Regulators and computations of Mahler measures

Matilde N. Lalín
University of Alberta
mlalin@math.ualberta.ca
http://www.math.ualberta.ca/~mlalin
Mahler measures conference - Tokyo Institute of Technology
December 2007

Mahler measure of multivariable polynomials

$P \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, the (logarithmic) Mahler measure is :

$$
\begin{aligned}
m(P) & =\int_{0}^{1} \ldots \int_{0}^{1} \log \left|P\left(\mathrm{e}^{2 \pi \mathrm{i} \theta_{1}}, \ldots, \mathrm{e}^{2 \pi \mathrm{i} \theta_{n}}\right)\right| \mathrm{d} \theta_{1} \ldots \mathrm{~d} \theta_{n} \\
& =\frac{1}{(2 \pi \mathrm{i})^{n}} \int_{\mathbb{T}^{n}} \log \left|P\left(x_{1}, \ldots, x_{n}\right)\right| \frac{\mathrm{d} x_{1}}{x_{1}} \ldots \frac{\mathrm{~d} x_{n}}{x_{n}}
\end{aligned}
$$

Smyth (1981)

$$
\begin{gathered}
m(1+x+y)=\frac{3 \sqrt{3}}{4 \pi} \mathrm{~L}\left(\chi_{-3}, 2\right)=\mathrm{L}^{\prime}\left(\chi_{-3},-1\right) \\
\mathrm{L}\left(\chi_{-3}, s\right)=\sum_{n=1}^{\infty} \frac{\chi_{-3}(n)}{n^{s}} \quad \chi_{-3}(n)=\left\{\begin{array}{cl}
1 & n \equiv 1 \bmod 3 \\
-1 & n \equiv-1 \bmod 3 \\
0 & n \equiv 0 \bmod 3
\end{array}\right.
\end{gathered}
$$

Polylogarithms

The kth polylogarithm is

$$
\operatorname{Li}_{k}(x):=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{k}} \quad x \in \mathbb{C}, \quad|x|<1
$$

It has an analytic continuation to $\mathbb{C} \backslash[1, \infty)$.
Zagier:

B_{j} is j th Bernoulli number
 $\widehat{\operatorname{Re}_{k}}=\operatorname{Re}$ or Im if k is odd or even.
 One-valued, real analytic in $\mathbb{P}^{1}(\mathbb{C}) \backslash\{0,1, \infty\}$, continuous in $\mathbb{P}^{1}(\mathbb{C})$.

Polylogarithms

The kth polylogarithm is

$$
\operatorname{Li}_{k}(x):=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{k}} \quad x \in \mathbb{C}, \quad|x|<1
$$

It has an analytic continuation to $\mathbb{C} \backslash[1, \infty)$.
Zagier:

$$
\widehat{\mathcal{L}_{k}}(x): \widehat{\operatorname{Re}_{k}}\left(\sum_{j=0}^{k-1} \frac{2^{j} B_{j}}{j!}(\log |x|)^{j} \operatorname{Li}_{k-j}(x)\right)
$$

B_{j} is j th Bernoulli number
$\widehat{\operatorname{Re}_{k}}=\operatorname{Re}$ or Im if k is odd or even.
One-valued, real analytic in $\mathbb{P}^{1}(\mathbb{C}) \backslash\{0,1, \infty\}$, continuous in $\mathbb{P}^{1}(\mathbb{C})$.
$\widehat{\mathcal{L}_{k}}$ satisfies lots of functional equations

$$
\widehat{\mathcal{L}_{k}}\left(\frac{1}{x}\right)=(-1)^{k-1} \widehat{\mathcal{L}_{k}}(x) \quad \widehat{\mathcal{L}_{k}}(\bar{x})=(-1)^{k-1} \widehat{\mathcal{L}_{k}}(x)
$$

Bloch-Wigner dilogarithm $(k=2)$

$$
D(x):=\operatorname{Im}\left(\operatorname{Li}_{2}(x)\right)+\arg (1-x) \log |x|
$$

Five-term relation

$$
D(x)+D(1-x y)+D(y)+D\left(\frac{1-y}{1-x y}\right)+D\left(\frac{1-x}{1-x y}\right)=0
$$

The relation with regulators

Deninger (1997)

$$
m(P)=m\left(P^{*}\right)+\frac{1}{(-2 \mathrm{i} \pi)^{n-1}} \int_{\Gamma} \eta_{n}(n)\left(x_{1}, \ldots, x_{n}\right)
$$

where

$$
\Gamma=\left\{P\left(x_{1}, \ldots, x_{n}\right)=0\right\} \cap\left\{\left|x_{1}\right|=\cdots=\left|x_{n-1}\right|=1,\left|x_{n}\right| \geq 1\right\}
$$

$\eta_{n}(n)\left(x_{1}, \ldots, x_{n}\right)$ is a $\mathbb{R}(n-1)$-valued smooth $n-1$-form in $X(\mathbb{C})$.

Philosophy of Beilinson's conjectures

Global information from local information through L-functions

- Arithmetic-geometric object X (for instance, $X=\mathcal{O}_{F}, F$ a number field)
- L-function $\left(\mathrm{L}_{F}=\zeta_{F}\right)$
- Finitely-generated abelian group $K\left(K=\mathcal{O}_{F}^{*}\right)$
- Regulator map reg : $K \rightarrow \mathbb{R}($ reg $=\log |\cdot|)$

$$
(K \operatorname{rank} 1) \quad \mathrm{L}_{X}^{\prime}(0) \sim_{\mathbb{Q}^{*}} \operatorname{reg}(\xi)
$$

(Dirichlet class number formula, for F real quadratic, $\left.\zeta_{F}^{\prime}(0) \sim_{\mathbb{Q}^{*}} \log |\epsilon|, \epsilon \in \mathcal{O}_{F}^{*}\right)$

Example:

$$
\eta_{2}(2)(x, y)=\log |x| \operatorname{di} \arg y-\log |y| \operatorname{di} \arg x
$$

Smyth (1981)

by Jensen's equality:

where

$$
\Gamma=\{1+x+y=0\} \cap\{|x|=1,|y| \geq 1\}
$$

Example:

$$
\eta_{2}(2)(x, y)=\log |x| \operatorname{di} \arg y-\log |y| \operatorname{di} \arg x
$$

Smyth (1981)

$$
m(1+x+y)=\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \log |1+x+y| \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y}
$$

by Jensen's equality:

$$
\begin{gathered}
=\frac{1}{2 \pi \mathrm{i}} \int_{\mathbb{T}^{1}} \log ^{+}|1+x| \frac{\mathrm{d} x}{x} \\
=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \log |y| \frac{\mathrm{d} x}{x}=-\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \eta_{2}(2)(x, y)
\end{gathered}
$$

where

$$
\Gamma=\{1+x+y=0\} \cap\{|x|=1,|y| \geq 1\}
$$

but

$$
\eta_{2}(2)(x, 1-x)=\mathrm{d} D(x)
$$

and

$$
m(1+x+y)=-\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \eta_{2}(2)(x, y) \quad 1+x+y=0
$$

Use Stokes Theorem:

$$
m(P)=-\frac{1}{2 \pi} D(\partial \gamma)
$$

$$
2 \pi m(x+y+1)=D\left(\xi_{6}\right)-D\left(\bar{\xi}_{6}\right)=\frac{3 \sqrt{3}}{2} \mathrm{~L}\left(\chi_{-3}, 2\right)
$$

Properties of $\eta_{n}(n)\left(x_{1}, \ldots, x_{n}\right)$

- Multiplicative in each variable, anti-symmetric. $\eta_{n}(n)$ is a function on $\bigwedge^{n}\left(\mathbb{C}(X)^{*}\right)_{\mathbb{Q}}$
- $\mathrm{d} \eta_{n}(n)\left(x_{1}, \ldots, x_{n}\right)=\widehat{\operatorname{Re}_{n}}\left(\frac{\mathrm{~d} x_{1}}{x_{1}} \wedge \cdots \wedge \frac{\mathrm{~d} x_{n}}{x_{n}}\right)$
- $\eta_{n}(n)\left(x, 1-x, x_{1}, \ldots, x_{n-2}\right)=\mathrm{d} \eta_{n-1}(n)\left(x, x_{1}, \ldots, x_{n-2}\right)$

Properties of $\eta_{n}(n)\left(x_{1}, \ldots, x_{n}\right)$

- Multiplicative in each variable, anti-symmetric. $\eta_{n}(n)$ is a function on $\bigwedge^{n}\left(\mathbb{C}(X)^{*}\right)_{\mathbb{Q}}$
- $\mathrm{d} \eta_{n}(n)\left(x_{1}, \ldots, x_{n}\right)=\widehat{\operatorname{Re}_{n}}\left(\frac{\mathrm{~d} x_{1}}{x_{1}} \wedge \cdots \wedge \frac{\mathrm{~d} x_{n}}{x_{n}}\right)$

Properties of $\eta_{n}(n)\left(x_{1}, \ldots, x_{n}\right)$

- Multiplicative in each variable, anti-symmetric. $\eta_{n}(n)$ is a function on $\bigwedge^{n}\left(\mathbb{C}(X)^{*}\right)_{\mathbb{Q}}$
- $\mathrm{d} \eta_{n}(n)\left(x_{1}, \ldots, x_{n}\right)=\widehat{\operatorname{Re}_{n}}\left(\frac{\mathrm{~d} x_{1}}{x_{1}} \wedge \cdots \wedge \frac{\mathrm{~d} x_{n}}{x_{n}}\right)$
- $\eta_{n}(n)\left(x, 1-x, x_{1}, \ldots, x_{n-2}\right)=\mathrm{d} \eta_{n-1}(n)\left(x, x_{1}, \ldots, x_{n-2}\right)$

Examples

$$
\eta_{2}(2)(x, 1-x)=\mathrm{d} \widehat{D}(x)
$$

$$
\begin{array}{r}
\eta_{3}(3)(x, y, z)=\log |x|\left(\frac{1}{3} \mathrm{~d} \log |y| \wedge d \log |z|+\operatorname{di} \arg y \wedge \operatorname{di} \arg z\right) \\
+\log |y|\left(\frac{1}{3} \mathrm{~d} \log |z| \wedge d \log |x|+\operatorname{di} \arg z \wedge \operatorname{di} \arg x\right) \\
+\log |z|\left(\frac{1}{3} \mathrm{~d} \log |x| \wedge d \log |y|+\operatorname{di} \arg x \wedge \operatorname{di} \arg y\right) \\
\\
\eta_{3}(3)(x, 1-x, y)=d \eta_{3}(2)(x, y) \\
\eta_{3}(2)(x, y) \\
=\widehat{D}(x) \operatorname{di} \arg y+\frac{1}{3} \log |y|(\log |1-x| d \log |x|-\log |x| d \log |1-x|)
\end{array}
$$

Examples

$$
\eta_{2}(2)(x, 1-x)=\mathrm{d} \widehat{D}(x)
$$

$$
\begin{gathered}
\eta_{3}(3)(x, y, z)=\log |x|\left(\frac{1}{3} \mathrm{~d} \log |y| \wedge \mathrm{d} \log |z|+\operatorname{di} \arg y \wedge \operatorname{di} \arg z\right) \\
+\log |y|\left(\frac{1}{3} \mathrm{~d} \log |z| \wedge \mathrm{d} \log |x|+\operatorname{diarg} z \wedge \operatorname{di} \arg x\right) \\
+\log |z|\left(\frac{1}{3} \mathrm{~d} \log |x| \wedge \mathrm{d} \log |y|+\operatorname{di} \arg x \wedge \operatorname{di} \arg y\right) \\
\\
\eta_{3}(3)(x, 1-x, y)=\mathrm{d} \eta_{3}(2)(x, y) \\
\eta_{3}(2)(x, y) \\
=\widehat{D}(x) \operatorname{di} \arg y+\frac{1}{3} \log |y|(\log |1-x| \mathrm{d} \log |x|-\log |x| \mathrm{d} \log |1-x|)
\end{gathered}
$$

First variable in $\eta_{n}(n-1)$ behaves like the five-term relation

$$
[x]+[y]+[1-x y]+\left[\frac{1-x}{1-x y}\right]+\left[\frac{1-x}{1-x y}\right]
$$

First variable in $\eta_{n}(n-2)$ behaves like rational functional equations of \mathcal{L}_{3}.

$$
\eta_{n}(2)(x, x)=\mathrm{d} \eta_{n}(1)(x)
$$

First variable in $\eta_{n}(n-1)$ behaves like the five-term relation

$$
[x]+[y]+[1-x y]+\left[\frac{1-x}{1-x y}\right]+\left[\frac{1-x}{1-x y}\right]
$$

Now

$$
\eta_{n}(n-1)\left(x, x, x_{1}, \ldots, x_{n-3}\right)=\mathrm{d} \eta_{n}(n-2)\left(x, x_{1}, \ldots, x_{n-3}\right)
$$

First variable in $\eta_{n}(n-2)$ behaves like rational functional equations of \mathcal{L}_{3}.
$\eta_{n}(2)(x, x)=\mathrm{d} \eta_{n}(1)(x)$

First variable in $\eta_{n}(n-1)$ behaves like the five-term relation

$$
[x]+[y]+[1-x y]+\left[\frac{1-x}{1-x y}\right]+\left[\frac{1-x}{1-x y}\right]
$$

Now

$$
\eta_{n}(n-1)\left(x, x, x_{1}, \ldots, x_{n-3}\right)=\mathrm{d} \eta_{n}(n-2)\left(x, x_{1}, \ldots, x_{n-3}\right)
$$

First variable in $\eta_{n}(n-2)$ behaves like rational functional equations of \mathcal{L}_{3}.

$$
\eta_{n}(2)(x, x)=\mathrm{d} \eta_{n}(1)(x)
$$

and

$$
\eta_{n}(1)(x)=\widehat{\mathcal{L}_{n}}(x)
$$

Example in three variables

Smyth (1981)

$$
\begin{gathered}
m(1-x+(1-y) z)=\frac{7}{2 \pi^{2}} \zeta(3) \\
m(P)=m(1-y)-\frac{1}{(2 \pi)^{2}} \int_{\Gamma} \eta_{3}(3)(x, y, z) . \\
x \wedge y \wedge z=-x \wedge(1-x) \wedge y-y \wedge(1-y) \wedge x,
\end{gathered}
$$

$$
x \wedge y \wedge z=-x \wedge(1-x) \wedge y-y \wedge(1-y) \wedge x
$$

in other words,

$$
\eta_{3}(3)(x, y, z)=-\eta_{3}(3)(x, 1-x, y)-\eta_{3}(3)(y, 1-y, x) .
$$

We have

$$
m((1-x)+(1-y) z)=\frac{1}{4 \pi^{2}} \int_{\gamma} \eta_{3}(2)(x, y)+\eta_{3}(2)(y, x) .
$$

$$
\begin{aligned}
& \Gamma=\{P(x, y, z)=0\} \cap\{|x|=|y|=1,|z| \geq 1\} \\
& \partial \Gamma=\{P(x, y, z)=0\} \cap\{|x|=|y|=|z|=1\}
\end{aligned}
$$

Maillot: $P \in \mathbb{R}[x, y, z]$,

$$
\begin{gathered}
\gamma=\left\{P(x, y, z)=P\left(x^{-1}, y^{-1}, z^{-1}\right)=0\right\} \cap\{|x|=|y|=1\} \\
C=\left\{P(x, y, z)=P\left(x^{-1}, y^{-1}, z^{-1}\right)=0\right\} \\
\frac{(1-x)\left(1-x^{-1}\right)}{(1-y)\left(1-y^{-1}\right)}=1 \\
C=\{x=y\} \cup\{x y=1\}
\end{gathered}
$$

$$
-\{x\}_{2} \otimes y-\{y\}_{2} \otimes x= \pm 2\{x\}_{2} \otimes x .
$$

$$
m((1-x)+(1-y) z)=\frac{1}{4 \pi^{2}} 8\left(\mathcal{L}_{3}(1)-\mathcal{L}_{3}(-1)\right)=\frac{7}{2 \pi^{2}} \zeta(3) .
$$

Other examples

Boyd \& L. (2005)

$$
\begin{aligned}
& m\left(x^{2}+1+(x+1) y+(x-1) z\right)=\frac{\mathrm{L}\left(\chi_{-4}, 2\right)}{\pi}+\frac{21}{8 \pi^{2}} \zeta(3) \\
& m\left(x^{2}+x+1+(x+1) y+z\right)=\frac{\sqrt{3}}{4 \pi} \mathrm{~L}\left(\chi_{-3}, 2\right)+\frac{19}{6 \pi^{2}} \zeta(3)
\end{aligned}
$$

An example in four variables

L.(2003)
$\pi^{3} m\left(1+x+\left(\frac{1-x_{1}}{1+x_{1}}\right)(1+y) z\right)=2 \pi^{2} \mathrm{~L}\left(\chi_{-4}, 2\right)+8 \sum_{0 \leq j<k} \frac{(-1)^{j+k+1}}{(2 j+1)^{3} k}$
(2005)

$$
=24 \mathrm{~L}\left(\chi_{-4}, 4\right)
$$

In general, for m odd,

An example in four variables

L.(2003)
$\pi^{3} m\left(1+x+\left(\frac{1-x_{1}}{1+x_{1}}\right)(1+y) z\right)=2 \pi^{2} \mathrm{~L}\left(\chi_{-4}, 2\right)+8 \sum_{0 \leq j<k} \frac{(-1)^{j+k+1}}{(2 j+1)^{3} k}$
(2005)

$$
=24 \mathrm{~L}\left(\chi_{-4}, 4\right)
$$

In general, for m odd,

An example in four variables

L.(2003)
$\pi^{3} m\left(1+x+\left(\frac{1-x_{1}}{1+x_{1}}\right)(1+y) z\right)=2 \pi^{2} \mathrm{~L}\left(\chi_{-4}, 2\right)+8 \sum_{0 \leq j<k} \frac{(-1)^{j+k+1}}{(2 j+1)^{3} k}$
(2005)

$$
=24 \mathrm{~L}\left(\chi_{-4}, 4\right)
$$

In general, for m odd,

$$
\begin{gathered}
\sum_{0 \leq j<k} \frac{(-1)^{j+k+1}}{(2 j+1)^{m} k} \\
=m \mathrm{~L}\left(\chi_{-4}, m+1\right)+\sum_{h=1}^{\frac{m-1}{2}} \frac{(-1)^{h} \pi^{2 h}\left(2^{2 h}-1\right)}{(2 h)!} B_{2 h} \mathrm{~L}\left(\chi_{-4}, m-2 h+1\right),
\end{gathered}
$$

Generalized Mahler measure

Gon \& Oyanagi (2004)
For $f_{1}, \ldots, f_{r} \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$,

$$
m\left(f_{1}, \ldots, f_{r}\right)=\frac{1}{(2 \pi \mathrm{i})^{n}} \int_{\mathbb{T}^{n}} \max \left\{\log \left|f_{1}\right|, \ldots, \log \left|f_{r}\right|\right\} \frac{\mathrm{d} x_{1}}{x_{1}} \cdots \frac{\mathrm{~d} x_{n}}{x_{n}}
$$

Generalized Mahler measure

Gon \& Oyanagi (2004)
For $f_{1}, \ldots, f_{r} \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$,

$$
m\left(f_{1}, \ldots, f_{r}\right)=\frac{1}{(2 \pi \mathrm{i})^{n}} \int_{\mathbb{T}^{n}} \max \left\{\log \left|f_{1}\right|, \ldots, \log \left|f_{r}\right|\right\} \frac{\mathrm{d} x_{1}}{x_{1}} \cdots \frac{\mathrm{~d} x_{n}}{x_{n}}
$$

Note

$$
m\left(f_{1}, f_{2}\right)=m\left(f_{1}+z f_{2}\right)
$$

Examples

The particular case when $f_{j}=P\left(x_{j}\right)$ for some $P \in \mathbb{C}[x]$. Gon \& Oyanagi (2004)

$$
\begin{gathered}
m\left(1-x_{1}, \ldots, 1-x_{n}\right)=\sum_{j=1}^{\left[\frac{n}{2}\right]} c_{j, n} \frac{\zeta(2 j+1)}{\pi^{2 j}} \\
m\left(1-x_{1}, 1-x_{2}\right)=\frac{7}{2 \pi^{2}} \zeta(3) \\
m\left(1-x_{1}, 1-x_{2}, 1-x_{3}\right)=\frac{9}{2 \pi^{2}} \zeta(3) \\
m\left(1-x_{1}, 1-x_{2}, 1-x_{3}, 1-x_{4}\right)=-\frac{93}{2 \pi^{4}} \zeta(5)+\frac{9}{\pi^{2}} \zeta(3)
\end{gathered}
$$

Can be also computed using regulators.
$|P(x)|$ is montononous when $0 \leq \arg x \leq \pi$.
In this case, $|P(x)|=2\left|\sin \frac{\arg x}{2}\right|$.

$$
m\left(P\left(x_{1}\right), \ldots, P\left(x_{n}\right)\right)=\frac{n!}{(\pi \mathrm{i})^{n}} \int_{0 \leq \arg x_{n} \leq \cdots \leq \arg x_{1} \leq \pi} \eta\left(P\left(x_{1}\right), x_{1}, \ldots, x_{n}\right)
$$

L. (2005)

$$
\begin{gathered}
m\left(\frac{1-x_{1}}{1+x_{1}}, \ldots, \frac{1-x_{n}}{1+x_{n}}\right)=\sum_{j=1}^{\left[\frac{n}{2}\right]} c_{j, n}^{\prime} \frac{\zeta(2 j+1)}{\pi^{2 j}} \\
m\left(\frac{1-x_{1}}{1+x_{1}}, \frac{1-x_{2}}{1+x_{2}}\right)=\frac{7}{\pi^{2}} \zeta(3) \\
m\left(\frac{1-x_{1}}{1+x_{1}}, \ldots, \frac{1-x_{3}}{1+x_{3}}\right)=\frac{21}{2 \pi^{2}} \zeta(3) \\
m\left(\frac{1-x_{1}}{1+x_{1}}, \ldots, \frac{1-x_{4}}{1+x_{4}}\right)=-\frac{93}{\pi^{4}} \zeta(5)+\frac{21}{\pi^{2}} \zeta(3)
\end{gathered}
$$

$m\left(1+x_{1}-x_{1}^{-1}, \ldots, 1+x_{n}-x_{n}^{-1}\right)=$ combination of polylogarithms.
$m\left(1+x_{1}-x_{1}^{-1}\right)=-\log (\varphi)$,
$m\left(1+x_{1}-x_{1}^{-1}, 1+x_{2}-x_{2}^{-1}\right)$
$=\frac{1}{\pi^{2}} \operatorname{Re}\left(\operatorname{Li}_{3}\left(\varphi^{2}\right)-\operatorname{Li}_{3}\left(-\varphi^{2}\right)+\operatorname{Li}_{3}\left(\varphi^{-2}\right)-\operatorname{Li}_{3}\left(-\varphi^{-2}\right)\right)$
for $\varphi=\frac{-1+\sqrt{5}}{2}$.

A result about generalized Mahler measure

Let $P \in \mathbb{C}\left(x_{1}, \ldots, x_{n}\right)$ and let $f_{i}=P\left(x_{i, 1}, \ldots, x_{i, n}\right)$ for $i=1, \ldots r$. Then

$$
\lim _{r \rightarrow \infty} m\left(f_{1}, \ldots, f_{r}\right)=\log \|P\|_{\infty}
$$

where $\|\cdot\|_{\infty}$ stands for the sup norm on \mathbb{T}^{n}.

Functional equations for Mahler measures of genus-one curves

(joint with Mathew D. Rogers) Matilde N. Lalín

University of Alberta mlalin@math.ualberta.ca
http://www.math.ualberta.ca/~mlalin

Mahler measures conference - Tokyo Institute of Technology December 2007

Mahler measure of multivariable polynomials

$P \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, the (logarithmic) Mahler measure is :

$$
\begin{aligned}
m(P) & =\int_{0}^{1} \ldots \int_{0}^{1} \log \left|P\left(\mathrm{e}^{2 \pi \mathrm{i} \theta_{1}}, \ldots, \mathrm{e}^{2 \pi \mathrm{i} \theta_{n}}\right)\right| \mathrm{d} \theta_{1} \ldots \mathrm{~d} \theta_{n} \\
& =\frac{1}{(2 \pi \mathrm{i})^{n}} \int_{\mathbb{T}^{n}} \log \left|P\left(x_{1}, \ldots, x_{n}\right)\right| \frac{\mathrm{d} x_{1}}{x_{1}} \ldots \frac{\mathrm{~d} x_{n}}{x_{n}}
\end{aligned}
$$

The measures of a family of genus-one curves

$$
m(k):=m\left(x+\frac{1}{x}+y+\frac{1}{y}+k\right)
$$

Boyd 1998

$$
m(k) \stackrel{?}{=} \frac{L^{\prime}\left(E_{k}, 0\right)}{s_{k}} \quad k \in \mathbb{N} \neq 0,4
$$

E_{k} determined by $x+\frac{1}{x}+y+\frac{1}{y}+k=0$.
Deninger 1997

L-functions \leftarrow Beilinson's conjectures
Kronecker-Eisenstein series for $k=1$

The measures of a family of genus-one curves

$$
m(k):=m\left(x+\frac{1}{x}+y+\frac{1}{y}+k\right)
$$

Boyd 1998

$$
m(k) \stackrel{?}{=} \frac{L^{\prime}\left(E_{k}, 0\right)}{s_{k}} \quad k \in \mathbb{N} \neq 0,4
$$

E_{k} determined by $x+\frac{1}{x}+y+\frac{1}{y}+k=0$.
Deninger 1997

L-functions \leftarrow Beilinson's conjectures
Kronecker-Eisenstein series for $k=1$

The measures of a family of genus-one curves

$$
m(k):=m\left(x+\frac{1}{x}+y+\frac{1}{y}+k\right)
$$

Boyd 1998

$$
m(k) \stackrel{?}{=} \frac{L^{\prime}\left(E_{k}, 0\right)}{s_{k}} \quad k \in \mathbb{N} \neq 0,4
$$

E_{k} determined by $x+\frac{1}{x}+y+\frac{1}{y}+k=0$.
Deninger 1997
L-functions \leftarrow Beilinson's conjectures
Kronecker-Eisenstein series for $k=1$

Rodriguez-Villegas 1997
$k=4 \sqrt{2}(C M$ case $)$

$$
m(4 \sqrt{2})=m\left(x+\frac{1}{x}+y+\frac{1}{y}+4 \sqrt{2}\right)=\mathrm{L}^{\prime}\left(E_{4 \sqrt{2}}, 0\right)
$$

$k=3 \sqrt{2}\left(\right.$ modular curve $\left.X_{0}(24)\right)$

$$
\begin{gathered}
m(3 \sqrt{2})=m\left(x+\frac{1}{x}+y+\frac{1}{y}+3 \sqrt{2}\right)=q \mathrm{~L}^{\prime}\left(E_{3 \sqrt{2}}, 0\right) \\
q \in \mathbb{Q}^{*}, \quad q \stackrel{?}{=} \frac{5}{2}
\end{gathered}
$$

Theorem

(Rodriguez-Villegas) $E_{k} \sim$ modular elliptic surface assoc $\Gamma_{0}(4)$.

$$
\begin{aligned}
m(k) & =\operatorname{Re}\left(\frac{16 y_{\mu}}{\pi^{2}} \sum_{m, n}^{\prime} \frac{\chi_{-4}(m)}{(m+n 4 \mu)^{2}(m+n 4 \bar{\mu})}\right) \\
& =\operatorname{Re}\left(-\pi \mathrm{i} \mu+2 \sum_{n=1}^{\infty} \sum_{d \mid n} \chi_{-4}(d) d^{2} \frac{q^{n}}{n}\right)
\end{aligned}
$$

where $j\left(E_{k}\right)=j\left(-\frac{1}{4 \mu}\right)$

$$
q=\mathrm{e}^{2 \pi \mathrm{i} \mu}=q\left(\frac{16}{k^{2}}\right)=\exp \left(-\pi \frac{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1,1-\frac{16}{k^{2}}\right)}{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1, \frac{16}{k^{2}}\right)}\right)
$$

and y_{μ} is the imaginary part of μ.

Theorem

(Kurokawa \& Ochiai 2005)
For $h \in \mathbb{R}^{*}$,

$$
m\left(4 h^{2}\right)+m\left(\frac{4}{h^{2}}\right)=2 m\left(2\left(h+\frac{1}{h}\right)\right) .
$$

(L. \& Rogers 2007)

For $|h|<1, h \neq 0$,

$$
m\left(2\left(h+\frac{1}{h}\right)\right)+m\left(2\left(\mathrm{i} h+\frac{1}{\mathrm{i} h}\right)\right)=m\left(\frac{4}{h^{2}}\right) .
$$

Theorem

(Kurokawa \& Ochiai 2005)
For $h \in \mathbb{R}^{*}$,

$$
m\left(4 h^{2}\right)+m\left(\frac{4}{h^{2}}\right)=2 m\left(2\left(h+\frac{1}{h}\right)\right) .
$$

(L. \& Rogers 2007)

For $|h|<1, h \neq 0$,

$$
m\left(2\left(h+\frac{1}{h}\right)\right)+m\left(2\left(\mathrm{i} h+\frac{1}{\mathrm{i} h}\right)\right)=m\left(\frac{4}{h^{2}}\right) .
$$

$$
m\left(2\left(h+\frac{1}{h}\right)\right)-m\left(2\left(\mathrm{i} h+\frac{1}{\mathrm{i} h}\right)\right)=m\left(4 h^{2}\right) .
$$

Corollary

$$
m(8)=4 m(2)=\frac{8}{5} m(3 \sqrt{2})
$$

$$
m(3 \sqrt{2})=q \mathrm{~L}^{\prime}\left(E_{3 \sqrt{2}}, 0\right)
$$

Corollary

$$
m(8)=4 m(2)=\frac{8}{5} m(3 \sqrt{2})
$$

$$
\begin{gathered}
m(3 \sqrt{2})=q \mathrm{~L}^{\prime}\left(E_{3 \sqrt{2}}, 0\right) \\
q \in \mathbb{Q}^{*}, \quad q \stackrel{?}{=} \frac{5}{2}
\end{gathered}
$$

The elliptic regulator

F field. Matsumoto Theorem:

$$
K_{2}(F)=\langle\{a, b\}, a, b \in F\rangle /\langle\text { bilinear, }\{a, 1-a\}\rangle
$$

$K_{2}(E) \otimes \mathbb{Q}$ subgroup of $K_{2}(\mathbb{Q}(E)) \otimes \mathbb{Q}$ determined by kernels of tame symbols.

$$
\eta(x, y):=\log |x| \mathrm{d} \arg y-\log |y| \mathrm{d} \arg x
$$

The elliptic regulator

F field. Matsumoto Theorem:

$$
K_{2}(F)=\langle\{a, b\}, a, b \in F\rangle /\langle\text { bilinear, }\{a, 1-a\}\rangle
$$

$K_{2}(E) \otimes \mathbb{Q}$ subgroup of $K_{2}(\mathbb{Q}(E)) \otimes \mathbb{Q}$ determined by kernels of tame symbols.
$x, y \in \mathbb{C}(E)$

$$
\eta(x, y):=\log |x| \mathrm{d} \arg y-\log |y| \mathrm{d} \arg x
$$

1-form on $E(\mathbb{C}) \backslash S$
for any loop $\gamma \in E(\mathbb{C}) \backslash S$

The elliptic regulator

F field. Matsumoto Theorem:

$$
K_{2}(F)=\langle\{a, b\}, a, b \in F\rangle /\langle\text { bilinear, }\{a, 1-a\}\rangle
$$

$K_{2}(E) \otimes \mathbb{Q}$ subgroup of $K_{2}(\mathbb{Q}(E)) \otimes \mathbb{Q}$ determined by kernels of tame symbols.
$x, y \in \mathbb{C}(E)$

$$
\eta(x, y):=\log |x| \mathrm{d} \arg y-\log |y| \mathrm{d} \arg x
$$

1-form on $E(\mathbb{C}) \backslash S$ for any loop $\gamma \in E(\mathbb{C}) \backslash S$

$$
(\gamma, \eta(x, y))=\frac{1}{2 \pi} \int_{\gamma} \eta(x, y)
$$

The regulator map (Beilinson, Bloch):

$$
\begin{aligned}
& r: K_{2}(E) \otimes \mathbb{Q} \rightarrow H^{1}(E, \mathbb{R}) \\
& \{x, y\} \rightarrow\left\{\gamma \rightarrow \int_{\gamma} \eta(x, y)\right\}
\end{aligned}
$$

for $\gamma \in H_{1}(E, \mathbb{Z}) .\left(H^{1}(E, \mathbb{R})\right.$ dual of $\left.H_{1}(E, \mathbb{Z})\right)$
Follows from $\eta(x, 1-x)=\mathrm{d} D(x)$,

$$
D(x)=\operatorname{Im}\left(\operatorname{Li}_{2}(x)\right)+\arg (1-x) \log |x|
$$

is the Bloch-Wigner dilogarithm

The relation with Mahler measures

Deninger

$$
m(k) \sim_{\mathbb{Z}} \frac{1}{2 \pi} r(\{x, y\})(\gamma)
$$

In the example,

$$
\begin{gathered}
y P_{k}(x, y)=\left(y-y_{(1)}(x)\right)\left(y-y_{(2)}(x)\right), \\
m(k)=\frac{1}{2 \pi \mathrm{i}} \int_{\mathbb{T}^{1}}\left(\log ^{+}\left|y_{(1)}(x)\right|+\log ^{+}\left|y_{(2)}(x)\right|\right) \frac{\mathrm{d} x}{x} .
\end{gathered}
$$

By Jensen's formula respect to y.

$$
m(k)=\frac{1}{2 \pi \mathrm{i}} \int_{\mathbb{T}^{1}} \log |y| \frac{\mathrm{d} x}{x}=-\frac{1}{2 \pi} \int_{\mathbb{T}^{1}} \eta(x, y),
$$

$\mathbb{T}^{1} \in H_{1}(E, \mathbb{Z})$.

Computing the regulator

$$
E(\mathbb{C}) \cong \mathbb{C} / \mathbb{Z}+\tau \mathbb{Z} \cong \mathbb{C}^{*} / q^{\mathbb{Z}}
$$

$z \bmod \Lambda=\mathbb{Z}+\tau \mathbb{Z}$ is identified with $\mathrm{e}^{2 i \pi z}$.
Bloch regulator function

$$
R_{\tau}\left(\mathrm{e}^{2 \pi \mathrm{i}(a+b \tau)}\right)=\frac{y_{\tau}^{2}}{\pi} \sum_{m, n \in \mathbb{Z}}^{\prime} \frac{\mathrm{e}^{2 \pi \mathrm{i}(b n-a m)}}{(m \tau+n)^{2}(m \bar{\tau}+n)}
$$

y_{τ} is the imaginary part of τ.
Elliptic dilogarithm

$$
D_{\tau}(z):=\sum_{n \in \mathbb{Z}} D\left(z q^{n}\right)
$$

Regulator function given by

$$
R_{\tau}=D_{\tau}-\mathrm{i} J_{\tau}
$$

$\mathbb{Z}[E(\mathbb{C})]^{-}=\mathbb{Z}[E(\mathbb{C})] / \sim \quad[-P] \sim-[P]$.
R_{τ} is an odd function,

$$
\mathbb{Z}[E(\mathbb{C})]^{-} \rightarrow \mathbb{C}
$$

$$
(x)=\sum m_{i}\left(a_{i}\right), \quad(y)=\sum n_{j}\left(b_{j}\right) .
$$

$$
\mathbb{C}(E)^{*} \otimes \mathbb{C}(E)^{*} \rightarrow \mathbb{Z}[E(\mathbb{C})]^{-}
$$

$$
(x) \diamond(y)=\sum m_{i} n_{j}\left(a_{i}-b_{j}\right) .
$$

Proposition

E / \mathbb{R} elliptic curve, x, y are non-constant functions in $\mathbb{C}(E)$ with trivial tame symbols, $\omega \in \Omega^{1}$

$$
-r(\{x, y\})=-\int_{\gamma} \eta(x, y)=\operatorname{Im}\left(\frac{\Omega}{y_{\tau} \Omega_{0}} R_{\tau}((x) \diamond(y))\right)
$$

where Ω_{0} is the real period and $\Omega=\int_{\gamma} \omega$.
Use results of Beilinson, Bloch, Deninger

Idea of Proof

$$
x+\frac{1}{x}+y+\frac{1}{y}+k=0
$$

Weierstrass form:

$$
\begin{gathered}
x=\frac{k X-2 Y}{2 X(X-1)} \quad y=\frac{k X+2 Y}{2 X(X-1)} \\
Y^{2}=X\left(X^{2}+\left(\frac{k^{2}}{4}-2\right) X+1\right)
\end{gathered}
$$

$P=\left(1, \frac{k}{2}\right)$, torsion point of order 4.

$$
(x) \diamond(y)=4(P)-4(-P)=8(P)
$$

$$
\begin{gathered}
P \equiv-\frac{1}{4} \quad \bmod \mathbb{Z}+\tau \mathbb{Z} \quad k \in \mathbb{R} \\
\tau=\mathrm{i} y_{\tau} \quad k \in \mathbb{R},|k|>4 \\
\tau=\frac{1}{2}+\mathrm{i} y_{\tau} \quad k \in \mathbb{R},|k|<4
\end{gathered}
$$

Understand cycle $[|x|=1] \in H_{1}(E, \mathbb{Z})$

$$
\Omega=\tau \Omega_{0} \quad k \in \mathbb{R}
$$

$$
-r(\{x, y\})=-\int_{\gamma} \eta(x, y)=\operatorname{Im}\left(\frac{\Omega}{y_{\tau} \Omega_{0}} R_{\tau}((x) \diamond(y))\right)
$$

$$
m(k)=\frac{4}{\pi} \operatorname{Im}\left(\frac{\tau}{y_{\tau}} R_{\tau}(-\mathrm{i})\right), \quad k \in \mathbb{R}
$$

$$
m(k)=\frac{4}{\pi} \operatorname{Im}\left(\frac{\tau}{y_{\tau}} R_{\tau}(-\mathrm{i})\right), \quad k \in \mathbb{R}
$$

Take $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right) \in S L_{2}(\mathbb{Z})$.

$$
m(k)=-\frac{4|\tau|^{2}}{\pi y_{\tau}} J_{-\frac{1}{\tau}}\left(\mathrm{e}^{-\frac{2 \pi \mathrm{i}}{4 \tau}}\right)
$$

If we let $\mu=-\frac{1}{4 \tau}$, then

$$
\begin{gathered}
m(k)=-\frac{1}{\pi y_{\mu}} J_{4 \mu}\left(\mathrm{e}^{2 \pi \mathrm{i} \mu}\right) \\
=\operatorname{Re}\left(\frac{16 y_{\mu}}{\pi^{2}} \sum_{m, n}^{\prime} \frac{\chi_{-4}(m)}{(m+n 4 \mu)^{2}(m+n 4 \bar{\mu})}\right)
\end{gathered}
$$

Functional equations for the regulator

From

$$
J(z)=p \sum_{x^{p}=z} J(x)
$$

Let p prime,
$\left(1+\chi_{-4}(p) p^{2}\right) J_{4 \tau}\left(\mathrm{e}^{2 \pi \mathrm{i} \tau}\right)=\sum_{j=0}^{p-1} p J_{\frac{4(\tau+j)}{p}}\left(\mathrm{e}^{\frac{2 \pi \mathrm{i}(\tau+j)}{p}}\right)+\chi_{-4}(p) J_{4 p \tau}\left(\mathrm{e}^{2 \pi \mathrm{i} p \tau}\right)$

- In particular, $p=2$,

- Also:

Functional equations for the regulator

From

$$
J(z)=p \sum_{x^{p}=z} J(x)
$$

Let p prime,
$\left(1+\chi_{-4}(p) p^{2}\right) J_{4 \tau}\left(\mathrm{e}^{2 \pi \mathrm{i} \tau}\right)=\sum_{j=0}^{p-1} p J_{\frac{4(\tau+j)}{p}}\left(\mathrm{e}^{\frac{2 \pi \mathrm{i}(\tau+j)}{p}}\right)+\chi_{-4}(p) J_{4 p \tau}\left(\mathrm{e}^{2 \pi \mathrm{i} p \tau}\right)$

- In particular, $p=2$,

$$
J_{4 \tau}\left(\mathrm{e}^{2 \pi \mathrm{i} \tau}\right)=2 J_{2 \tau}\left(\mathrm{e}^{\pi \mathrm{i} \tau}\right)+2 J_{2(\tau+1)}\left(\mathrm{e}^{\pi \mathrm{i}(\tau+1)}\right)
$$

- Also:

$$
J_{\frac{2 \tau+1}{2}}\left(\mathrm{e}^{\pi \mathrm{i} \tau}\right)=J_{2 \tau}\left(\mathrm{e}^{\pi \mathrm{i} \tau}\right)-J_{2 \tau}\left(-\mathrm{e}^{\pi \mathrm{i} \tau}\right)
$$

$$
q=q\left(\frac{16}{k^{2}}\right)=\exp \left(-\pi \frac{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1,1-\frac{16}{k^{2}}\right)}{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1, \frac{16}{k^{2}}\right)}\right)
$$

Second degree modular equation, $|h|<1, h \in \mathbb{R}$,

$$
q^{2}\left(\left(\frac{2 h}{1+h^{2}}\right)^{2}\right)=q\left(h^{4}\right) .
$$

$h \rightarrow \mathrm{i} h$

$$
-q\left(\left(\frac{2 h}{1+h^{2}}\right)^{2}\right)=q\left(\left(\frac{2 \mathrm{i} h}{1-h^{2}}\right)^{2}\right) .
$$

From

$$
J_{4 \tau}\left(\mathrm{e}^{2 \pi \mathrm{i} \tau}\right)=2 J_{2 \tau}\left(\mathrm{e}^{\pi \mathrm{i} \tau}\right)+2 J_{2(\tau+1)}\left(\mathrm{e}^{\mathrm{\pi i}(\tau+1)}\right)
$$

One gets

$$
\begin{gathered}
m\left(q\left(\left(\frac{2 h}{1+h^{2}}\right)^{2}\right)\right)+m\left(q\left(\left(\frac{2 \mathrm{i} h}{1-h^{2}}\right)^{2}\right)\right)=m\left(q\left(h^{4}\right)\right) . \\
m\left(2\left(h+\frac{1}{h}\right)\right)+m\left(2\left(\mathrm{i} h+\frac{1}{\mathrm{i} h}\right)\right)=m\left(\frac{4}{h^{2}}\right)
\end{gathered}
$$

$$
J_{\frac{2 \mu+1}{2}}\left(\mathrm{e}^{\frac{2 \pi \mathrm{i} \mu}{2}}\right)=J_{2 \mu}\left(\mathrm{e}^{\pi \mathrm{i} \mu}\right)-J_{2 \mu}\left(-\mathrm{e}^{\pi \mathrm{i} \mu}\right)
$$

Set $\tau=-\frac{1}{2 \mu}$ and use $\left(\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right)$.

$$
D_{\frac{\tau-1}{2}}(-\mathrm{i})=D_{\tau}(-\mathrm{i})-\frac{1}{y_{2(\mu+1)}} J_{2(\mu+1)}\left(\mathrm{e}^{\frac{2 \mathrm{i}(\mu+1)}{2}}\right)
$$

First equation was:

$$
D_{\frac{\tau-1}{2}}(-\mathrm{i})=D_{\tau}(-\mathrm{i})+\frac{1}{y_{2(\mu+1)}} J_{2(\mu+1)}\left(\mathrm{e}^{\frac{2 \mathrm{i}(\mu+1)}{2}}\right)
$$

Putting things together,

$$
2 D_{\tau}(-\mathrm{i})=D_{\frac{\tau}{2}}(-\mathrm{i})+D_{\frac{\tau-1}{2}}(-\mathrm{i})
$$

this is:

$$
2 m\left(2\left(h+\frac{1}{h}\right)\right)=m\left(4 h^{2}\right)+m\left(\frac{4}{h^{2}}\right) .
$$

Hecke operators approach

$$
\begin{aligned}
m(k) & =\operatorname{Re}\left(-\pi \mathrm{i} \mu+2 \sum_{n=1}^{\infty} \sum_{d \mid n} \chi_{-4}(d) d^{2} \frac{q^{n}}{n}\right) \\
& =\operatorname{Re}\left(-\pi \mathrm{i} \mu-\pi \mathrm{i} \int_{\mathrm{i} \infty}^{\mu}(e(z)-1) \mathrm{d} z\right)
\end{aligned}
$$

where

$$
e(\mu)=1-4 \sum_{n=1}^{\infty} \sum_{d \mid n} \chi_{-4}(d) d^{2} q^{n}
$$

is an Eisenstein series. Hence the equations can be also deduced from identities of Hecke operators.

Direct approach

Also some equations can be proved directly using isogenies:

$$
\begin{gathered}
\phi_{1}: E_{2\left(h+\frac{1}{h}\right)} \rightarrow E_{4 h^{2}}, \quad \phi_{2}: E_{2\left(h+\frac{1}{h}\right)} \rightarrow E_{\frac{4}{h^{2}}} . \\
\phi_{1}:(X, Y) \rightarrow\left(\frac{X\left(h^{2} X+1\right)}{X+h^{2}},-\frac{h^{3} Y\left(X^{2}+2 h^{2} X+1\right)}{\left(X+h^{2}\right)^{2}}\right) \\
m\left(4 h^{2}\right)=r_{1}\left(\left\{x_{1}, y_{1}\right\}\right)=\frac{1}{2 \pi} \int_{\left|X_{1}\right|=1} \eta\left(x_{1}, y_{1}\right) \\
=\frac{1}{4 \pi} \int_{|X|=1} \eta\left(x_{1} \circ \phi_{1}, y_{1} \circ \phi_{1}\right)=\frac{1}{2} r\left(\left\{x_{1} \circ \phi_{1}, y_{1} \circ \phi_{1}\right\}\right)
\end{gathered}
$$

The identity with $h=\frac{1}{\sqrt{2}}$

$$
\begin{gathered}
m(2)+m(8)=2 m(3 \sqrt{2}) \\
m(3 \sqrt{2})+m(\mathrm{i} \sqrt{2})=m(8)
\end{gathered}
$$

$f=\frac{\sqrt{2} Y-X}{2}$ in $\mathbb{C}\left(E_{3 \sqrt{2}}\right)$.
$(f) \diamond(1-f)=6(P)-10(P+Q) \Rightarrow 6(P) \sim 10(P+Q)$.
$Q=\left(-\frac{1}{h^{2}}, 0\right)$ has order 2.

The identity with $h=\frac{1}{\sqrt{2}}$

$$
\begin{gathered}
m(2)+m(8)=2 m(3 \sqrt{2}) \\
m(3 \sqrt{2})+m(\mathrm{i} \sqrt{2})=m(8)
\end{gathered}
$$

$f=\frac{\sqrt{2} Y-X}{2}$ in $\mathbb{C}\left(E_{3 \sqrt{2}}\right)$.

$$
(f) \diamond(1-f)=6(P)-10(P+Q) \Rightarrow 6(P) \sim 10(P+Q) .
$$

$Q=\left(-\frac{1}{h^{2}}, 0\right)$ has order 2.

$$
\begin{gathered}
\phi: E_{3 \sqrt{2}} \rightarrow E_{\mathrm{i} \sqrt{2}} \quad(X, Y) \rightarrow(-X, \mathrm{i} Y) \\
r_{\mathrm{i} \sqrt{2}}(\{x, y\})=r_{3 \sqrt{2}}(\{x \circ \phi, y \circ \phi\})
\end{gathered}
$$

But

$$
\begin{gathered}
(x \circ \phi) \diamond(y \circ \phi)=8(P+Q) \\
(x) \diamond(y)=8(P)
\end{gathered}
$$

$$
6 r_{3 \sqrt{2}}(\{x, y\})=10 r_{\mathrm{i} \sqrt{2}}(\{x, y\})
$$

and

$$
3 m(3 \sqrt{2})=5 m(\mathrm{i} \sqrt{2})
$$

Consequently,

$$
\begin{aligned}
& m(8)=\frac{8}{5} m(3 \sqrt{2}) \\
& m(2)=\frac{2}{5} m(3 \sqrt{2})
\end{aligned}
$$

Other families

- Hesse family

$$
h\left(a^{3}\right)=m\left(x^{3}+y^{3}+1-\frac{3 x y}{a}\right)
$$

(studied by Rodriguez-Villegas 1997)

$$
h\left(u^{3}\right)=\sum_{j=0}^{2} h\left(1-\left(\frac{1-\xi_{3}^{j} u}{1+2 \xi_{3}^{j} u}\right)^{3}\right) \quad|u| \text { small }
$$

- More complicated equations for examples studied by Stienstra 2005:

$$
m\left((x+1)(y+1)(x+y)-\frac{x y}{t}\right)
$$

and Bertin 2004, Zagier < 2005, and Stienstra 2005:

$$
m\left((x+y+1)(x+1)(y+1)-\frac{x y}{t}\right)
$$

