu2 −m+ 2u)t2(8)

+ (−4mu+ 2u2 − 2)t−mu2 +m− 2u
]
.

Here we differ from the situation of [LM21, Eq. 8], where we were able to find a change of
variables {t, w} → {x, y} turning the equation into a Weierstrass form. In this case, having
the opposite sign on the right-hand side of (8) creates an obstruction to find a general
solution to the equation that is defined over Q(u,m). By twisting w by i, one can actually
recover the change of variables leading to [LM21, Eq. 9], which in this case it will not be
defined over Q(u,m), but over over Q(i)(u,m). In [LM21, Lemma 2.1], a point of infinite
order P over Q(u,m) was found, but this will only lead to a point over Q(i)(u,m) after
twisting. In our case, we will not be able to conclude that our problem over the spherical
side has infinite solutions.

Instead, we proceed to examine two particular cases of interest: u = 1 (a right triangle)
and u = t (an isosceles triangle).

2.1. The case u = 1. By setting u = 1 equation (8) becomes

w2 = −16m(mt2 + 2t−m)(t2 − 2mt− 1)

with a solution (t, w) = (1, 8m).
By applying the change of variables

y =
m((1 + 2m−m2)(4mt3 − 12mt− w) + (1− 2m−m2)(12mt2 − 4m+ wt))

(t− 1)3
,

x =
m(4(m2t2 − (m− 1)2t+ 1) + w)

(t− 1)2
,

we obtain the Weierstrass form

(9) Eu=1 : y2 = x(x− 2m(m2 + 1))(x− 4m(m2 + 1)).

We remark that (9) appeared in [LM21]. In fact, it was proven that E(C(m)) is a K3-
surface of rank 2, and that P (m) = ((m2 + 1)(m + 1)2, (m2 + 1)2(m2 − 1)) and Q(m) =
(2m(m+ 1)2, 4im2(m2 − 1)) are two independent points of infinite order.

We claim that for every rational value of m /∈ {−1, 0, 1}, the point P (m) has infinite order
on Eu=1. Indeed, Mazur’s Theorem (see [Maz77, Maz78]) implies that the torsion group of
a rational elliptic curve has order at most 16. By looking at the points on Eu=1 of the form
±kP +`(0, 0) for k ∈ {1, 2, 3, 4}, ` ∈ {0, 1}, we see that we generically get 16 different points.
Thus for each value of m, either one of these points is non-torsion (from which it follows
easily that P (m) has infinite order), or they are all torsion. In the latter case, together with
(0, 0) we have 17 points, so two points of this list must coincide, and it is easily verified by
looking at the equations for these points that this is only possible if m ∈ {−1, 0, 1}.

Finally, observe that that the conditions (e.g., sum of angles > π, etc.) for a set of pa-
rameters (α, β, γ, A) to give rise to an actual spherical triangle translate into open conditions
(i.e., involving strict inequalities) on the variables t, u,m, which in turn also translate into
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open conditions on the variables x, y,m. Now by a theorem of Poincaré–Hurwitz (see [Sko50,
Satz 11, p. 78]) the points Eu=1(Q) form a dense subset of Eu=1(R) as long as Eu=1(Q) is
infinite and intersects both connected components of Eu=1(R). Since the three torsion points
having y = 0 are rational (and lie across both connected components of Eu=1(R)), and since
unless m ∈ {−1, 0, 1}, the point P (m) is a rational point of infinite order, we have proven
the following:

Theorem 4 (Theorem 2 in the introduction). For every positive rational m 6= 1, the congru-
ent number problem has a solution in the spherical context. More precisely: for all rational
areas m 6= 1 there are infinitely many area m right spherical triangles with rational angles
and sides.

Note that this type of argument will be used later in the text to deduce existence of
infinitely many triangles with given properties from elliptic curves having positive rank.

Observe that in the case m = 1, the elliptic curve has rank zero, and using the change of
variables (when it is defined) it is possible to show that the only possible solution is with
t = 1. This corresponds to a triangle having area π

2
(since m = 1) and 2 angles also equal

to π
2

(since u = t = 1). Thus by (1), the third angle is also π
2
, and the only rational triangle

with area and one angle equal to π
2

is the unique rational equilateral triangle, with all sides,
angles and area equal to π

2
.

2.2. The case u = t. By setting u = t, and w = w1(mt2 + 2t−m), equation (8) becomes

w2
1 = −4m(mt4 + 4t3 − 6mt2 − 4t+m)

with particular solution (t, w1) = (1, 4m). We apply Cassels’ algorithm [Cas91, p. 37] and
find the change of variables

y =
m

2(t− 1)3
(−2m(m+ 1)t3 + 6m(m− 1)t2 + 6m(m+ 1)t

+ 2m(1−m) + (mt+m− t+ 1)w1),

x =
m(4mt− 2t2 + 2 + w1)

2(t− 1)2
,

that leads to the Weierstrass form

(10) Eu=t : y2 = x(x2 −m2(1 +m2)).

Lemma 5. The rank of the rational elliptic surface Eu=t(C(m)) is 2. Its torsion group is
isomorphic to Z/2Z. The points

P (m) =
(
−m2,m2

)
, Q(m) =

(
m(im− 1), (i+ 1)m2(im− 1)

)
,

are generators of the free subgroup.

Proof. Notice that Eu=t is a rational elliptic surface with discriminant disc(Eu=t) = 64m6(m2+
1)3. By Tate’s algorithm [Sil94, IV.9] Eu=t has singularities at m = 0 of type I∗0 , and m = ±i
of type III. By the Shioda–Tate formula [SS19, Corollary 6.7], the rank of the Néron–Severi
group is given by

(11) ρ(E) = rk(E(C(m)) + 2 +
∑
ν

(mν − 1).
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In our case, we obtain

ρ(Eu=t) = rk(Eu=t(C(m)) + 2 + (5− 1) + 2 · (2− 1) = rk(Eu=t(C(m)) + 8.

Since ρ(Eu=t) = 10 for rational elliptic surfaces, we conclude that rk(Eu=t(C(m)) = 2.
By [MP89, Table 4.5], since the rank is R = 2 and the Euler characteristic is χ = 1, we

conclude that the torsion is either Z/2Z or Z/2Z× Z/2Z, but it is very clear that the only
point of order 2 is (0, 0), and therefore the torsion is Z/2Z.

Now, if one only wants to show that P (m) and Q(m) are independent points of infinite
order, the easiest way is to specialize at m = 1 and verify (using Sage for instance) that the
corresponding curve has rank 2 over Q(i) and admits those points as generators of the free
part. (In fact, checking that P (m) is of infinite order is even easier: at m = 1, we get the
point P = (−1, 1) on the curve y2 = x(x2 − 2). Since torsion injects into specialization and
2P = (9

4
,−21

8
) has non-integral coordinates, one concludes that P can not be torsion due

to the Nagell–Lutz theorem.) However, proving that they are actually generators is more
involved. We can do this by computing the height pairing of the Mordell–Weil group on the
elliptic surface Eu=t. In order to do this we need to find the height pairing of both points.
By formulas (6.14) and (6.15) in [SS19],

〈P,Q〉 =χ+ (P.O) + (Q.O)− (P.Q)−
∑
ν

contrν(P,Q),(12)

h(P ) := 〈P, P 〉 =2χ+ 2(P.O)−
∑
ν

contrν(P ),(13)

and similarly for Q. In the above formulas, (P.Q) represents the intersection multiplicity of
P and Q and contrν(P,Q) represent certain correction terms given by the local contribution
from the fiber at ν (see [SS19, Definition 6.23]).

We look at [SS19, Table 6.1]. For the singularity at m = 0 of type I∗0 , we get contr0 = 1
unless the point intersects Θ0 in the fiber. We have that P (0) = Q(0) = (0, 0) (the singular
point), so they do not intersect Θ0 and therefore contr0(P ) = contr0(Q) = 1. We also have
that contr0(P,Q) = 1/2 since they do not intersect the same component.

For the singularities ±i, of type III, we have that P (i) = P (−i) = (−1, 1) 6= (0, 0)
(the singular point is again (0, 0)) so we get contr±i(P ) = 0 since it intersects Θ0. We
have that Q(i) = (−2i, 2 + 2i) 6= (0, 0), so that contri(Q) = 0, but Q(−i) = (0, 0), so
that contr−i(Q) = 1/2. Finally we have contr±i(P,Q) = 0 since they intersect different
components.

We also have that P ·O = Q ·O = 0, since the coordinates are polynomials, and P ·Q = 0
since the points do not intersect the same component at (0, 0), which is the only possible
point where P = Q.

Since χ = 1, we obtain from (13) that h(P ) = 2 · 1 + 2 · 0 − 1 − 2 · 0 = 1, h(Q) =
2 · 1 + 2 · 0− 1− 0− 1/2 = 1/2 and from (12), 〈P,Q〉 = 1 + 0 + 0− 0− 1/2− 2 · 0 = 1/2.

On the one hand, we can compute the determinant of the Gram matrix associated to the
height pairing of P and Q. This gives

(14)

∣∣∣∣ 1 1/2
1/2 1/2

∣∣∣∣ =
1

4
.
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On the other hand, by the Determinant formula [SS19, Corollary 6.39]), we have

(15) |disc NS(Eu=t)| =
|disc Triv(Eu=t) · disc MWL(Eu=t)|

|Eu=t(C(v))tor|2
,

where MWL(Eu=t) is the Mordell–Weil lattice and Triv(Eu=t) is the trivial lattice.
By [Shi90, Definition 7.3],

(16) disc Triv(Eu=t) =
∏
ν

m(1)
ν ,

where m
(1)
ν is the number of simple components of the corresponding singular fiber. We have

m
(1)
ν = 2 if ν is of type III and m

(1)
ν = 4 if ν is of type I∗0 . We thus get

disc Triv(Eu=t) = 16.

Since disc NS(Eu=t) = −1 (as the Néron–Severi lattice of a rational elliptic surface is
unimodular) and |Eu=t(C(m))tor| = 2, equation (15) becomes

(17) |disc MWL(Eu=t)| =
1

4
.

In conclusion, we have obtained the same value as in (14), this proves that the points P,Q
are generators for the free part of Eu=t(C(m)).

�

Using arguments similar to those in the proof of Theorem 4, one gets:

Theorem 6 (Theorem 1 in the introduction). For all but finitely many combinations of
rational area m and rational angle u there are infinitely many isosceles spherical triangles
with area m and the repeated angle u such that the third angle and the sides are rational.

3. Spherical Heron triangles - Side length parametrization

In this section we parametrize spherical Heron triangles given by their side lengths. Let
a, b, c denote the side lengths of a spherical triangle, and assume that they are rational (as
defined in the introduction, i.e., eia, eib, eic ∈ Q(i)). Let α (resp. β, γ) be the angles opposing
the sides of length a (resp. b, c). By the spherical law of cosines (3) the cosines of the angles
are also rational, and it remains to check that the sines of the angles are rational.

The spherical law of sines (5) implies that

sin(α) sin(b) sin(c) = sin(β) sin(a) sin(c) = sin(γ) sin(a) sin(b).

Call this quantity ∆2; it is rational if and only if the sines of all the angles are rational.
As in Section 2, we square the spherical law of cosines (3) to get

sin(a)2 sin(b)2(1− sin(γ)2) = (cos(a) cos(b)− cos(c))2.

Hence

(18) ∆2
2 = sin(a)2 sin(b)2 − (cos(a) cos(b)− cos(c))2 ∈ Q.

Applying the change of variables

u =
sin(a)

1 + cos(a)
, v =

sin(b)

1 + cos(b)
, w =

sin(c)

1 + cos(c)
,
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we get the equation

D2 = (−uvw + u+ v + w)(uvw − u+ v + w)(uvw + u− v + w)(uvw + u+ v − w),

where D = 1
2
(u2 + 1)(w2 + 1)(v2 + 1)∆2. This has a solution (u,D) = ( v+w

1−vw , 0). Applying
[Cas91, p. 37], we find the change of variables

y =
(v + v−1)(w + w−1)(v + w)(vw − 1)D

vw(uvw − u+ v + w)2
,

x =− (v + v−1)(w + w−1)(uvw − u− v − w)

uvw − u+ v + w
,

that yields the Weierstrass form

(19) Ev,w : y2 = x(x− (v + v−1)2)(x− (w + w−1)2).

We remark the similarly of (19) with [LM21, Eq. 12]. Indeed, both curves are isomorphic,
we can go from one to the other by the change (x, y)→ (−x, iy), (v, w)→ (iv, iw). Applying
this to [LM21, Lemma 3.1] we immediately obtain the following result.

Lemma 7. Let Ev denote the K3-surface over C(w) resulting from fixing the parameter v.
Its rank satisfies

1 ≤ rk(Ev(C(w))) ≤ 2.

In addition, the torsion group of Ev is isomorphic to Z/4Z× Z/2Z, generated by

S0(v, w) =
(
(v + v−1)(w + w−1), i(v + v−1)(w + w−1)(v−1 − w−1)(vw − 1)

)
and

S1(v, w) =
(
(v + v−1)2, 0

)
.

Finally, the point

R(v, w) =
(
vw(v + v−1)(w + w−1), (v + v−1)(w + w−1)(v2w2 − 1)

)
has infinite order on E.

Finally, an argument as in Theorem 4 gives:

Theorem 8. For all but finitely many choices of rational sides with parameters u and v there
are infinitely many spherical triangles such that the third side and the angles are rational.

4. Equilateral triangles

The goal of this section is to explore the existence of equilateral spherical Heron triangles.
In fact, we prove:.

Theorem 9 (Theorem 3 in the introduction). There exists a unique rational equilateral
spherical Heron triangle given by a = b = c = π

2
and α = β = γ = π

2
.

We remark that for the triangle described in Theorem 3 the medians have the same
lengths as the sides and thus they are rational. Therefore, this provides a positive answer to
the problem D21 in the spherical world.
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Proof. For this we go back to equation (6), where we set α = β = γ:

∆2
1 = 1− 3 cos2(α)− 2 cos3(α) = (1− 2 cos(α))(cos(α) + 1)2.

Setting u = ∆1

cos(α)+1
, the above equation can be rewritten as u2 = 1 − 2 cos(α). Thus the

solutions to the original equation are parametrized by

(20) cos(α) =
1− u2

2
and ∆1 =

u(3− u2)

2
.

Squaring the first equation of (20), writing 4 cos(α)2 = 4−4 sin2(α), and setting v = 2 sin(α),
we obtain

v2 = −u4 + 2u2 + 3.

Making the change of variables

y =
2v + 3− u3 + u2 + u

(u− 1)3
, x =

v + 2

(u− 1)2
,

we get
E : y2 = x(x2 − x+ 1),

and this curve has rank 0. It is not hard to see that

E(Q) = {O, (0, 0), (1,±1)} ∼= Z/4Z.
These points only yield to solutions of the form sin(α) = ±1, cos(α) = 0, thus leading to a
triangle whose angles and sides are all equal to π

2
. �

If we relax the condition that the angles be rational, we find another surprising result.

Proposition 10. The only equilateral triangle that has rational sides and rational medians
is the one that satisfies a = b = c = π

2
and α = β = γ = π

2
.

Proof. Consider an equilateral spherical triangle of side lengths a and angles α. Let m denote
the length of the median, and consider the half triangle defined by one median. This triangle
has angles α, α

2
, π

2
and sides a, a

2
,m.

Assume the length a is rational, i.e., that eia ∈ Q(i). By the Pythagorean theorem (a
particular case of the law of cosines (3)),

(21) cos(m) cos
(a

2

)
= cos(a).

We immediately see that the above equation has solutions when a = π, π
2
, when both sides

of (21) equal zero. However, notice that a = π is not a valid solution. Otherwise, we remark
that cos(m) ∈ Q if and only if p = cos(a

2
) ∈ Q. Let t = sin(m). Squaring (21), we get the

following equation for t:

(1− t2)p2 = (2p2 − 1)2 i.e. s2 = −4p4 + 5p2 − 1,

writing s = pt. Changing variables

s =
6y

x2
, p =

x− 6

x
, y =

6s

(p− 1)2
, x = − 6

p− 1
,

we get the following elliptic curve:

y2 = x3 − 19x2 + 96x− 144 = (x− 3)(x− 4)(x− 12).
10



This elliptic curve has rank 0 and

E(Q) = {O, (3, 0), (4, 0), (12, 0)} ∼= Z/2Z× Z/2Z.
Taking x = 3, 4, 12 gives p = −1,−1

2
, 1

2
, and a = π, 2π

3
, π

3
respectively. Since 0 < a < 2π

3
, we

can only take a = π
3
. However, this gives

cos(m) =
1

2 cos
(
π
6

) ,
which is irrational. �

Similarly, relaxing the condition that the sides be rational, we get:

Proposition 11. The only equilateral triangle that has rational angles and rational medians
is the one that satisfies a = b = c = π

2
and α = β = γ = π

2
.

Proof. The proof of this result proceeds in the same vein as the previous proposition. In this
case the starting point in the Pythagorean theorem as a particular case of the supplementary
law of cosines (4):

(22) cos(m) sin
(α

2

)
= cos(α).

We immediately see the solution α = π
2

with m = π
2
. Notice that in general π

3
< α < π,

and therefore sin(α
2
) 6= 0. We remark that cos(m) ∈ Q if and only if p = sin(a

2
) ∈ Q. Let

t = sin(m). Squaring (22), we get the following equation for t:

(1− t2)p2 = (1− 2p2)2,

writing s = pt. This reduces to the same elliptic curve as in the previous result:

y2 = x3 − 19x2 + 96x− 144 = (x− 3)(x− 4)(x− 12).

Taking x = 3, 4, 12 gives p = −1,−1
2
, 1

2
, and the only values π

3
< α < π are α = π

6
, 5π

6
.

However, the sine function evaluated in these angles is not rational. �

5. Rational medians

The goal of this section is to study spherical triangles with one rational median. We
consider a spherical triangle with sides a, b, c and opposite angles α, β, γ as before. Let m
denote the median at the angle α, cutting the side a into two equal parts. Denote by θ the
angle at the intersection of m and a on the side of β (the one on the side of γ is π − θ).
Applying the law of cosines (3) to both triangles, we have

cos(b) = cos(m) cos(a/2) + sin(m) sin(a/2) cos(π − θ),
cos(c) = cos(m) cos(a/2) + sin(m) sin(a/2) cos(θ).

Combining both equations, we obtain

(23) 2 cos(m) cos(a/2) = cos(b) + cos(c).

We assume that a, b, c are rational, i.e., eia, eib, eic ∈ Q(i). Then for cos(m) to be rational
it is necessary and sufficient that cos(a/2) be rational. Since a is already rational, this is
equivalent to a/2 being rational. We need in addition that sin(m) be rational. For this, we
square equation (23) and obtain that

(24) 4 cos2(a/2)− (cos(b) + cos(c))2 = 4 sin2(m) cos2(a/2).
11



We remark that the right-hand side of (24) should be the square of a rational number.
Let

w =
sin(a/2)

1 + cos(a/2)
, u =

sin(b)

1 + cos(b)
, v =

sin(c)

1 + cos(c)
.

After simplification, we must solve

(1− w2)2(1 + u2)2(1 + v2)2 − (1 + w2)2(1− u2v2)2 = t2.

By applying the change of variables

y =
4(u2 + 1)2(w2 − 1)

(uv − 1)3
(2u2v3w4 + v3w4 + u5v2w4 + 3u3v2w4 + uv2w4 + u4vw4 + 3u2vw4

+ vw4 + u5w4 + 2u3w4 − 4u4v3w2 − 4u2v3w2 − 2v3w2 − 2u5v2w2 − 2u3v2w2 − 2uv2w2

− 2u4vw2 + tu2vw2 − 2u2vw2 + tvw2 − 2vw2 − 2u5w2 + tu3w2 − 4u3w2 + tuw2 − 4uw2

+ 2u2v3 + v3 + u5v2 + 3u3v2 + uv2 + u4v − tu2v + 3u2v − tv + v + u5 − tu3 + 2u3 − tu),

x =
2(u2 + 1)2(w2 − 1)(u2v2w2 + v2w2 + u2w2 + w2 − u2v2 − v2 − u2 + t− 1)

(uv − 1)2
,

we get the Weierstrass form

Eu,w : y2 =x(x2 − 4(u4w4 + 3u2w4 + w4 − 2u4w2 − 2u2w2 − 2w2 + u4 + 3u2 + 1)x

+ 4(u2 + 1)4(w − 1)2(w + 1)2(w2 + 1)2)(25)

Thus, we obtain the following result.

Theorem 12. A spherical triangle with rational side b with parameter u and rational half-
side a/2 with parameter w has a rational median (intersecting the side a) if and only if it
corresponds (using the above change of variables) to a rational point on the elliptic curve
Eu,w.

Again in this case we can be more specific about the arithmetic structure of Eu,w.

Lemma 13. Let Eu (resp. Ew) denote the K3-surface over C(w) (resp. C(u)) resulting from
fixing the parameter v (resp. w). The rank of Eu(C(w)) satisfies

2 ≤ rk(Eu(C(w))) ≤ 6,

while the rank of Ew(C(u)) satisfies

2 ≤ rk(Ew(C(u))) ≤ 4.

In addition, the torsion group is isomorphic to Z/2Z, generated by (0, 0).
Finally, the points

P (u,w) =
(
(u2 + 1)2(w2 + 1)2, (u2 − 1)(u2 + 1)2(w2 + 1)3

)
and

Q(u,w) =
(
4u2(w2 + 1)2, 4u(u4 − 1)(w2 − 1)(w2 + 1)2

)
have infinite order on Eu,w and are independent.
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Proof. First notice that the discriminant of Eu,w is given by

disc =4096(u2 + 1)8(w − 1)4(w + 1)4(w2 + 1)4(w2 − 2u2 − 1)(u2w2 − u2 − 2)

× (u2w2 + 2w2 − u2)(2u2w2 + w2 − 1).

First look at Eu(C(w)). We have singularities at w = ±1,±i of type I4, and w = ±
√

2u2 + 1,

±
√
u2+2
u

,± u√
2+u2

,± 1√
2u2+1

of type I1. Applying Shioda–Tate formula (11),

ρ(Eu) = rk(Eu(C(w)) + 2 + 4 · (4− 1) = rk(Eu(C(w)) + 14,

and since ρ(Eu) ≤ 20 for K3-surfaces, we can bound the rank by 6.
For Ew(C(u)), we have singularities at u = ±i of type I8 as well as at the roots of the

other polynomials of type I1. Shioda–Tate formula (11) gives

ρ(Ew) = rk(Ew(C(u)) + 2 + 2 · (8− 1) = rk(Ew(C(u)) + 16,

and since ρ(Eu) ≤ 20, we can bound the rank by 4.
The lower bound for the rank will follow from the fact that P (u,w) and Q(u,w) are

independent points of infinite order. This can be deduced directly from specializing at
u = 2 and v = 2. Indeed, for these values, we obtain the Weierstrass form y2 = x(x2 −
1300x + 562500), P = (625, 9375), Q = (400, 9000). Notice that 2P = (3025

36
,−1343375

216
) and

2Q = (648025
1296

,−420552125
46656

), which have non-integral coordinates, showing that P and Q are of
infinite order. Moreover, the Mordell-Weil group has rank 2 with generators of the free part
given by A = (50, 5000) and B = (1250, 25000), and one verifies directly that P = A − B
and Q = 2B. Thus these points are of infinite order and independent at this specialization,
and since any relation of dependence or finite order would automatically descend to the
specialization, we conclude that these points are also independent and of infinite order over
C(u, v).

Finally, by [MP89, Table 4.5], since the rank is R ≥ 2 and the Euler characteristic is χ = 1,
we conclude that the torsion is either Z/2Z or Z/2Z × Z/2Z, but one can immediately see
that the only point of order 2 is (0, 0), and therefore the torsion is Z/2Z. �

5.1. The case a = b. Here we set a = b in the previous discussion. The goal is to obtain two
(equal) rational medians and three rational sides in an isosceles triangle. This is equivalent
to imposing u = 2w

1−w2 in (25).

Ew : y2
0 =x0

(
x2

0 −
4(w2 + 1)2(w4 + 6w2 + 1)

(w2 − 1)2
x0 +

4(w2 + 1)10

(w2 − 1)6

)
.

Making the change x0 = (w2+1)2

(w2−1)4
x, y0 = (w2+1)3

(w2−1)6
y, we obtain

Ew : y2 =x
(
x2 − 4(w4 + 6w2 + 1)(w2 − 1)2x+ 4(w2 + 1)6(w2 − 1)2

)
.(26)

Looking at the degree of the coefficients, we conclude that χ = 4. We find two points of
infinite order

P (w) =
(
(w2 + 1)4, (w2 + 1)4(w2 − 2w − 1)(w2 + 2w − 1)

)
and

T (w) =
(
2(w − 1)2(w2 + 1)3, 16w2(w − 1)2(w2 + 1)3

)
.

One can check that P and T have infinite order by evaluating at w = 2. This gives
the curve y2 = x(x2 − 1476x + 562500) and P = (625,−4375), T = (250, 8000). We have

13



2P = (75625
196

, 20301875
2744

) and 2T = (15625
16

,−546875
64

), which have non-integral coordinates, showing
that P and T are points of infinite order. Indeed, we find that the curve has rank 2 and a
set of generators for the free part is given by P and T .

As in Theorem 4, we conclude:

Theorem 14. For all but finitely many values of w, there are infinitely many isosceles
triangles with rational sides, two of which correspond to w, and two rational (symmetric)
medians.

6. Area bisector

This section considers the area bisector, the geodesic segment from one vertex, meeting
the opposite side and separating the triangle into two triangles of equal area. For the area
bisector to be rational, we will demand that the length be rational, and also that the half-area
of the triangle be rational.

Consider a spherical triangle with sides a, b, c having opposite angles α, β, γ. Let m denote
the area bisector at angle α, cutting α into α1 and α − α1. Denote by θ the angle at the
intersection of m and a, on the side of α1, and (assume) on the side of β. Thus we have two
triangles: one with angles α1, β, θ and one with α− α1, γ, π − θ.

By the supplemental law of cosines (4) we have

sin(α1) sin(β) cos(c) = cos(θ) + cos(α1) cos(β).

Combining this with the definition of area bisector

2(α1 + θ + β − π) = A i.e. θ = π +
A

2
− α1 − β,

we get

(27) sin(α1) sin(β) cos(c) = − cos

(
A

2
− α1 − β

)
+ cos(α1) cos(β).

Using trigonometric identities, we get

tan(α1) =
cos(β)− cos(A/2) cos(β)− sin(A/2) sin(β)

cos(β) sin(A/2)− cos(A/2) sin(β) + cos(c) sin(β)
.

Using the supplemental law of cosines (4) again:

sin(α) sin(β) cos(c) = cos(γ) + cos(α) cos(β),

we get

tan(α1) =
(cos(A/2)− 1) cos(β) sin(α) + sin(A/2) sin(α) sin(β)

cos(A/2) sin(α) sin(β)− (sin(A/2) sin(α) + cos(α)) cos(β)− cos(γ)
.

Now using cos(γ) = − cos(A− α− β), and expanding the trigonometric identities we get

tan(α1) =−
(
(cos(A/2)− 1) cos(β) sin(α) + sin(A/2) sin(α) sin(β)

)/(
(2 cos(α) sin(A/2)2 − (2 cos(A/2)− 1) sin(A/2) sin(α)) cos(β)

− (2 cos(A/2) cos(α) sin(A/2) + (2 sin(A/2)2 + cos(A/2)− 1) sin(α)) sin(β)
)
.

14



Hence the tangent of α1 is always rational if α, β and A/2 are (i.e. sines and cosines of these
quantities). Thus, for α1 to be a rational angle, we must ask that 1

cos(α1)
∈ Q. Therefore, we

need that
w2 = 1 + tan(α1)2

for some w ∈ Q. Applying the change of variables

n =
sin(A/2)

1 + cos(A/2)
, u =

sin(β)

1 + cos(β)
, t =

sin(α)

1 + cos(α)
,

and clearing a square (substituting w = s2w), we get

w2 =4(n− u)2(nu+ 1)2t4 + 4(n− u)(nu+ 1)(−2n3u+ 3n2u2 − 3n2 + 6nu− u2 + 1)t3

+
(
n6u4 + 2n6u2 − 8n5u3 + 11n4u4 + n6 + 8n5u− 50n4u2 + 64n3u3

− 13n2u4 + 11n4 − 64n3u+ 86n2u2 − 24nu3 + u4 − 13n2 + 24nu− 6u2 + 1
)
t2

+ 4(−n+ u)(nu+ 1)(−2n3u+ 3n2u2 − 3n2 + 6nu− u2 + 1)t+ 4(−n+ u)2(nu+ 1)2,

that has a rational point (t, w) = (0, 2(−n+ u)(nu+ 1)).
We remark that this equation is the same as in [LM21, Section 6] after making the change

of variables u→ −u, t→ −t. Thus we get

En,u : y2 =(x− (n2 + 1)2(nu2 + 2u− n)2)(x2 − (n2 + 1)(n4u4 − 8n2u4 − u4 + 16n3u3(28)

− 16nu3 − 6n4u2 + 32n2u2 − 10u2 − 16n3u+ 16nu+ n4 − 8n2 − 1)x

− (n2 + 1)2(nu2 + 2u− n)2(3n2u2 − u2 − 2n3u+ 6nu− 3n2 + 1)2).

We, therefore, have the following result.

Theorem 15. A spherical Heron triangle with rational half-area with parameter n and ra-
tional angle with parameter u has one rational area bisector if and only if it corresponds to
a rational point of En,u.

The analogue of [LM21, Lemma 6.1] gives us some information about the arithmetic
structure of the K3-surface En, and in particular, that it has a point of infinite order.

Lemma 16. The rank of the K3-surface En satisfies

1 ≤ rk(En(C(u))) ≤ 4.

Moreover, En has a torsion point of order 2 given by ((n2 + 1)2(nu2 + 2u− n)2, 0).
The point

Q(n, u) =
(

0, (n2 + 1)2(nu2 + 2u− n)2(3n2u2 − u2 − 2n3u+ 6nu− 3n2 + 1)
)

is of infinite order.

7. Isosceles triangle with meridians and equator as sides

In this section we consider a special family of spherical triangles. Namely we consider
isosceles triangles with two half-meridians and a piece of the equator as sides. We will set
that the side that is part of the equator has length a. The other two sides have length π/2.
The angles are then α, π/2, π/2. The median/bisector/height corresponding to a is also π/2,
and is, therefore, rational.
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a

α

θ

β1

Figure 2. Schematic picture of the triangles under consideration.

Notice that the law of sines (5) gives sin(α) = sin(a) while the law of cosines (3) gives
cos(a) = cos(α). Thus a and α are rational simultaneously. Assume they are.

Our goal is to study when the other two cevians are rational. Thus consider a cevian d
from B to b, intersecting the side b at angle θ on the side of the vertex A, and dividing the
angle β at B into two angles β1 on the side of the vertex A and π/2 − β1 on the side of a
(see Figure 2).

7.1. Median. If the other two cevians are medians of length m, then they divide the cor-
responding opposite side into two geodesics of length π/4. But the law of cosines (3) gives
cos(m) = cos(π/4) cos(a). Since cos(π/4) is irrational, so is m, unless cos(a) = 0. But this
is only possible when a = α = π/2, and this leads to the equilateral triangle that appears as
the sole solution of Theorem 3.

7.2. Height. If the other two cevians are heights of length h, then θ = π/2, and the triangle
containing the sides a and h must be isosceles since it has two angles of π/2. Thus h = a
and any triangle with a rational gives a solution.

7.3. Bisector. If the other two cevians are bisectors of length [, then β1 = π/4. By the law

of sines (5), sin(θ)
sin(π/2)

= sin(α)
sin([)

. From this

(29) sin(θ) sin([) = sin(α).

The supplemental law of cosines (4) gives

cos(α) =− cos(θ) cos(π/4) + sin(θ) sin(π/4) cos([),

cos(π/2) =− cos(π − θ) cos(π/4) + sin(π − θ) sin(π/4) cos([).

Adding the above equations,

sin(θ) cos([) =
cos(α)

2 sin(π/4)
.

By combining with equation (29) we obtain

tan([) = tan(α)2 sin(π/4).

Since tan(α) is rational, and sin(π/4) is not, we must have tan(α) = 0, and therefore
α = π/2. This leads, once again, to the equilateral triangle that appears as the sole solution
of Theorem 3.
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7.4. Area bisector. If the other two cevians are area bisectors of length v, the areas of the
half-triangles are α + β1 + θ − π and π − β1 − θ. Combining these two equations,

π = α/2 + θ + β1.

By the supplemental law of cosines (4),

sin(β1) sin(α) cos(π/2) = cos(θ) + cos(β1) cos(α).

Writing cos(θ) = − cos(α/2 + β1),

0 = − cos(α/2) cos(β1) + sin(α/2) sin(β1) + cos(β1) cos(α).

This gives

(30) tan(β1) =
cos(α/2)− cos(α)

sin(α/2)
.

Since α+ θ+β1−π is half the area of the triangle, it must be rational, and therefore, θ+β1

is rational, and since α/2 + θ + β1 = π, we conclude that α/2 is rational.
By the law of sines (5) we have

sin(v)

sin(α)
=

sin(π/2)

sin(θ)
=

1

sin(θ)
.

Therefore, we need that sin(θ) be rational.
By the supplemental law of cosines (4),

cos(α) =− cos(θ) cos(β1) + sin(θ) sin(β1) cos(v)(31)

cos(π/2) =− cos(π − θ) cos(π/2− β1) + sin(π − θ) sin(π/2− β1) cos(v)

= cos(θ) sin(β1) + sin(θ) cos(β1) cos(v).(32)

Multiplying (31) by sin(β1), (32) by cos(β1), and adding, we get

cos(α) sin(β1) = sin(θ) cos(v).

From this, we see that sin(β1) must be rational. Since tan(β1) must be rational by (30), then
cos(β1) is also rational. We have then

(33) tan(β1)2 + 1 = w2

Setting

n =
sin(α/2)

1 + cos(α/2)

in (30), combining in (33), and substituting w(n2 + 1)→ w, we get

w2 = n6 − 5n4 + 11n2 + 1.

We will need a lemma.

Lemma 17. The only rational points on the genus 2 curve

C : Y 2 = X6 − 5X4 + 11X2 + 1

are (0,±1) and the two points at infinity.

Note that the points X = 0 correspond to n = 0 and yield a degenerate case with
α = 0. Thus, assuming the lemma, we see that there are no such triangles with rational area
bisectors.
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Proof of Lemma 17. We follow the method due to Flynn an Wetherell [FW99]. Notice that
C is a bielliptic curve of genus 2. C covers two elliptic curves:

Ea : Y 2 = x3 − 5x2 + 11x+ 1,

Eb : Y 2 = x3 + 11x2 − 5x+ 1,

with the maps (X, Y ) → (X2, Y ) and (X, Y ) → (1/X2, Y/X3). Both Ea(Q) = 〈(3, 4)〉 and
Eb(Q) = 〈(−1, 4)〉 have rank 1, and Ea × Eb is isogenous to the Jacobian J of C. Since
the Jacobian has rank 2, the more standard methods for finding rational points, such as
Chabauty’s theorem, cannot be applied.

Our goal is to apply Lemma 1.1(a) from [FW99], to the curve Ea. Let

F a(x) = x3 − 5x2 + 11x+ 1.

F a(x) is an irreducible polynomial over Q. Let ω a root of F a(x).
First we do the 2-descent and find that Ea(Q)/2Ea(Q) = {O, (3, 4)}. Then [FW99,

Lemma 1.1(a)] asserts that if (X, Y ) ∈ C(Q), then x = X2 satisfies one of the following two
equations.

Ea
1 =y2 = x(x2 + (ω − 5)x+ ω2 − 5ω + 11),

Ea
2 =y2 = (3− ω)x(x2 + (ω − 5)x+ ω2 − 5ω + 11).

We remark that Ea
1 has rank 0 and torsion isomorphic to Z/4Z generated by(

ω2

4
− 3ω

2
+

13

4
,
ω2

4
− 3ω

2
+

17

4

)
.

Thus, the only affine points from C(Q) arising from Ea
1 are (0,±1).

We now consider Ea
2 (Q(ω)). A standard descent argument shows that the rank is 1, with

two generators: (0, 0) of order 2 and

P0 =

(
1,−ω

2

2
+ 3ω − 9

2

)
of infinite order. We need to check that there are no extra points with rational x-coordinate.
For this, we apply the argument from Section 2 in [FW99], and reduce modulo 5. (Remark
that the prime 5 satisfies the technical conditions required by [FW99, Eq. (2.13)].) Let us

denote by ˜ the reduction modulo 5. We see that P̃0 has order 28 in Ẽa
2 (F5(ω̃)). Therefore,

any point P of Ea
2 (Q(ω)) can be written unikely as P = S + nQ0, for n ∈ Z, Q0 = 28P0 and

S a point in the set

{kP0, kP0 + (0, 0) : k ∈ Z,−14 < k < 14}.
In the above set the only points that have rational x-coordinate when reduced to Ẽa

2 (F5(ω̃))
are those in

M := {O, (0, 0),±P0,±10P0,±4P0 + (0, 0),±13P0 + (0, 0)}.
Of those, O, (0, 0), and ±P0 have actual rational x-coordinate when viewed in Ea

2 (Q(ω)).
Next we will check that if a point of the form S + nQ0 with S ∈ M has rational x-

coordinate, then necessarily n = 0.
We work modulo 55 as in [FW99, Example 3.1]. Eventually we want to compute the x

coordinate of nQ0 for n an arbitrary integer. To do this efficiently, it is convenient to work
18



on the formal group of the elliptic curve. Thus, we compute the z-coordinate of Q0, where
z = −x/y:

5(343ω2 + 534ω + 379) (mod 55).

In order to multiply by n, we will combine the logarithm and the exponential. Therefore
our next step is to find the log of the z-coordinate of Q0 ([FW99, Eq. (2.9)]):

5(18ω2 + 534ω + 429) (mod 55).

Now we substitute n log(z) into the exponential and find the z-coordinate of nQ0 ([FW99,
Eq. (2.10)]):

(34) 5(18ω2 + 534ω + 429)n+ 53(18ω2 + 5ω + 18)n3 + 54(4ω2 + 4ω + 1)n5 (mod 55).

Finally we compute 1/x ([FW99, Eq. (2.6)]):

52 · 49n2ω2 + 52 · 61n2ω + 52(75n4 + 97n2) (mod 55).

In order to have a rational point of the form nQ0, the coefficients of ω2 and ω must be 0
in Z5. Thus, we must have 52 · 49n2 = 0 in Z5. This has a double root at n = 0, and
Strassman’s Theorem implies that the total number of roots can not exceed 2. Hence, we
conclude that n = 0 is the only possible solution.

One must then do the same procedure for S + nQ0 for each of the elements S ∈M .
To work with (0, 0) + nQ0, we replace the coordinates of (0, 0) and the value of equation

(34) in [FW99, Eq. (2.8)]. This gives

52(97ω2 + 91 + 6ω)n2 + 54 · (3ω2 + 3)n4 (mod 55).

for the z-coordinate of (0, 0) + nQ0. We compute 1/x to get

54 · 4n4ω2 + 54n4ω + 54 · 2n4 (mod 55)

and conclude that n = 0 as before.
For P0 + nQ0, we obtain

1 + 5(231ω2 + 337ω + 405)n+ 52(116ω2 + 30ω + 104)n2 + 53(14ω2 + 21ω + 22)n3

+ 54(4ω2 + 3ω + 3)n4 + 54(ω2 + 4ω + 1)n5 (mod 55)

for the z-coordinate, and

(54 · 3n5 + 54 · 2n4 + 53 · 13n3 + 52 · 71n2 + 5 · 221n+ 971)ω2

+ (54n4 + 53 · 7n3 + 52 · 124n2 + 5 · 174n+ 2028)ω

+ (54n5 + 54 · 4n4 + 53 · 8n3 + 54n2 + 5 · 197n+ 2358) (mod 55)

for 1/x. Since 5 - 971, the coefficient of ω2 cannot be 0 in Z5.
For 10P0 + nQ0, we obtain

(2780ω2 + 1980ω + 1584) + 5(546ω2 + 157ω + 476)n+ 52(112ω2 + 88ω + 100)n2

+ 53(5ω2 + 17ω + 8)n3 + 54(ω2 + 2ω)n4 + 54(4ω2 + 2ω + 4)n5 (mod 55)

for the z-coordinate, and

(54n5 + 54 · 4n4 + 53 · 13n3 + 52 · 42n2 + 5 · 551n+ 2971)ω2

+ (54 · 3n5 + 54n4 + 54 · 3n3 + 54 · 3n2 + 5 · 489n+ 573)ω

+ (54 · 4n5 + 54 · n4 + 54 · 3n3 + 52 · 72n2 + 5 · 503n+ 2058) (mod 55)
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for 1/x. Since 5 - 2971, the coefficient of ω2 cannot be 0 in Z5.
For 4P0 + (0, 0) + nQ0, we have

(2740ω2 + 1325ω + 2769) + 5(389ω2 + 558ω + 499)n+ 52(12ω2 + 98ω + 40)n2

+ 53(20ω2 + 3ω + 17)n3 + 54(ω2 + 2ω)n4 + 54(ω2 + 3ω + 1)n5 (mod 55)

for the z-coordinate, and

(54 · 4n5 + 54 · 4n4 + 53 · 22n3 + 52 · 107n2 + 5 · 259n+ 2356)ω2

+ (54 · 2n5 + 54n4 + 54 · 4n3 + 5 · 136n+ 2788)ω

+ (54n5 + 54n4 + 52 · 47n2 + 5 · 607n+ 313) (mod 55)

for 1/x. Since 5 - 2356, the coefficient of ω2 cannot be 0 in Z5.
For 13P0 + (0, 0) + nQ0, we have

(2585ω2 + 1595ω + 1951) + 5(149ω2 + 388ω + 390)n+ 52(111ω2 + 110ω + 39)n2

+ 53(21ω2 + 9ω + 13)n3 + 54(4ω2 + 3ω + 3)n4 + 54(4ω2 + ω + 4)n5 (mod 55)

for the z-coordinate, and

(54 · 2n5 + 54 · 2n4 + 53 · 12n3 + 52 · 36n2 + 5 · 359n+ 2456)ω2

+ (54n4 + 54 · 3n3 + 52 · 84n2 + 5 · 596n+ 3118)ω

+ (54 · 4n5 + 54 · 4n4 + 53 · 17n3 + 53 · 18n2 + 5 · 403n+ 803) (mod 55),

for 1/x. Since 5 - 2456, the coefficient of ω2 cannot be 0 in Z5.
Finally, remark that we do not have to consider the points of the form −P0+nQ0, −10P0+

nQ0, −4P0 + (0, 0) + nQ0, and −13P0 + (0, 0) + nQ0, separately since these points can be
obtained by multiplying the previous cases by −1.

Thus, we conclude that n = 0. We examine the rational x-coordinates of the S ∈M , and
conclude that the only possibilities for points having rational x-coordinates are 0, 1 coming
from (0, 0) and ±P0. It is immediate to see that X = 1 does not lead to points in C(Q), and
therefore the only possibly solution is X = 0, leading to a degenerate triangle as discussed
before. �

8. Further research

There are many topics of further research based on this current work. First, one could try
considering different versions of “rationality” for triangles. One natural way would be to relax
the condition that all trigonometric functions of the sides and angles/area be rational, and
to call a length/angle rational if, say, its tangent is rational (compare [GM06] and [LM21]).
Another way would be to call a spherical length rational if the length of the straight segment
(inside the sphere) joining its two endpoints is rational. If a denotes the spherical length, it
is not hard to see that this corresponds to sin(a/2) being rational.

Yet another definition of rationality would be that length / angles be rational multiples of
π. It is easy to see that the isosceles triangle with apex on the north pole and bottom side
on the equator of length p

q
π (see Figure 2) has all its sides, angles and area rational in this

sense. It would be interesting to know if there exist triangles having this property that do
not come from this construction.
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It is also interesting to consider the necessary conditions that prevent a spherical triangle
from having multiple rational cevians (heights, medians, area bisectors, etc). This point of
view is, to some extent, opposite to the investigation in Section 7. For example, one can
prove that if a triangle is isosceles with the angle between the identical sides equal to π

2
, then

the medians cannot be rational simultaneously. It is natural then to wonder which of these
assumptions can be lifted.

Another possible direction for further research is the construction of high rank elliptic
curves as in [DP13, IN15]. More specifically, the authors of [IN15] used Heron’s formula
to derive elliptic curves with high ranks. As there is an analog of Heron’s formula in the
spherical world, namely L’Huilier’s formula, it would be interesting to try to construct elliptic
curves with high ranks by adapting the method of [IN15].
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[SSSG+13] Pantelimon Stănică, Santanu Sarkar, Sourav Sen Gupta, Subhamoy Maitra, and Nirupam Kar,
Counting Heron triangles with constraints, Integers 13 (2013), Paper No. A3, 17. MR 3083465

[Tod86] Isaac Todhunter, Spherical trigonometry (fifth edition), Macmillan abd co., 1886.
[vL07] Ronald van Luijk, An elliptic K3 surface associated to Heron triangles, J. Number Theory 123

(2007), no. 1, 92–119. MR 2295433

Sun Yat-sen University (Zhuhai Campus), Tangjawan, Zhuhai, Guangdong 510275, China
Email address: huangth8@mail2.sysu.edu.cn
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