THE NUMBER OF IRREDUCIBLE POLYNOMIALS WITH FIRST TWO
PRESCRIBED COEFFICIENTS OVER A FINITE FIELD

MATILDE LALIN, OLIVIER LAROCQUE

ABSTRACT. We use elementary combinatorial methods together with the theory of quadratic forms over finite
fields to obtain the formula, originally due to Kuz’min, for the number of monic irreducible polynomials of
degree n over a finite field Fy with first two prescribed coefficients. The formula relates the number of such
irreducible polynomials to the number of polynomials that split over the base field.

1. INTRODUCTION

Let Fy be the finite field of ¢ elements and characteristic p and let a = (a1, ..., ar) be fixed. The problem
of counting the number of irreducible polynomials

2" +arx" V4 aa " e, € Fylz]

has been studied extensibly. Aymptotic results were initiated by Artin [Ar24] and were answered in the
most generality by Cohen [Co72]. In the domain of exact formulas, Carlitz [Car52] and Yucas [Yu06] have
stablished formulas where the first or the last coeflicient are fixed. This has also been studied by Omidi Koma,
Panario, and Wang [OPW10]. Kuz’'min [Ku89, [Ku90] has proven formulas when the first two coefficients are
fixed and obtained partial results with three coefficients [Ku94]. There are also works of Kuz’'min [Ku91],
Cattell, Miers, Ruskey, Sawada and Serra [CMRSS03|, Yucas and Mullen [YMO04] and Fitzerald and Yucas
[EY03] that go up to three fixed coefficients in characteristic 2. More extensive results in characteristic 2
and 3 were proven by Moisio and Ranto [MRO8]. We refer the reader to surveys of Cohen [Co05], [Col3] for
more information.

In this work, we examine the problem of two fixed coefficients. Let H,, (a1, as) be the number of irreducible
polynomials of the form

2V ar " fagr" E f g P bty € F,[x].
Kuz'min, building upon ideas of Carlitz [Car52] and Hayes [Ha65], proves the following result.

Theorem 1.1. [Theorem 1 [Ku90l [Ku91]/ Let p > 2 and a be nonzero, then for n > 2

1
(1.1) H,(0,a) = - Z,u(d)dn/d(—a/d),
o
and
1 € n
Hn(0,0) = =3 u(d)dnsa(0) = = > u(d)g"' ™,
d|n d|
pid MS

where e =1 if p | n and 0 otherwise.
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Ifpln

1 n
H,(1,0) = anE p(d)g™/?.
dn
ptd

Here, 1 denotes the Moebius function defined as

(n) (=1)" n square-free and n is a product of r distinct primes,
n)=
a 0 n is not square-free.

Forn>1 and a € Fy,
dnla) = ¢" 7+ (=1)"(¢""* = Qu-1(a)),
with @, (a) being the number of solutions of the equation

(1.2) St Y s —a
=1

1<i<j<n
For p > 2, ptn, l
n—2 _ ((—=1)lay -1 n =2,
o ¢ = (7))
"%+ 1)(a)((7}1)l")ql_1 n=20+1,
while for p | n,
"2 —v(@)()gt n=2,
dn(a) =

¢+ (CUT g =21,

1 a #0,
v(a)—{ g—1 a=0.

where

When p { n, the change of variables 2; = = + % allows us to write

n—1
Hy,(ay,a2) = H, (0,@2 — %a%) .

When p | n and a; # 0, the change z; = *- (x — Z—f) implies

H,(a1,a2) = Hy(1,0).

Therefore, Theorem [1.1| provides a complete answer for the value of H,(a1,a2) in all cases. A similar result
for p = 2 is also proven in [Ku90, [Ku91].

Let X(4n/ay(0,a) denote the number of polynomials of the form ™/ with f irreducible, and such that
a1 = 0 and as = a. The key to the proof of Theorem lies in the equation

(1.3) > dX (gnsa)(0,0) = 6, (—a).
d|n
The final result is then proven by means of Mobius inversion.

The first cases of Theorem for n < 7 are analized in [Ku89] by elementary combinatorial methods,
while the general case is proven in [Ku90, [Ku91] by using L-functions and Gauss sums.

The goal of this paper is to complete the work of [Ku89], namely to show that the elementary combinatorial
methods introduced by Kuz'min can be also used to prove Equation and ultimately Theorem
completely. This is analogous to the work of Yucas [Yu06] who gave elementary proofs for results of Carlitz
[Car52] for fixed first or constant coefficient.

The combinatorial method has great potential for finding formulas in other cases, most notably in the
cases of different prescribed factorization type. This method is also promising for formulas involving a higher
number of fixed coefficients, althought it should be noted that proving such formulas would be quite involved
from the combinatorial point of view. Finally, we remark that the combinatorial part of the method works
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for any characteristic as reflected in the statement of Equation (1.3)). We focus in the case of p > 2 for
simplicity, but the central proof is independent of the characteristic.

2. NOTATION

Let a = (ay,...,a;) with £ < n. Let P,(a) be the set of polynomials of the form 2" + a;2™~1 +--- +
apr" -t 44t € Fylz]. Let Hy(a) be the number of polynomials in P, (a) that are irreducible.
We write P,, and H,, when no conditions are imposed on the coefficients.

By the type of a polynomial in F[x] we refer to the collection of degrees of irreducible factors together with
their multiplicities in the canonical decomposition of the polynomial over F,[x]. For example, 2%(z + 1) has
type (12,1). Thus, we denote by Xy (a) the number of polynomials of type v in P,(a). For example, Xz,
(with no condition on the coefficients) denotes the number of polynomials of type (1%,1), i.e., polynomials
of the form (z + @)*(x + 3) with a # 3. Then we have that X2 1y = q(q — 1).

In this paper we are going to work mainly with the specific case of £ = 2. Accordingly, n > 2.

3. RESULT AND STRATEGY

Our goal is to prove Equation (1.1). We are going to obtain this result as a corollary to the following
identity.

ad n! — n—
(31) Z de (0, TL) + (—1)” Z ﬁX(lel 11111 1ek)(0,a) e q” 2 + (_1)7Lq 2.

d|n e1+-tep=n
ptiF

This equation reduces to Equation (1.1]) by application of Mobius inversion because of the following result:

n!
(3.2) Z WX(FIWJ%)(O’&) = Qn-1(—a).

erttex=n 1"
One can easily see that the left hand side of (3.2) is equivalent to the number of solutions of

ZZ’L:I T = Oa

Zl§i<j§n TiZj = a,
which can be seen to be the same as the number of solutions of (1.2 (with the opposite sign for a). Then

the number @Q,,—1(—a) is found by using Minkowski’s method from the theory of quadratic forms over finite
fields, see [Mi84l [CasII] for more details.

Equation (3.1 is analogous to

n!
(3.3) Zde + (=" Z mX(lfl,...,w«) =q¢"+(=1"¢",
d|n e1+-tex=n 1 ke
and
ad n! _ I
B Yam (M) S X (o) = )
dln n e1+---+ep=n €1t Ch!
ptg
Notice that in the case of Equation (3.3]) we have that
n!
(3.5) > o1 aXen e =d"
ertoten=n €1:° €L

since this is equivalent to all the possible products of linear factors that one can form by choosing n ordered
linear factors among ¢ possibilities. By Equation (3.4)) we have, for ptn and a # 0,

n! e
(3.6) Z WX(lel,...,ﬁk)(a) =q" !,

€'
er+-tep=n

since this is the number of solutions of

n
E r; = —aQ.
=1
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By Mébius inversion, Equations (3.3) and (3.4) imply the well-known results

(37) He o= 23 pldg,

d|n

an 2o pl(d)g a#0,
(3.8) Hala) =

o Zm w(d)g™/ 4 — £ 3 an p(d)g™® a=0,
ptd
where e = 1 if p | n and 0 otherwise. See, for example, [Yu06].

Proof (Theorem . Equations (3.1)) and ( combined yield

Zde (0 ) = 6p(—a).

p)r
Write n = mp” with ptm. Thus, we write, more precisely,
Z dp"Hapr (0, a1d) = Opmpr (—a1m).
dlm

where a; = 2.
.. . m . .
By Mobius inversion,

mp” Hyppr (0, a1m) Z(Sdp —aid),

which translates into 1.1]) by reversing all the changes of Varlable.

Now and give us
Hn(0,0) = Hn(0) = > Hy(0,a)

a#0
n n 1
= *ZM /d — ZM fdp _ ﬁZ#(d)Z%/d(*a/d)
dln d\" d|n a#0
ptd p+d ptd

By observing that », @, /q—1(—a/d) is simply the number of possibilities of choosing n/d — 1 elements in
Fy, ¢4, we conclude

> bnal—a/d) = 6nja(—a/d) = 6,/a(0) = "/ = 8,,a(0).
a#0 a
Thus,

If p | n, we have

Hn = Z Hn(al,ag) = Z Hn<a1,a2) + ZHH(O,(IQ)

ai,az a1#0,a2 az
= (q¢—1)gHn(1,0) + Hn(0)
= (C] - l)an(l,O) + H, — (q - 1)Hn(1)'

Thus,
1
H,(1,0) = -—H,(1)
q
d|n

ptd



This completes the proof of Theorem from Equation (3.1)). O
The rest of the paper is devoted to give a combinatorial proof of Equation (3.1).

4. A FAMILY OF EQUATIONS

The following lemma is the starting point for generating relationships among the Xy (a)’s.

n—{—k

Lemma 4.1. Let 0 < k <n —£. A monic polynomial of degree k divides q polynomials in Py (a).

Proof. For a generic polynomial f(z) = 2" +ajz" ' + -+ apz"* +tp 2" 1 4. +t, € Pu(a) and a
fixed polynomial g(z) = x¥ +byx*~1 + .- + br_12 + by such that g(z) | f(z), we write f(z) = g(x)h(z) with
h(z) = vk e Rl w12+ ¢k Given the values bi,...,bk, the numbers ¢y, ..., c,_; must
satisfy the equations

b1 +c1=a

by +bic1 +co = as

b +bg_1c1+ -+ bicpo1 +cp=ay
where we set b; = 0 if 7 > k.

Thus, g(x) fixes the first ¢ coefficients of h(z). There are n — k — ¢ choices for the remaining coefficients
of h(z). O

Given a factorization type v, the degree, denoted deg(v), is simply the degree of the resulting polynomial.

We note that there is a more precise way of describing a certain factorization type v of degree n by means
of an n X n matrix V = (v; ;), where the entry v; ; indicates the number of factors of the form i/ in the
factorization type. Then the matrix V' must satisfy

deg(V) := Zijvi,j =n.
.3

Accordingly, we use the notation Xy (a) as equivalent to the notation Xy (a).
The length of v, denoted lg(v) or lg(V) is defined as,

Ig(V) =) _jvi.
.7

Our goal is to find a formula for X(,)(0,a). In order to do that, we are going to consider the equations
that we can form with the X, (a).
Let V,W be n x n matrices with integral entries. We say that W is majored by V (written W < V) if
and only if
Wi n § Vi,n
Wi m + Win-1 < Vin+Vin-1

Wi+ F W1 SVip+ -+ 00
foreachi=1,...n.

Any factorization type w of total degree k less or equal than n — ¢ may be represented by a matrix W
with Eu Wi = k. For any such factorization type w we may consider all the factorization types v of
degree n such that w is a factor. This is simply the set of v such that W < V. Counting the number of
polynomials of each of these types and using Lemma [£.1] yield the following equation:

(Vi ) (Vi F Vin—1 — Wi Vi 0 T 01 — Wi — - Wi 2
E I | .. Xy (a)
w; Wi, 1

VeW i=1 i,n Wi n—1
n
H.
_ . n—{l—k i
(4.1) — (
i Wil ... Win

where H; denotes the number of irreducible polynomials of degree i, with no restrictions.
We refer to Equation (4.1]) as Ew(a) or Ew(a).



5. A COMBINATION OF EQUATIONS

We are going to consider a certain combination of equations of the form Ey(a). From now on we are going
to assume that ¢ = 2. However, the combination we find also works for smaller values £ = 0, 1.
Consider the following set

= {w factorization type |deg(w) <n —2,w;; =0,j > 1}.

Then we write

A: Z 1)'8) (n, — deg(w))Ew(a).

weW,
Observe that this is a combination of equations.
Now define
W, = {w factorization type |deg(w) <n —2,w; ; = 0,5 > 1,wi1 # 0},
and

B:= > (-1)s™ey(a).
wewWw,
Finally, consider the set

W, = {w factorization type |deg(w) < n —2,w;; = 0,4,5 > 1,3jo, w1 j, # 0}.

zjz_:ojlc)

Let v be a function on n-vectors with nonnegative integral entries given by the following recurrence.
e For s; >0,

We will work with the sequence given by

~v(51,0,0,...,0) = as, .
e When there is an ¢ > 1 with s; # 0, we have

7(817525 .- 'asn—lasn) = § ’Y(Sla ! + I,S] - 1a .. 7STL)SJ

Notice that the sum starts with v(s1 — 1,s9,...,8,-1,8,) if 51 # 0.
Now set

C: Z 1)'E oy (wy 1, w1, .. W) Ew(@).
weW,.

We will see in Section [7| that A + B 4+ C' give us the desired result, namely, Equation (3.1)). Before that,
we need to prove certain properties of ~.

6. A PROPERTY OF 7y
In this section, we are going to prove the following.

Proposition 6.1. Let sq,...,s, be nonnegative integers. Define

f(s1,..0,80) = Z Y(t1,ta, ... tn)

t; >0

« ( 1)t1+ +nt, (S )<3n+3n 1= t)”.(3n+"'+31_tn_"'_t2).
tn tnfl tl

$14 289+ -+ nsy,)!

(1Ds1 (2052 - - (nl)n

Before proceeding to the proof of this result, we need to consider the following lemma.
6

Then, we have

(61) f(Sl, ey sn) = (_1)51+282+'--+ns" (



Lemma 6.2. For (s1,...,8,) # (0,...,0), We have the following recurrence relation.

n
(6.2) f(s1,...,8,) = —Zsjf(sl,...,sj_l +1,8—1,...,8p).
j=1

Proof. First notice that for s > 0,

0<t<s
- lgztgs(at_lH (1) @
_ oés(l)t( ) +51§S8at_1( Ut(i:i)

By applying the recurrence of v,

n

f(Sl,...,Sn) = sz(tla"wtj*l—i_lﬂtj_1a"'7tn)tj

;>0 j=1

« (_1)t1+~~-+ntn <5n) <sn + Sp—1— tn) o <5n +ooots1 =ty — o — t2).
tn tn—l tl

Remark that it is correct to apply the recurrence relation for the part of the sum involving the terms
~(t1,0,...,0) due to the case f(s,0,...,0) analized above.
We now look at the term for a fixed value of j. First notice that

S +.+S_t P —
’y(tl,...,tj1+1,tj—17...,tn)tj(n J tn j+1>
J
n
Spt S =ty — o — i
X
1=j7+1
= ’y(tl,...,tj,1+1,tj—17...,tn)(8n+"'+8j—tn—"'—tj+1)
tj—1
n
Sn++sl_tn__t2+1
x H < t; >’
1=75+1
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where we have manipulated the j-binomial coefficient. Now we isolate the factor s; in order to obtain

Sy Aot —t, — e —tii —1
= 'y(tl,...,tj1+1,tj—1,...,tn>8j(n J " g+l )
t—1
n
3n+"'+$i*tn*"'*ti+1
X
=741
+ ’y(th...,tj,l—l—l,tj—1,...,tn>(8n+-~-+8j+1—tn—-'-—tj+1)
% <Sn+"'+8j—tn—"'—tj_;'_l—l)
t;—1
n
Sn+..+sl_tn_._t2+1
X .
iy )
i=j+1
By manipulating the j + 1-binomial coefficient, we find
S +"'+S'_t — e — ¢t -1
= ’y(th...,tj1+17tj—1,...7tn)8]’<n J tnl EAR )
;=
n
Sp sty = — i
X
11
1=j5+1
+ ’}/(th...,tj,lﬂ-].,tj—1,...7tn)(8n+"'+8]'+1—tn—"'—thrQ)
% (8n+"'+8j—tn—'~'—tj+1—1)
t—1
tit1 iZigo t;
Again, we isolate the factor s;i1,
= th”¢j1+Lg—1w”¢m%<” Jt”l g+ )
;=
n
5n+"'+5i7tn7"'7ti+1
X
11 )
1=75+1
S +"'+S'_t [ _1
+ ’Y(th...,tj1+].,tj—1,...7tn)8j+1<n J t'nl g+ )
;=
« (Sn_|_..._|_8j+1_tn_..._tj+2_1) ﬁ (Sn+...+3i_tn_..._ti+l>
thrl i=j42 t;
+ ’}/(th...,tj,lﬂ-].,tj—1,...7tn)(8n+"'+8]‘+2—tn—"'—thrQ)
% (8n+"'+8j—7fn—'~'—tj+1—1)
tj—1
tj+1 i=j+2 ti



We rewrite the last row as two products:

= ’y(tl,...,tj,1+1,tj —17...,tn)8j<

n

% H <Sn++52—ttn——t,+1>
i

i=j+1

+ ’y(tl,...,tjflﬁ-l,tj —17...,tn)8j+1< J

(57L+"'+3j+1_trb_"'_tj+2_1)
ti+1

t;—1

Jj+2 n
. H ( ti ) H ( ti

tn_"'_tiJrl)

i=j+1

This process is repeated until we reach the following

sn_l’_...

tj

n

1=j+3

+Sj—tn—~~~—tj+1

-1

Pty — =t — 1
tj—1

5n+"'+5i_tn_
I (

i=j+2
+ ’y(tl,...,tj,1+1,tj —17...,tn)(8n+"'+8j+2—tn—

= 1)

7)

"'—ti+1>

Spt+cr+si—tp—--—tig1—1
= ’Y(tlvuwtj1+17t]’—1,...,tn)( J . j+1 )

tj —

n L
Sn+"'+$i—tn—"‘—ti+1—1
X S
o

We now introduce the remaining factors

n
SpA ks —ty— =1
"y(th...,tj_lJrl,tj1,...,tn)th<” i t.n z+1)
i=1 v
I (Spt b si—ty— o — 1
- y(th...,tj1+1,tj—1,...,tn)H<" ’t'” ’“)
i=1 v
« Sn+"'+8jfl_tn_"'_tj sn+...+sj_tn ._tj*‘rl_]'
ti—1 t;—1

n
X E Sy
l=j

i=j+1

ﬁ <3n+"’+5i_t;_"'_ti+1_1> ﬁ



We manipulate the j — 1-binomial coefficient

_l’_ + _t _..._t.
= ’y(tl,...,tj_l—Fl,tj—1,...,tn)H(Sn 5 t-n H—l)
i=1 v
" (SnJF"'JFSj—ltn"'tj+1><5n+"'+5jtn"‘tj+11>
tj1+1 t; —1
- ‘ Sp + +s;, —t t 1 L Sp + +s; —t t
nte i =ty — =t — nto- i —tn — =t
X
> 11 ( ) 11 ( )
l=j 1=7+1 i=0+1
Jj—2
_ yﬁh.qﬁy+LU—1w.JmII<n ’t” ’“)
i=1 v
% Sn+ +SJ,1—tn—"'—tj Sn+ +S]—tn "'_thrl_l
tj—1+1 t;—1
- ! Sn + +s; —t t 1 . Sn + +s; —t t;
« n 7 n — Ui+1 — n 7 n — "0 T U411 )
o I ( ; Il .
l=j i=j+1 i=L+1

Taking into account the signs, the terms containing v(¢1,...,¢;—1 +1,¢; —1,...,¢,) with j > 2 yield
n n
fZng(sl,...,sj_l+1,...,sef1,...,sn)+Zsef(sl,...,sj_2+1,...,547 1,00, 80).
=3 =3
On the other hand, the term containing v(¢; — 1,...,¢,) yields
n
—Zng(Sl,...,Sg — 1,...,Sn),
=1
while the one containing v(t; + 1,t2 — 1,...,t,) yields
n n
fz.sef(sl +1,...,8 — 1,...,sn)+Zszf(51,...,5g71,...,.9”).
=2 =2
Putting all of this together, we get,

f(s1,...,8,) = 72255‘}0(51,...,53'_1+1,...,5571,...,5n)

=1 t=j

+ZZng(sl,...,sj_2+1,...,5271,...,5n)

j=2t=j

= —ZZng(sl,...,sj,l—|—1,...,se—1,...,sn)

j=11t=j

n—1 n
+Z Z sef(s1y. oy8h—1+1,...,80—1,...,8,)

h=1/¢=h+1

= —Zsjf(sh...,sj,l—&—l,sj—L...,sn).
j=1

This concludes the proof of the recurrence for f(si,...,s,).
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Proof of Proposition[6.1 Observe that for s =0, f(0,...,0) = 1. Now assume that s > 0. We have

f(s,0,...,0) = Zat(l)tC)

t>0

S

! s
(5 (C)
t=0 j=0 t
By exchanging the order of summation,

S .
$—1J
e - S5
7=0 t=y
Now notice that the inner sum equals zero unless s = j and in that case it equals (—1)°. Thus we get
s!

J(s:0,050) = (215 = (1) e

We proceed by induction on k = s1 + 2s2 + - - - +ns,. Remark that we have proven the case of k = s1 for
any value of k. We are going to apply the recurrence (6.2)). Observe that in the term f(s1,...,s;-1+1,s; —
1,...,8,) we have sy +---+(j —1)(sj—1+1) +j(s; —1) +-- - +ns, = k—1. Thus, by induction hypothesis,

n
fls1,..0,80) = —Zsjf S1,---,8-1+ 1,85 —1,...,8,)
Jj=1
= Zn: S 51+252+ 4ns, —1 (51 + 28 + -+ ns, — 1)'
2! (U)o (( = D= G- ()
_ s1+2s2+-+ns, (51 + 2834+ nsp —
- (_1) ' ’ (1])51 ’I’L' Sn ZSJ

$14 282+ -+ nsy)!
(1!)51 e (n!)sn

This concludes the proof of Proposition O

— (_1)51+252+"'+n5n (

7. A+B+C

In order to prove Equation (3.1) we need to compute the coefficient of each X (a) in A+ B+ C. The
following two equations are going to be key in this section

(7.1) i(—l)’f(D = 0, s#£0,
(7.2) i(l)’“k(}i)

k=0
7.1. The term A. The coefficient of X, (a) in A is given by
= w1 Vim T+ U
> (n— (w1 4 +nw, 1)) [[ (=1 ( " 71>,

0<wy, 1++nwy,1<n—2 i=1

Because of Equations (7.1]) and (7.2),
n
v + . o + Vs
Z (ni(w1,1+"'+nwnl H (ln w l,1>0a
i1

0<wy 1+ +nwy,1<n =1

I
o
®
N
—

unless one of the following applies:
® v p+---4v;; =0 forall 7, or
11



e there is an iy with vy, + -+ v, 1 =1 and v; , +--- +v;1 = 0 for all ¢ # 4.

The first case is impossible, since n > 0. For the second case, since deg(v) = n, the only possibility for this
is viy,.n/i, = 1 and the rest is zero. We obtain the coefficient iy for X(in/io)(a).
0

For the remaining Xy (a), the coefficient contributed by A must be

n w, Ui, +"'+Ui,1
Y | (= ( o )

w1+ Fnwy, 1=n—11i=1

Since we have w; 1 < v;, + -+ + v;,1, we obtain

n71:w171+~~+nwn,1§ E Z"Ui,j
i,J

> ijuig = 1<) v,
i,J ,J

and

which implies

ZZ(] - 1)’01'7]‘ S 1.

,J
This can only happen if v; ; = 0 for all 7 > 1 with the exception of v; 2 which can be equal to 1 or 0. In any
of these cases v;; can take any value. Thus, the contribution to the coefficient is given by

V12 + V11 n ) Vi1
_ —1)wit ) ) —1)wint S

w11+ +nwy, 1=n—1 i=2
First assume that v; ; = 0 for j > 1. Since w; 1 < v;1, the case wi,; +--- 4+ nwy,1 = n — 1 occurs when
w;1 =v;1 for i >1 and wy,; =v1,1 — 1. We obtain

(_1)ﬂ1,1+'-'+71n,1v171'

Now assume v; ; = 0 for all j > 1 except that v 2 = 1. Once again we have w;; < v;; for ¢ > 1 and
w1 < vy + 1. The case wy1 + -+ + nw,1 =n — 1 occurs with w3 =v11 +1, w1 =v;,; fori > 1 and
the coefficient equals

(_1)v1‘1+~--+vn,1.

7.2. The term B. We look at expression B. The coefficient of X (a) is given by

n v, Vip + 0+ 01
B 3 11 ( L )

0<wy 14+ Fnwy 1 <n—2 =1 )
wy,17#0

Because of Equations (7.1]) and (7.2]),
S S | (G <v +~'+vw) —0,
W1

0<wy, 1+-+nwy, 1 <ni=1
unless v; , + -+ +v; 1 = 0 for all ¢, which is impossible for n > 0.
The case wy,1 +2wa1 + - -+ + nwy,1 > n — 1 together with the conditions w; 1 < vy + -+ +v;1 for all ¢
imply
D ijvig—1l=n—1<wiy+ 2wy + - +nwn1 < Y vy,
i,J ]
which gives
ZZ(] - 1)1}1'73‘ S 1.
]
12



This can only happen if v; ; = 0 for all j > 1 with the exception of v; » which can be equal to 1 or 0. In
addition, v; 1 can take any value. Therefore, the contribution to the coefficient is

S o i ()

w11 +2w2 1+ +nw,,1=n—1,n =2 ?

(7.4) + 3 f[(—1)wfs1 (;’}11)

2wz 14 Fnwp,1 <n—21=2

irst assum Vi = rj . Since w; 1 < ;1 e w11+ +Fnw,1 =n— urs when
First assume that v; ; = 0 for j > 1. Since w;1 < v;,1, the case wy 1 + -+ + , 1 occurs whe
w;1 = v;1 for i > 1 and wy 1 =v1,; — 1. The case wi,; + - -+ nwy,1 = n can only occur if w;; = v;; for all

i. We obtain that the contribution from (7.3)) is
_(_1)U1,1+“-+vn,1vl71 4 (_1)U1,1+'“+Un,,1_

Now assume v; ; = 0 for all j > 1 except that v 2 = 1. Once again we have w;; < v;; for ¢ > 1 and
w1 <v1,1 + 1. The case wy 1 + -+ + nwy,1 =n — 1 occurs with w1 =v11 + 1, w1 = ;1 for ¢ > 1. The
case wi 1 + - - - + nwy, 1 = n never occurs. The contribution coming from ([7.3) equals

7(71)U1,1+“'+vn,1 .

The contribution from (7.4]) will be analized in the more general case of wq; = 0. We have

n o Vi 4+ +vi1
) &= ( o )

0<2wsz 1+ +nwy 1 <n—21i=2

Notice that
n
4T R
> H(—l)w“< o 1) =0,
0<2uws 1+t nwn, 1 <n i=2 Wil

unless v; , +---+v;1 =0 for all ¢ > 1 and in that case the above sum equals 1. Apart from that term, we
obtain that the contribution to the coefficient is given by

n wy [Vim o+ Vit
- ) [T (” - )

2wz, 1+ +nwy 1=n—1,ni=2

Because of the previous considerations and the fact that vy 1 +- - -4 wv;1 , must be positive for X (a) to appear
in this sum, this contribution only appears if v1,; = 1 and v; ; = 0 for j > 1. The only possibility is wq 1 = 0,
w; 1 = v;1 for i > 1, and we obtain

_(_1)’02‘1"1"'""071,1 — (_1)”1,1+"'+Un,1.

7.3. The term C. Finally, we look at expression C.

Z (w11, w12, WR)

0<wy 142wy o+ +nwy ,<n—2
3jg.w1,jo #0

K (—1ywate (Ul,n> (U1,n +vin—1— w1,n> . (Ul,n +r v Wiy — 'w1,2>

W1,n W1,n—1 w1,1
n
(Vi T
x > [Ie-v= |
. Wy
0<2w3 1+ +nwn 1 <n—2—(w1,1+2w1 2+ +nwy 5 ) =2 4,1

13



Because of Equations (7.1) and (7.2)),
Z (w1, wi,2, -, Win)

0<wy,1+2w1 2+ +nwi n<n

% (_1)w1,1+“'+nw1,n (UL“) (UL’“ T VLn-1— wlﬂ) . (vl,n +ootU - Wi 'w1,2>

W1,n W1,n-1 wi,1

: > e () o

02wz 1+ +nwy 1 <n— (w11 +2w1 2+ +nwy ) =2

unless v; , +---+v;1 =0 for all ¢ > 1. In that case, we obtain

Z (w11, wi,2, -, Win)

0<wj 1+2wy o+ +nwy p<n—2
HjU'wl,jo #0

X (=1)wrrtrtnein <U1,") (vlﬂl Vi1~ wL”) ... (Ul»" RERE IS B S U 'w172>

W1,n W1,n—-1 wi,1

= f(vl,la"'avl,'n) - Z 'Y(w1,17w1,27---7w1,n)

0<wy, 1 +2wy 2++nwi n=0,n—1,n

(1wt <U1,n> (Ul,n + V11 = wlm) <Ul,n ot vr W — w1,2>'

W1,n W1,n—-1 wi,1

)

The case w1 + 2w 2+ - - +nwy,, = n— 1 together with the conditions wy ;+- -+ w1, < Vi i+ -+

for all 7 and vy,; + 2v1,2 + - -+ + nvy,, = n imply that there is a jo > 1 such that wq j,—1 = v1 5,1 + 1 and
W1,j, = V1,5, — 1, or w11 = w11 — 1. This term yields

n
v cetno —1
- E V(1,151 -1+ vy — 1,00 vp,) (=1t dnoie =iy,
j=1

— (71)v1,1+"'+nv1,n

'Y(vl,la cee 7v1,n)
by construction of «, provided that there is an iy > 1 such that vy ;, # 0. Otherwise, we obtain
(—1)’01’1’[}1’1’}/(’01’1 - ]., 07 N ,0) = (—1)“1*10@1,1 — (_1)’01,1 = (—1)U1’1 (7(’”1,17 0, ey 0) — ].)

The case w1 + 2wy 2 + - - - + nwy , = n together with the conditions wy ; +--- +win < V1, + -+ V1
for all ¢ and v1,1 + 2v1,2 + - - - + nvy , = n imply that w; ; = vy ; for all j and yields

—(—1)”1~1+'”+”“1*"7(v1,1, ce VL)

We remark that the case vy ; = 0 for j > 1 yields
—(—1)"an, , = —(=1)"*y(v1,1,0,...,0).

The term with w;; = -+ = w1, = 0 will be considered in a more general setting.
If viy.n + -+ -+ v4,1 # 0 for some 49 > 1, the contribution is given by

- Z (w11, w12, -, win)

wi,1+2w1 2+ +nwi, pn+2w2,1+ W, 1=n—1,n

X (—1)wrat (Ul,n> (Ul,n +Vin—1— w1,n) . (Ul,n +o v Wi — 'w1,2)

W1,n W1,n—1 wi,1

(7.5) x ﬁ(_l)wi,l (vi,n ot vM)

Wi, 1

(7.6) -~(0,...,0) Z ﬁ(fl)wivl ('Uz',n JFleJr vm) '

2wz 1+ Fnwy,1 <n—2i=2
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The case wy,1 +2wi,2 + - -+ +nwy y + 2w 1 + - -+ +nwy,1 > n — 1 implies

Zij’l]@j —1=n-1 S wl,l + 2’[1}1’2 + -+ nwlyn + 2’(1}2’1 + -4 nwml S Zjvl_,j + Z Z.'Ui’j
] i i>1,5
which gives
Z ’L(j — 1)1)2‘,]‘ S 1.
i>1,5
This can only happen if v; ; = 0 for 4, j > 1. Back to Equation ,

- Z 7(w1,1,w1,27~-~,w1,n)

wi,14+2wy 2+ Fnwy n 2wz 1+ Fnwy 1=n—1,n

« (_1)w1,1+-"+nw1,n <v17n> ('ULn T U1 — w17n> . (Ul,n +o U Wi — w1,2>

W1,n Wi,n—1 wi,1

n
wiq [ Vil
X g( 1) (w1>

We see that w; 1 < ;1 fori > 1and wy ;4 - +wy, < v1+- - -+0v1, for any i. The condition w; 1 4+2ws 1+
o nwy 12w 2+ - -+Hnw, = nis only possible if w; 1 = v; 1 fori > 1and wy ;4w = v+ FUL,
for all 7, which implies w1 ; = v14. The condition wq 1 + 2w 1 + -+ +nwp1 + 2w 2+ - +nwy, =n—1
is only possible if w; 1 = v;1 for i > 1 and wy j, = v15, — 1 and wq j,—1 = v1,5,—1 + 1 for a unique jo fixed
(this includes the case jo = 1, with the second condition empty) and w; ; = vy ; for the other j.

Therefore, the contribution to the coefficient is given by

n
R R T T R X }:
(71)”2'1 Un,17TV1,1 nvL, "Y(Ul,lwnavl,j—l —+ ].,’ULj — 1a~'~7vl,n)v1,j
j=1
v 14 Fvn,1+v1,1+ -+ nv,
_ (_1) 2,1 n,1 1,1 1"’7(’111,1,11172,.-.,’01,7;).

This term equals 0, unless vy ; = 0 for all j > 1. In that case, this term equals
_(_1)U1,1+U2,1+”'+Un,1.

The term wq 1 = -+ - = w1, = 0 yields Equation (7.6):

n w, Uz’,n 4+ -4 Ui,l
—7(0,...,0) > [J G ( i )

0<2wz 1+ +nwy 1 <n—21i=2

Notice that

- 1 (Vi TV
—(0,...,0 e (05 ) =o,
OO DI | (G

0<2ws2 1+ +nwy,,1<n i=2 ’

unless v; , + -+ +v;1 = 0 for all ¢ and in that case the above sum equals —v(0,...,0) = —1. In addition,
we obtain a contribution given by

40, ...,0) 3 ﬁ(_l)wm (vn +w -1+ vm)

2wz 1+ +nwy 1=n—1,n1=2 ’

But the sum 2wy 1 + - - - +nw,,1 > n — 1 impies that
Zijvi’j —1=n-1 S 211)2’1 —+ - +nwn,1 S Z Z.’Ui’j
,J 1>1,5
which implies
D vt Y i Dy < 1.
J i1>1,7
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Thus v; ; = 0 for j > 1 and v1,; > 0 (it can not be zero, since one term of the form v; ; must be nonzero).
In addition, since w;; = 0, we have that v;; = 1, and 2wz 1 + -+ + nw,,1 = n — 1 can only happen if
w;,1 = v;,1, while the case 2ws 1 + - - - + nw,,1 = n never occurs. The contribution is

(_1)U2,1+“‘+Un,1 _ _(_1)U1,1+"'+Un,1.

7.4. Putting the terms together. We compute the final coefficient for Xy (a) in A+ B+ C by considering
each case.

If v; ; # 0 for some 7,j > 1, then the coefficient is 0 unless we are in the case of X(4n/4), in which the
coefficient is d.

The remaining nonzero coeflicients correspond to v; ; = 0 for all ¢, 7 > 1. Table [l has a summary of the
results in this case, taking into account that n > 2. Here * indicates that any value is allowed and v; 1 > 0
(resp. v1,; > 0) indicates that the inequality is true for at least one subindex ¢ > 1 (resp. j > 2). Finally, f
is short for f(vi,1,...,v1,n)-

We see that the final coefficient for X, (a) such that v; ; = 0 for all 4,5 > 1 is given by 0 if v;; 1 > 0 for
some i9 > 1, and f(v11,...,v1,,) otherwise. Now, Proposition gives that the left hand side of A+ B+ C'
equals

n!

Z dX(d”/d)(a) + Z’: (_1)11 (1!)1;1,1 (2!)1112 . (’n,!)”lm Xv(a).

d|n

v, ;=0,i>1

A special mention deserves X (1) that appears in both terms giving a final coefficient of 1+ (—1)".
Finally, we note that
Ha(0,59) pt %
X(dn/d)(o, a) =
0 plg.
We can then write

ad ol
Z de <07 TL) + Z (71)'"' (1!)1;1,1 (2!)111,2 e (n!)%,n Xv(o, a),

dln v
Uiyj:(),i>1

n
P}fg

which is the left hand side of Equation .

The right hand side of A + B + C can be computed quite easily by the following observation. If we take
the equations with £ = 0 (no conditions on the coefficients), then we must necessarily arrive at Equation
(3.3)), which is true since it is the result of Mdebius inversion on Equation combined with Equation
(3.5). The combination that we take with ¢ = 2 (resp. £ = 1) is the result of dividing the right hand side of
each equation by ¢? (resp. ¢). In this way we arrive at Equation (resp. (3.4)).

8. SOME PARTICULAR CASES

In this section we consider the cases n = 4 and n = 5 (for ¢ = 2) to illustrate how the proof works. In
order to simplify the notation we omit the a part from & (a).

8.1. Case n =4. We can find that v(1,0) = v(0,1) = 2 and ~(2,0) = 5.
In this case, we have

A o A&y — 38y — 2E2) +2E1 1),
B &) =&y
C : —25(1) + 25(12) + 55(1’1).

Thus
(8.1) A+B+C = 48(0) — 45(1) + 25(12) — 25(2) + 65(171).
Table [2| contains all the equations involved, separated by left hand side (LHS) and right hand side (RHS).
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vig | V12 | V15,0 >2 | v, >1 A B C A+B+C
0 |#1 * >0 0 0 0 0
« | x >0 0 0 1 F-1 f
0| 1 0 0 1 0 fo1 f
« |1 0 >0 (—1)vrattvns —(=1)rattun 0 0
0 1 >0 >0 0 0 0 0
0 |>1 % 0 0 1 f-1 f
1 0 0 >0 (—1)vrattonn (—1)vratton —9(—1)vrattvnn 0
#£0| = >0 >0 0 0 0 0
1|1 0 0 -1 2 Ffo1 f
1| >1 0 0 0 1 Fo1 f
* | >1 0 >0 0 0 0 0
IR 0 D™y | 1= (1) tuny (<D™ | f—1— (—1)ma /
>1| 1 0 0 (—1)ve 1— (1) F-1 f
TABLE 1. Coefficient of Xy (a)in A+ B+ C.
v LHS &, RHS &,
(0) X1, + X2 + Xazae) + Xaas) + Xagy + X2 2
tXazp + Xeo) + Xz + Xas) + X
(1) 4X(1,1,1,1) +3X(1,1,12) +2X(12,12) + 2X(1,18) + X149y +2X(1,1,2) 2
+X(12,2) + X(1,3)
(1%) X1,1,12) T 2X (12 12) + X(1,13) + X149y + X(12,2) q
(2) Xa2) + Xaz2) +2Xe + X2 o)
(1,1) 6X(1,1,1,1) +3X(1,1,12) + X(a212) + X118 + X(1,1,2) 2z 1)
TABLE 2. Equations for the case n = 4.
We obtain
AX 4y +2X(22) + X1y + 24X (111,1) + 12X (11,12) + 4X(119) + 6X(12,12) + X4y = 2¢°,

which is the result predicted by Theorem [1.1

8.2. Case n = 5. We find some values of ~.
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v LHS &, RHS &,
0) Xana,) + X112 + Xaazazy) + X8 + Xae) + Xasy + X112 r
+ X122 + Xz 2) + X202 + Xa22) + X113) + Xaz3) + X0y + X23) + X(5)
(1) 5X(1,1,0,1,1) +4X(1,1,1,12) +3X(1,12,12) + 3X(1,1,18) + 2X(1,10) + X(15) +3X(1,1,1,2) r
+2X(112.2) + X1z,2) + X1,2,2) + X(1,22) +2X(1,13) + X(1z3) + X109
(1%) X2 +2X @202 + X8 + X + Xasy + X 122) + Xs2) + X123 ¢
(1%) X118y + X110 + Xasy + X(1s 9) q
(2) X112 +Xaaz2) + Xas2) +2X(129) + Xa,22) + X233 qQ(qQ_l)
(3) Xa1,3) + Xaz3) + X2, q(q?l)
(1,1) 10X (1,1,1,1,1) + 6X(1,1,1,12) +3X(1,12,12) +3X(1,1,18) + X(1,14) +3X(1,1,1,2) q"‘(q2_1)
+X1,12,2) + X(1,1,3)
(1,2) 3X(1,1,1,2) +2X(1,12.2) + X(13,2) +2X(1,22) + X(1,22) q2(qg_1)
(1,1%) 3X(1,1,112) F4X 12 12) + 2X (1 118) + X(1,19) + X112, q(qg—1)
(1,1,1) 10X (11,11, T 4X (1,112 + X1,12,12) + X118 + X(1,1,1,2) %

TABLE 3. Equations for the case n = 5.

7(1,0,0) | 7(0,1,0) | 7(0,0,1) | 7(2,0,0) | 7v(1,1,0) | ¥(3,0,0)
2 2 2 5 7 16

In this case, we have

Then

(8.2)

A 55(0) — 45(1) — 35(2) - 25(3) + 35(171) + 25(172) — 25(1,171),
B+ &a)y—&un—Eaz +E&a1,
C : —25(1) + 25(12) — 25(13) + 55(1’1) - 75(1’12) + 25(1’2) - 165(1’1,1).

A+B+C = 55(0) - 55(1) + 25(12) - 25(13) — 35(2) — 25(3)

—&-75(171) + 35(1’2) — 75(1_’12) — 175(17171),

Table [3] contains all the equations involved in A+ B + C.

Summing according to the coefficients from Equation ({8.2), we get
5X(5) + X(15) - 120X(171717171) - 60X(17171,12) - 30X(1112’12) — 20X(171713) — 5X(1714) — X(lS) == 0,
which is the result predicted by Theorem [1.1

9. CONCLUSION

‘We have proven the formula for the number of irreducible polynomials with first two prescribed coefficients
by using combinatorial methods and results from the theory of quadratic forms over finite fields. Our method
also gives a proof for the formula for the number of irreducible polynomials with the first prescribed coefficient
and has the potential of leading results for other prescribed factorization types. In principle, this method
could be extended to a higher number of fixed coefficients. This condition would restrict the number of
equations &, that we can use and the equivalent expression for an dHy will now involve terms X (a)

ptg
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whose matrices V' contain nonzero entries outside the first row. It should be interesting to explore the
feasibility of this method for ¢ > 2.
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