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1. Definition of Mahler Measure and Lehmer’s question

Looking for large primes, Pierce [18] proposed the following in 1918:
Consider P ∈ Z[x] monic, and write

P (x) =
∏
i

(x− αi)

then, we look at

∆n =
∏
i

(αni − 1)

Since the αi are integers and by applying Galois theory, it is easy to see that ∆n ∈ Z.
Note that if P = x − 2, we get the sequence ∆n = 2n − 1. The idea is to look for primes
among the factors of ∆n. The prime divisors of such integers must satify some congruence
conditions that are quite restrictive, hence they are easier to factorize than a randomly
given number. Moreover, one can show that ∆m|∆n if m|n. Then we may look at the
numbers

∆p

∆1
p prime

In order to minimize the number of trial divisions, the sequence ∆n should grow slowly.
Lehmer [15] studied ∆n+1

∆n
, observed that

lim
n→∞

|αn+1 − 1|
|αn − 1|

=

{
|α| if |α| > 1
1 if |α| < 1

and suggested the following definition:

Definition 1 Given P ∈ C[x], such that

P (x) = a
∏
i

(x− αi)

define the Mahler measure 2 of P as

M(P ) = |a|
∏
i

max{1, |αi|} (1)

The logarithmic Mahler measure is defined as

m(P ) = logM(P ) = log |a|+
∑
i

log+ |αi| (2)

1mlalin@math.utexas.edu – http://www.ma.utexas.edu/users/mlalin
2The name Mahler came later after the person who successfully extended this definition to the several-

variable case.
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When does M(P ) = 1 for P ∈ Z[x]? We have

Lemma 2 (Kronecker) Let P =
∏
i(x − αi) ∈ Z[x], if |αi| ≤ 1, then the αi are zero or

roots of the unity.

By Kronecker’s Lemma, P ∈ Z[x], P 6= 0, then M(P ) = 1 if and only if P is the
product of powers of x and cyclotomic polynomials. This statement characterizes integral
polynomials whose Mahler measure is 1.

Lehmer found the example

m(x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1) = log(1.176280818 . . .) = 0.162357612 . . .

and asked the following (Lehmer’s question, 1933):
Is there a constant C > 1 such that for every polynomial P ∈ Z[x] with M(P ) > 1, then

M(P ) ≥ C?
Lehmer’s question remains open nowadays. His 10-degree polynomial remains the best

possible result.
We will list some important results in the direction of solving Lehmer’s question.

Theorem 3 (Smyth [21], 1971) If P ∈ Z[x] is monic, irreducible, P 6= ±P ∗ (nonrecipro-
cal), then

M(P ) ≥M(x3 − x− 1) = θ = 1.324717 . . . (3)

Corollary 4 If P ∈ Z[x] is monic, irreducible, and of odd degree, then

M(P ) ≥ θ

Theorem 5 (Dobrowolski [7], 1979) If P ∈ Z[x] is monic, irreducible and noncyclotomic
of degree d, then

M(P ) ≥ 1 + c

(
log log d

log d

)3

(4)

where c is an absolute positive constant.

Theorem 6 (Schinzel) If P ∈ Z[x] is monic of degree d having all real roots and satisfies
P (1)P (−1) 6= 0 and |P (0)| = 1, then

M(P ) ≥

(
1 +
√

5

2

) d
2

(5)

Theorem 7 (Borwein, Hare, Mossinghoff [1], 2002) If P ∈ Z[x] is monic, nonreciprocal
with odd coefficients, then

M(P ) ≥M(x2 − x− 1) =
1 +
√

5

2
(6)

Theorem 8 (Bombieri, Vaaler [3], 1983) Let P ∈ Z[x] with M(P ) < 2, then P divides a
polynomial Q ∈ Z[x] whose coefficients belong to {−1, 0, 1}.

2. Mahler Measure in several variables
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Definition 9 For P ∈ C[x±1
1 , . . . , x±1

n ], the logarithmic Mahler measure is defined by

m(P ) :=

∫ 1

0
. . .

∫ 1

0
log |P (e2πiθ1 , . . . , e2πiθn)|dθ1 . . . dθn (7)

=
1

(2πi)n

∫
Tn

log |P (x1, . . . , xn)|dx1

x1
. . .

dxn
xn

(8)

It is possible to prove that this integral is not singular and that m(P ) always exists.
Because of Jensen’s formula 3:∫ 1

0
log |e2πiθ − α|dθ = log+ |α| (9)

we recover the formula for the one-variable case.
Let us mention some elementary properties.

Proposition 10 For P,Q ∈ C[x1, . . . , xn]

m(P ·Q) = m(P ) +m(Q) (10)

Proposition 11 Let P ∈ C[x1, . . . , xn] such that am1,...,mn is the coefficient of xm1
1 . . . xmnn

and P has degree di in xi. Then

| am1,...,mn | ≤
(
d1

m1

)
. . .

(
dn
mn

)
M(P ) (11)

M(P ) ≤ L(P ) ≤ 2d1+...+dnM(P ) (12)

where L(P ) is the length of the polynomial, the sum of the absolute values of the coefficients.

It is also true that m(P ) ≥ 0 if P has integral coefficients.
Let us also mention the following amazing result:

Theorem 12 (Boyd [2],1981, Lawton [14], 1983) For P ∈ C[x1, . . . , xn]

lim
k2→∞

. . . lim
kn→∞

m(P (x, xk2 , . . . , xkn)) = m(P (x1, . . . , xn)) (13)

Because of the above theorem, Lehmer’s question in the several-variable case reduces
to the one-variable case.

The formula for the one-variable case tells us some information about the nature of the
values that Mahler measure can reach. For instance, the Mahler measure of a polynomial
in one variable with integer coefficients must be an algebraic number.

It is natural, then, to wonder what happens with the several-variable case. Is there any
simple formula, besides the integral? Unfortunately, this case is much more complicated and
we only have some paticular examples. On the other hand, the values are very interesting.

3. Polylogarithms and L-functions

Before going into the several variable case, let us recall the definitions of polylogarithms
and L-functions. More about polylogarithms can be found in Goncharov [10], [11], [12]

3log+ x = log max{1, x} for x ∈ R≥0
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Definition 13 Polylogarithms are defined as the power series

Lik(x) :=
∑
0<n

xn

nk
(14)

which are convergent for |x| < 1 and k ≥ 2. The number k is called the weight of the
polylogarithm.

We see that for x = 1, we recover the Riemann zeta function in k.
Polylogarithms have analytic continuation to C \ [1,∞) through the integral

Lik(x) := −
∫

0≤t1≤...≤tk≤1

dt1

t1 − 1
x

dt2
t2

. . .
dtk
tk

(15)

There are modified versions of these functions which are analytic in larger sets, like the
Bloch-Wigner dilogarithm,

D(z) := Im(Li2(z)) + log |z| arg(1− z) z ∈ C \ [1,∞) (16)

which can be extended as a real analytic function in C \ {0, 1} and continuous in C. For
more information about this function see Zagier [26].

Definition 14 The L-series in the character χ is defined to be the function

L(χ, s) :=

∞∑
n=1

χ(n)

ns

We are going to use the real characters

χ−f (n) :=

(
−f
n

)
where the symbol in the right is Kronecker’s extension to Jacobi’s symbol. In particular,

χ−3(n) =
(n

3

)
χ−4(n) =


(−1
n

)
if n odd

0 if n even

χ−8(n) =


(−2
n

)
if n odd

0 if n even

4. Examples for two and three variables

• The simplest example with two variables is due to Smyth [22], 1981:

m(1 + x+ y) =
3
√

3

4π
L(χ−3, 2) = L′(χ−3,−1) (17)
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Figure 1: The main term in Caissaigne – Maillot formula is the volume of the ideal hyper-
bolic tetrahedron over the triangle.

• The above example can be extended to three variables, also due to Smyth:

m(1 + x+ y + z) =
7

2π2
ζ(3) (18)

More generally, Smyth [23] in 2002 computed the Mahler measure of a + b 1
x + cy +

(a + bx + cy)z, for a, b and c any real numbers, from which the above result can be
deduced. Another corollary is the formula

m

(
1 +

1

x
+ y + (1 + x+ y)z

)
=

14

3π2
ζ(3) (19)

• The dilogarithm occurs as the Mahler measure of certain polynomials in two variables.
Perhaps the simplest example is Caissaigne – Maillot’s in [16]: for a, b, c ∈ C,

πm(a+ bx+ cy) =


D
(∣∣a
b

∣∣ eiγ
)

+ α log |a|+ β log |b|+ γ log |c| 4

π log max{|a|, |b|, |c|} not4

(20)

Here 4 stands for the statement that |a|, |b|, and |c| are the lengths of the sides of a
triangle, and α, β, and γ are the angles opposite to the sides of lengths |a|, |b|, and
|c| respectively. See Figure 1.

The term with the dilogarithm can be interpreted as the volume of the ideal hyperbolic
tetrahedron which has the triangle as basis and the fourth vertex is infinity (see [17],
[27]).

Connections with hyperbolic geometry do not end here. Boyd [5] has found relations
between Mahler measures of A-polynomials of knots and the hyperbolic volumes
of their complements. These examples have been studied by Boyd and Rodriguez-
Villegas.

• Boyd and Rodriguez-Villegas [6] studied polynomials of the form P (x, y) = p(x)y −
q(x) where p, q are cyclotomic and relatively prime. The Mahler measure turns out
to be some combinations of dilogarithms which can also be interpreted in terms of
ζF (2) for certain field F .
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• Smyth [22] in 1981 found the approximation

m(x1 + x2 + . . .+ xn)

=
1

2
log n− 1

2
γ +O

(
logN

N

)
(21)

as n→∞, where γ is Euler constant. 4.

• Vandervelde [25] in 2002, studied the example of axy + bx+ cy + d. He developed a
general formula for this case. Some particular cases are:

m(1 + x+ y + ixy) =

√
2

π
L(χ−8, 2) =

1

4
L′(χ−8,−1) (22)

m(1 + x+ y + e
πi
3 xy) =

4
√

2

15π
L(χ−8, 2) =

1

15
L′(χ−8,−1) (23)

• Other examples with special values of L-series have been discovered by Ray, Smyth
and others

m(1 + x+ y − xy) =
2

π
L(χ−4, 2) = L′(χ−4,−1) (24)

m(1 + x+ x2 + y) =
2

3
L′(χ−4,−1) (25)

m(1 + x+ y + x2y) =
3

2
L′(χ−3,−1) (26)

• Boyd [4] has computed numerically several examples involving L-series of elliptic
curves, some of them were proved by Rodriguez-Villegas [20]. These formulas are sup-
ported by other conjectures and have been explained by Deninger [8] and Rodriguez-
Villegas [20]. For instance

m

(
x+

1

x
+ y +

1

y
+ 1

)
?
= L′(E, 0) (27)

where E is the elliptic curve of conductor 15 which is the projective closure of the
curve x+ 1

x + y + 1
y + 1 = 0, and L(E, s) is the L-function of E.

• Vandervelde also generalized Smyth’s example. For a ∈ R>0,

π2m(1 + x+ ay + az) =


2(Li3(a)− Li3(−a)) if a ≤ 1

π2 log a+ 2
(
Li3
(

1
a

)
− Li3

(−1
a

))
if a ≥ 1

(28)

This can be also proved by adapting the elementary proof given in Boyd [2]. For
0 ≤ a ≤ 1:

π2m(1 + x+ ay + az) = π2m(1 + ay + x(1 + aw)) = π2m

(
1 + ay

1 + aw
+ x

)
4γ = limn→∞

(∑n
k=1

1
k
− logn

)
= 0.577215664 . . .
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=

∫ π

0

∫ π

0
log+

∣∣∣∣1 + aeit

1 + aeis

∣∣∣∣ ds dt =

∫
0≤t≤s≤π

log |1 + aeit| − log |1 + aeis| dsdt

=

∫ π

0
(π − t) log |1 + aeit|dt−

∫ π

0
s log |1 + aeis|ds = −2

∫ π

0
t log |1 + aeit|dt

(here we have used that 0 ≤ a ≤ 1, and Jensen’s formula).

Now use that

log |1 + aeit| = Re
∞∑
n=1

(−1)n−1

n
aneint =

∞∑
n=1

(−1)n−1 cos(n t)

n
an (29)

and apply integration by parts,

π2m(1 + x+ ay + az) = −2

∞∑
n=1

(−1)n−1 sin(n t)

n2
ant

∣∣∣∣∣
π

0

+2

∫ π

0

∞∑
n=1

(−1)n−1 sin(n t)

n2
andt = 4

∞∑
n=1 (odd)

an

n3
= 2(Li3(a)− Li3(−a))

When a ≥ 1, use that

m(1 + x+ ay + az) = log a+m

(
1

a
+
x

a
+ y + z

)

5. Examples of higher weight

• Smyth [24] in 2003, found for n ≥ 3,

m((x1 + x−1
1 ) . . . (xn−2 + x−1

n−2) + 2n−3(xn−1 + xn))

= (n− 3) log 2 +

(
2

π

)n−1

·n+1 Fn

({
1

2
,
1

2
,
1

2
, 1, . . . , 1

}
,

{
3

2
, . . . ,

3

2

}
, 1

)
(30)

where

rFm({a1, . . . , ar}, {b1, . . . , bm}, z) =

∞∑
k=0

(a1)k . . . (ar)k
(b1)k . . . (bm)k

zk

k!

is a hypergeometric function and (a)k = a(a+ 1) . . . (a+ k − 1).

• We have obtained (see [13]) examples of polynomials in several variables whose Mahler
measures depend on polylogarithms, special values of the Riemann zeta function and
special values of a certain L-series. See Table 1 (the cases with more than three
variables are new).

In addition to these formulas, we have proved
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π2m
(

1−x1
1+x1

+ α1−y1
1+y1

z
)

7 ζ(3)

π4m
(

1−x1
1+x1

1−x2
1+x2

+ 1−y1
1+y1

1−y2
1+y2

z
)

62ζ(5) + 28ζ(2)ζ(3)

π6m
(

1−x1
1+x1

1−x2
1+x2

1−x3
1+x3

+ 1−y1
1+y1

1−y2
1+y2

1−y3
1+y3

z
)

381ζ(7) + 372ζ(2)ζ(5) + 336ζ(4)ζ(3)

πm ((1 + y) + α(1− y)z) 2L(χ−4, 2)

π3m
(

1−x1
1+x1

(1 + y) + α1−y1
1+y1

(1− y)z
)

24L(χ−4, 4) + 6ζ(2)L(χ−4, 2)

π5m
(

1−x1
1+x1

1−x2
1+x2

(1 + y) + 1−y1
1+y1

1−y2
1+y2

(1− y)z
)

160L(χ−4, 6) + 120ζ(2)L(χ−4, 4) +
135
2 ζ(4)L(χ−4, 2)

π2m ((1 + x) + α(1 + y)z) 7
2ζ(3)

π4m
(

1−x1
1+x1

(1 + x) + α1−y1
1+y1

(1 + y)z
)

93ζ(5)

π6m
(

1−x1
1+x1

1−x2
1+x2

(1 + x) + 1−y1
1+y1

1−y2
1+y2

(1 + y)z
)

15·127
2 ζ(7) + 186ζ(2)ζ(5)

π8m
(

1−x1
1+x1

1−x2
1+x2

1−x3
1+x3

(1 + x) + 1−y1
1+y1

1−y2
1+y2

1−y3
1+y3

(1 + y)z
)

14 · 511ζ(9) + 30 · 127ζ(2)ζ(7) + 48 ·
31ζ(4)ζ(5)

π3m ((1 + w)(1 + x) + α(1− w)(1 + y)z) 12ζ(2)L(χ−4, 2) + 2iL3,1(i, i)

π5m
(

1−x1
1+x1

(1 + w)(1 + x) + 1−y1
1+y1

(1− w)(1 + y)z
)

144ζ(2)L(χ−4, 4)+90ζ(4)L(χ−4, 2)+
16iL3,3(i, i) + 24iζ(2)L3,1(i, i)

π2m((1 + w)(1 + y) + (1− w)(x− y)) 7
2ζ(3) + π2

2 log 2

Table 1: Here α is a nonzero complex number. The second column indicates the value of
the first column for α = 1.
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Theorem 15 The Mahler measure of an n-variable polynomial in the first or in the
third families is a homogeneous (of weight n) linear combination (with coefficients in
Q[π]) of special (odd) values of the Riemann zeta function. Analogously, the Mahler
measure of an n-variable polynomial in the second family is a homogeneous (of weight
n) linear combination (with coefficients in Q[π]) of special (even) values of the L-series
in the Dirichlet character of conductor 4.

The idea behind these computations is the following. Let Pα ∈ C[x1, . . . , xn] whose
coefficients depend polynomially on a parameter α ∈ C. We replace α by α1−y

1+y

and obtain a polynomial P̃α ∈ C[x1, . . . , xn, y]. The Mahler measure of the second
polynomial is a certain integral of the Mahler measure of the first polynomial.

m(P̃α) =
1

2πi

∫
T1

m
(
Pα 1−y

1+y

) dy

y

The proof of these results uses multiple polylogarithms, which are several-variable
versions of the polylogarithms and have analogous analytic continuations.
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