Mahler measures as values of regulators

Matilde N. Lalín

Institute for Advanced Study
mlalin@math.ias.edu
http://www.math.ias.edu/~mlalin
February 9th, 2006

Mahler measure of multivariate polynomials

$P \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, the (logarithmic) Mahler measure is :

$$
\begin{aligned}
& m(P)= \frac{1}{(2 \pi \mathrm{i})^{n}} \int_{\mathbb{T}^{n}} \log \left|P\left(x_{1}, \ldots, x_{n}\right)\right| \frac{\mathrm{d} x_{1}}{x_{1}} \cdots \frac{\mathrm{~d} x_{n}}{x_{n}} \\
& \mathbb{T}^{n}=S^{1} \times \cdots \times S^{1}
\end{aligned}
$$

Smyth (1981)

$$
\begin{gathered}
m(1+x+y)=\frac{3 \sqrt{3}}{4 \pi} \mathrm{~L}\left(\chi_{-3}, 2\right)=\mathrm{L}^{\prime}\left(\chi_{-3},-1\right) \\
m(1+x+y+z)=\frac{7}{2 \pi^{2}} \zeta(3)
\end{gathered}
$$

Boyd, Deninger, Rodriguez-Villegas (1997)

$$
\begin{aligned}
& m\left(x+\frac{1}{x}+y+\frac{1}{y}-k\right) \stackrel{?}{=} \frac{\mathrm{L}^{\prime}\left(E_{k}, 0\right)}{B_{k}} \quad k \in \mathbb{N}, \quad k \neq 4 \\
& m\left(x+\frac{1}{x}+y+\frac{1}{y}-4\right)=2 \mathrm{~L}^{\prime}\left(\chi_{-4},-1\right) \\
& m\left(x+\frac{1}{x}+y+\frac{1}{y}-4 \sqrt{2}\right)=\mathrm{L}^{\prime}(A, 0) \\
& A: y^{2}=x^{3}-44 x+112
\end{aligned}
$$

An algebraic integration for Mahler measure

Deninger (1997) : General framework.

$$
m(P)=m\left(P^{*}\right)+\frac{1}{(-2 \mathrm{i} \pi)^{n-1}} \int_{\Gamma} \eta_{n}(n)\left(x_{1}, \ldots, x_{n}\right)
$$

where

$$
\Gamma=\left\{P\left(x_{1}, \ldots, x_{n}\right)=0\right\} \cap\left\{\left|x_{1}\right|=\cdots=\left|x_{n-1}\right|=1,\left|x_{n}\right| \geq 1\right\}
$$

$\eta_{n}(n)\left(x_{1}, \ldots, x_{n}\right)$ is a $\mathbb{R}(n-1)$-valued smooth $n-1$-form in $X(\mathbb{C})$.

Philosophy of Beilinson's conjectures

Global information from local information through L-functions

- Arithmetic-geometric object X (for instance, $X=\mathcal{O}_{F}, F$ a number field)
- L-function $\left(\mathrm{L}_{F}=\zeta_{F}\right)$
- Finitely-generated abelian group $K\left(K=\mathcal{O}_{F}^{*}\right)$
- Regulator map reg : $K \rightarrow \mathbb{R}($ reg $=\log |\cdot|)$

$$
\left(K \text { rank 1) } \quad \mathrm{L}_{X}^{\prime}(0) \sim_{\mathbb{Q}^{*}} \operatorname{reg}(\xi)\right.
$$

(Dirichlet class number formula, for F real quadratic, $\left.\zeta_{F}^{\prime}(0) \sim_{\mathbb{Q}^{*}} \log |\epsilon|, \epsilon \in \mathcal{O}_{F}^{*}\right)$

An algebraic integration for Mahler measure: two-variables

Rodriguez-Villegas (1997) :

$$
\begin{aligned}
P(x, y) & =y+x-1 \quad X=\{P(x, y)=0\} \\
m(P) & =\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \log |y+x-1| \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y}
\end{aligned}
$$

By Jensen's equality:

where

An algebraic integration for Mahler measure: two-variables

Rodriguez-Villegas (1997) :

$$
\begin{aligned}
P(x, y) & =y+x-1 \quad X=\{P(x, y)=0\} \\
m(P) & =\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \log |y+x-1| \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y}
\end{aligned}
$$

By Jensen's equality:

$$
=\frac{1}{2 \pi \mathrm{i}} \int_{\mathbb{T}^{1}} \log ^{+}|1-x| \frac{\mathrm{d} x}{x}
$$

An algebraic integration for Mahler measure: two-variables

Rodriguez-Villegas (1997) :

$$
\begin{aligned}
P(x, y) & =y+x-1 \quad X=\{P(x, y)=0\} \\
m(P) & =\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \log |y+x-1| \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y}
\end{aligned}
$$

By Jensen's equality:

$$
\begin{gathered}
=\frac{1}{2 \pi \mathrm{i}} \int_{\mathbb{T}^{1}} \log ^{+}|1-x| \frac{\mathrm{d} x}{x} \\
=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \log |y| \frac{\mathrm{d} x}{x}=-\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \eta(x, y)
\end{gathered}
$$

where

$$
\gamma=X \cap\{|x|=1,|y| \geq 1\} \quad \eta(x, y)=\log |x| \text { di } \arg y-\log |y| \text { di arg }
$$

Properties of $\eta(x, y)$

- $\eta(x, y)=-\eta(y, x)$
- $\eta\left(x_{1} x_{2}, y\right)=\eta\left(x_{1}, y\right)+\eta\left(x_{2}, y\right)$
- $\mathrm{d} \eta(x, y)=\mathrm{i} \operatorname{Im}\left(\frac{\mathrm{d} x}{x} \wedge \frac{\mathrm{~d} y}{y}\right)$

$$
\eta(x, 1-x)=\operatorname{di} D(x)
$$

Bloch-Wigner dilogarithm:

$$
D(x):=\operatorname{Im}\left(\operatorname{Li}_{2}(x)\right)+\arg (1-x) \log |x|
$$

Properties of $\eta(x, y)$

- $\eta(x, y)=-\eta(y, x)$
- $\eta\left(x_{1} x_{2}, y\right)=\eta\left(x_{1}, y\right)+\eta\left(x_{2}, y\right)$
- $\mathrm{d} \eta(x, y)=\mathrm{i} \operatorname{Im}\left(\frac{\mathrm{d} x}{x} \wedge \frac{\mathrm{~d} y}{y}\right)$

Theorem

$$
\eta(x, 1-x)=\operatorname{di} D(x)
$$

Bloch-Wigner dilogarithm:

$$
\begin{gathered}
D(x):=\operatorname{Im}\left(\operatorname{Li}_{2}(x)\right)+\arg (1-x) \log |x| \\
\operatorname{Li}_{2}(x):=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}} \quad|x|<1
\end{gathered}
$$

Use Stokes Theorem:

$$
m(P)=-\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \eta(x, 1-x)=-\frac{1}{2 \pi} D(\partial \gamma)
$$

$x=\mathrm{e}^{2 \pi \mathrm{i} \theta}$,

$$
\begin{gathered}
y(\gamma(\theta))=1-\mathrm{e}^{2 \pi \mathrm{i} \theta}, \quad \theta \in[1 / 6 ; 5 / 6] \\
\partial \gamma=\left[\bar{\xi}_{6}\right]-\left[\xi_{6}\right]
\end{gathered}
$$

$$
2 \pi m(x+y+1)=D\left(\xi_{6}\right)-D\left(\bar{\xi}_{6}\right)=2 D\left(\xi_{6}\right)=\frac{3 \sqrt{3}}{2} \mathrm{~L}\left(\chi_{-3}, 2\right)
$$

In general,

$$
P(x, y) \in \mathbb{C}[x, y], X:=\{P(x, y)=0\}
$$

$$
m(P)=m\left(P^{*}\right)-\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \eta(x, y)
$$

Need

$$
x \wedge y=\sum_{j} r_{j} z_{j} \wedge\left(1-z_{j}\right) \quad \text { in } \quad \bigwedge^{2}\left(\mathbb{C}(X)^{*}\right) \otimes \mathbb{Q}
$$

Same as $\{x, y\}=0$ in $K_{2}(\mathbb{C}(X)) \otimes \mathbb{Q}$.

$$
\int_{\gamma} \eta(x, y)=\left.\sum r_{j} D\left(z_{j}\right)\right|_{\partial \gamma}
$$

Big picture

$$
\begin{gathered}
\cdots \rightarrow\left(K_{3}(\overline{\mathbb{Q}}) \supset\right) K_{3}(\partial \gamma) \rightarrow K_{2}(X, \partial \gamma) \rightarrow K_{2}(X) \rightarrow \ldots \\
\partial \gamma=X \cap \mathbb{T}^{2}
\end{gathered}
$$

- $\eta(x, y)$ is exact, then $\{x, y\} \in K_{3}(\partial \gamma)$. We have $\partial \gamma \neq \emptyset$ and we use Stokes' Theorem.
\rightsquigarrow dilogarithms, zeta function
- $\partial \gamma=\emptyset$, then $\{x, y\} \in K_{2}(X)$. We have $\eta(x, y)$ is not exact. \rightsquigarrow L-series of a curve

We may get combinations of both situations.

Big picture

$$
\begin{gathered}
\cdots \rightarrow\left(K_{3}(\overline{\mathbb{Q}}) \supset\right) K_{3}(\partial \gamma) \rightarrow K_{2}(X, \partial \gamma) \rightarrow K_{2}(X) \rightarrow \cdots \\
\partial \gamma=X \cap \mathbb{T}^{2}
\end{gathered}
$$

- $\eta(x, y)$ is exact, then $\{x, y\} \in K_{3}(\partial \gamma)$. We have $\partial \gamma \neq \emptyset$ and we use Stokes' Theorem.
\rightsquigarrow dilogarithms, zeta function
- $\partial \gamma=\emptyset$, then $\{x, y\} \in K_{2}(X)$. We have $\eta(x, y)$ is not exact. \rightsquigarrow L-series of a curve

We may get combinations of both situations.

Big picture

$$
\begin{gathered}
\cdots \rightarrow\left(K_{3}(\overline{\mathbb{Q}}) \supset\right) K_{3}(\partial \gamma) \rightarrow K_{2}(X, \partial \gamma) \rightarrow K_{2}(X) \rightarrow \cdots \\
\partial \gamma=X \cap \mathbb{T}^{2}
\end{gathered}
$$

- $\eta(x, y)$ is exact, then $\{x, y\} \in K_{3}(\partial \gamma)$. We have $\partial \gamma \neq \emptyset$ and we use Stokes' Theorem.
\rightsquigarrow dilogarithms, zeta function
- $\partial \gamma=\emptyset$, then $\{x, y\} \in K_{2}(X)$. We have $\eta(x, y)$ is not exact.
\rightsquigarrow L-series of a curve
We may get combinations of both situations.

Example in the non-exact case

Boyd, Deninger, Rodriguez-Villegas (1997)

$$
\begin{aligned}
& m\left(x+\frac{1}{x}+y+\frac{1}{y}-k\right) \stackrel{?}{=} \frac{\mathrm{L}^{\prime}\left(E_{k}, 0\right)}{B_{k}} \quad k \in \mathbb{N}, \quad k \neq 4 \\
& m\left(x+\frac{1}{x}+y+\frac{1}{y}-4\right)=2 \mathrm{~L}^{\prime}\left(\chi_{-4},-1\right) \\
& m\left(x+\frac{1}{x}+y+\frac{1}{y}-4 \sqrt{2}\right)=\mathrm{L}^{\prime}(A, 0) \\
& A: y^{2}=x^{3}-44 x+112
\end{aligned}
$$

Identities

Boyd (1997), Rodriguez-Villegas (2000)

$$
7 m\left(y^{2}+2 x y+y-x^{3}-2 x^{2}-x\right)=5 m\left(y^{2}+4 x y+y-x^{3}+x^{2}\right)
$$

Rogers (2005)

Identities

Boyd (1997), Rodriguez-Villegas (2000)

$$
7 m\left(y^{2}+2 x y+y-x^{3}-2 x^{2}-x\right)=5 m\left(y^{2}+4 x y+y-x^{3}+x^{2}\right)
$$

Rogers (2005)

$$
m\left(4 n^{2}\right)+m\left(\frac{4}{n^{2}}\right)=2 m\left(2 n+\frac{2}{n}\right)
$$

where

$$
m(k):=m\left(x+\frac{1}{x}+y+\frac{1}{y}-k\right)
$$

Idea in the Elliptic Curve case

- For $\{x, y\} \in K_{2}(E)$:

$$
r(\{x, y\})=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \eta(x, y)
$$

γ generates $H_{1}(E, \mathbb{Z})^{-}$

if $(x),(y)$ supported on $E_{\text {tors }}(\overline{\mathbb{Q}})$.

$$
\pi D^{E} \sim L(E, 2)
$$

is HARD.

Idea in the Elliptic Curve case

- For $\{x, y\} \in K_{2}(E)$:

$$
r(\{x, y\})=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \eta(x, y)
$$

γ generates $H_{1}(E, \mathbb{Z})^{-}$

$$
r(\{x, y\})=D^{E}((x) \diamond(y))
$$

if $(x),(y)$ supported on $E_{\text {tors }}(\overline{\mathbb{Q}})$.

$$
\pi D^{E} \sim L(E, 2)
$$

Idea in the Elliptic Curve case

- For $\{x, y\} \in K_{2}(E)$:

$$
r(\{x, y\})=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \eta(x, y)
$$

γ generates $H_{1}(E, \mathbb{Z})^{-}$

$$
r(\{x, y\})=D^{E}((x) \diamond(y))
$$

if $(x),(y)$ supported on $E_{\text {tors }}(\overline{\mathbb{Q}})$.

$$
\pi D^{E} \sim L(E, 2)
$$

is HARD.

Properties of $\eta_{n}(n)\left(x_{1}, \ldots, x_{n}\right)$

- Multiplicative in each variable, anti-symmetric. $\eta_{n}(n)$ is a function on $\bigwedge^{n}\left(\mathbb{C}(X)^{*}\right)_{\mathbb{Q}}$
- $\mathrm{d} \eta_{n}(n)\left(x_{1}, \ldots, x_{n}\right)=\widehat{\operatorname{Re}_{n}}\left(\frac{\mathrm{~d} x_{1}}{x_{1}} \wedge \cdots \wedge \frac{\mathrm{~d} x_{n}}{x_{n}}\right)$
- $\eta_{n}(n)\left(x, 1-x, x_{1}, \ldots, x_{n-2}\right)=\mathrm{d} \eta_{n-1}(n)\left(x, x_{1}, \ldots, x_{n-2}\right)$

Properties of $\eta_{n}(n)\left(x_{1}, \ldots, x_{n}\right)$

- Multiplicative in each variable, anti-symmetric. $\eta_{n}(n)$ is a function on $\bigwedge^{n}\left(\mathbb{C}(X)^{*}\right)_{\mathbb{Q}}$
- $\mathrm{d} \eta_{n}(n)\left(x_{1}, \ldots, x_{n}\right)=\widehat{\operatorname{Re}_{n}}\left(\frac{\mathrm{~d} x_{1}}{x_{1}} \wedge \cdots \wedge \frac{\mathrm{~d} x_{n}}{x_{n}}\right)$

Properties of $\eta_{n}(n)\left(x_{1}, \ldots, x_{n}\right)$

- Multiplicative in each variable, anti-symmetric. $\eta_{n}(n)$ is a function on $\bigwedge^{n}\left(\mathbb{C}(X)^{*}\right)_{\mathbb{Q}}$
- $\mathrm{d} \eta_{n}(n)\left(x_{1}, \ldots, x_{n}\right)=\widehat{\operatorname{Re}_{n}}\left(\frac{\mathrm{~d} x_{1}}{x_{1}} \wedge \cdots \wedge \frac{\mathrm{~d} x_{n}}{x_{n}}\right)$
- $\eta_{n}(n)\left(x, 1-x, x_{1}, \ldots, x_{n-2}\right)=\mathrm{d} \eta_{n-1}(n)\left(x, x_{1}, \ldots, x_{n-2}\right)$

Examples

$$
\eta_{2}(2)(x, 1-x)=\operatorname{di} D(x)
$$

$$
\begin{aligned}
& \eta_{3}(3)(x, y, z)=\log |x|\left(\frac{1}{3} \mathrm{~d} \log |y| \wedge \mathrm{d} \log |z|+\operatorname{di} \arg y \wedge \operatorname{di} \arg z\right) \\
& +\log |y|\left(\frac{1}{3} \mathrm{~d} \log |z| \wedge \mathrm{d} \log |x|+\operatorname{di} \arg z \wedge \operatorname{di} \arg x\right) \\
& +\log |z|\left(\frac{1}{3} \mathrm{~d} \log |x| \wedge \mathrm{d} \log |y|+\operatorname{di} \arg x \wedge \operatorname{di} \arg y\right) \\
& \\
& \eta_{3}(3)(x, 1-x, y)=\mathrm{d} \eta_{3}(2)(x, y) \\
& \eta_{3}(2)(x, y) \\
& =\mathrm{i} D(x) \operatorname{di} \arg y+\frac{1}{3} \log |y|(\log |1-x| \mathrm{d} \log |x|-\log |x| \mathrm{d} \log |1-x|)
\end{aligned}
$$

Examples

$$
\eta_{2}(2)(x, 1-x)=\operatorname{di} D(x)
$$

$$
\begin{gathered}
\eta_{3}(3)(x, y, z)=\log |x|\left(\frac{1}{3} \mathrm{~d} \log |y| \wedge \mathrm{d} \log |z|+\operatorname{di} \arg y \wedge \operatorname{diarg} z\right) \\
+\log |y|\left(\frac{1}{3} \mathrm{~d} \log |z| \wedge \mathrm{d} \log |x|+\operatorname{diarg} z \wedge \operatorname{di} \arg x\right) \\
+\log |z|\left(\frac{1}{3} \mathrm{~d} \log |x| \wedge \mathrm{d} \log |y|+\operatorname{di} \arg x \wedge \operatorname{di} \arg y\right) \\
\eta_{3}(3)(x, 1-x, y)=\mathrm{d} \eta_{3}(2)(x, y) \\
\eta_{3}(2)(x, y) \\
=\mathrm{i} D(x) \operatorname{di} \arg y+\frac{1}{3} \log |y|(\log |1-x| \mathrm{d} \log |x|-\log |x| \mathrm{d} \log |1-x|)
\end{gathered}
$$

First variable in $\eta_{n}(n-1)$ behaves like the five-term relation

$$
[x]+[y]+[1-x y]+\left[\frac{1-x}{1-x y}\right]+\left[\frac{1-x}{1-x y}\right]
$$

$$
\eta_{n}(n-1)\left(x, x, x_{1}, \ldots, x_{n-3}\right)=\mathrm{d} \eta_{n}(n-2)\left(x, x_{1}, \ldots, x_{n-3}\right)
$$

First variable in $\eta_{n}(n-2)$ behaves like rational functional equations of \mathcal{L}_{3}.

$$
\eta_{n}(2)(x, x)=\mathrm{d} \eta_{n}(1)(x)
$$

$$
\eta_{n}(1)(x)=\widehat{\mathcal{L}_{n}}(x)
$$

First variable in $\eta_{n}(n-1)$ behaves like the five-term relation

$$
[x]+[y]+[1-x y]+\left[\frac{1-x}{1-x y}\right]+\left[\frac{1-x}{1-x y}\right]
$$

Now

$$
\eta_{n}(n-1)\left(x, x, x_{1}, \ldots, x_{n-3}\right)=\mathrm{d} \eta_{n}(n-2)\left(x, x_{1}, \ldots, x_{n-3}\right)
$$

First variable in $\eta_{n}(n-2)$ behaves like rational functional equations of \mathcal{L}_{3}.

First variable in $\eta_{n}(n-1)$ behaves like the five-term relation

$$
[x]+[y]+[1-x y]+\left[\frac{1-x}{1-x y}\right]+\left[\frac{1-x}{1-x y}\right]
$$

Now

$$
\eta_{n}(n-1)\left(x, x, x_{1}, \ldots, x_{n-3}\right)=\mathrm{d} \eta_{n}(n-2)\left(x, x_{1}, \ldots, x_{n-3}\right)
$$

First variable in $\eta_{n}(n-2)$ behaves like rational functional equations of \mathcal{L}_{3}.

$$
\eta_{n}(2)(x, x)=\mathrm{d} \eta_{n}(1)(x)
$$

and

$$
\eta_{n}(1)(x)=\widehat{\mathcal{L}_{n}}(x)
$$

Examples in three variables

- Smyth (2002):

$$
\pi^{2} m\left(1+x+y^{-1}+(1+x+y) z\right)=\frac{14}{3} \zeta(3)
$$

- Condon (2003):

$$
\pi^{2} m\left(z-\left(\frac{1-x}{1+x}\right)(1+y)\right)=\frac{28}{5} \zeta(3)
$$

- D'Andrea \& L. (2003):

$$
\pi^{2} m\left(z(1-x y)^{2}-(1-x)(1-y)\right)=\frac{4 \sqrt{5} \zeta_{\mathbb{Q}(\sqrt{5})}(3)}{\zeta(3)}
$$

New examples

Boyd \& L. (2005)

$$
\begin{aligned}
& m\left(x^{2}+1+(x+1) y+(x-1) z\right)=\frac{\mathrm{L}\left(\chi_{-4}, 2\right)}{\pi}+\frac{21}{8 \pi^{2}} \zeta(3) \\
& m\left(x^{2}+x+1+(x+1) y+z\right)=\frac{\sqrt{3}}{4 \pi} \mathrm{~L}\left(\chi_{-3}, 2\right)+\frac{19}{6 \pi^{2}} \zeta(3)
\end{aligned}
$$

An example in four variables

L.(2003)

$$
\pi^{3} m\left(1+x+\left(\frac{1-x_{1}}{1+x_{1}}\right)(1+y) z\right)=2 \pi^{2} \mathrm{~L}\left(\chi_{-4}, 2\right)+8 \sum_{k=1}^{\infty} \sum_{j=0}^{k-1} \frac{(-1)^{j+k+1}}{(2 j+1)^{3} k}
$$

In general, for m odd,

An example in four variables

L.(2003)

$$
\pi^{3} m\left(1+x+\left(\frac{1-x_{1}}{1+x_{1}}\right)(1+y) z\right)=2 \pi^{2} \mathrm{~L}\left(\chi_{-4}, 2\right)+8 \sum_{k=1}^{\infty} \sum_{j=0}^{k-1} \frac{(-1)^{j+k+1}}{(2 j+1)^{3} k}
$$

(2005)

$$
=24 \mathrm{~L}\left(\chi_{-4}, 4\right)
$$

In general, for m odd,

An example in four variables

L.(2003)
$\pi^{3} m\left(1+x+\left(\frac{1-x_{1}}{1+x_{1}}\right)(1+y) z\right)=2 \pi^{2} \mathrm{~L}\left(\chi_{-4}, 2\right)+8 \sum_{k=1}^{\infty} \sum_{j=0}^{k-1} \frac{(-1)^{j+k+1}}{(2 j+1)^{3} k}$
(2005)

$$
=24 \mathrm{~L}\left(\chi_{-4}, 4\right)
$$

In general, for m odd,

$$
\begin{gathered}
\sum_{k=1}^{\infty} \sum_{j=0}^{k-1} \frac{(-1)^{j+k+1}}{(2 j+1)^{m} k} \\
=m \mathrm{~L}\left(\chi_{-4}, m+1\right)+\sum_{h=1}^{\frac{m-1}{2}} \frac{(-1)^{h} \pi^{2 h}\left(2^{2 h}-1\right)}{(2 h)!} B_{2 h} \mathrm{~L}\left(\chi_{-4}, m-2 h+1\right)
\end{gathered}
$$

Exploring the n-variable world

- L. (2005)

For

$$
z=\left(\frac{1-x_{1}}{1+x_{1}}\right) \ldots\left(\frac{1-x_{n}}{1+x_{n}}\right)
$$

Both $\eta_{n+1}(n+1)$ and $\eta_{n+1}(n)$ are exact.

- D'Andrea \& L. (2005)
$X:=\left\{\operatorname{Res}_{\mathcal{A}_{0}, \ldots, \mathcal{A}_{n}}=0\right\} \subset \mathbb{C}^{k}$
$\eta_{k}(k)$ is exact.

Exploring the n-variable world

- L. (2005)

For

$$
z=\left(\frac{1-x_{1}}{1+x_{1}}\right) \ldots\left(\frac{1-x_{n}}{1+x_{n}}\right)
$$

Both $\eta_{n+1}(n+1)$ and $\eta_{n+1}(n)$ are exact.

- D'Andrea \& L. (2005)
$X:=\left\{\operatorname{Res}_{\mathcal{A}_{0}, \ldots, \mathcal{A}_{n}}=0\right\} \subset \mathbb{C}^{k}$.
$\eta_{k}(k)$ is exact.

Generalized Mahler measure

Gon \& Oyanagi (2004)
For $f_{1}, \ldots, f_{r} \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$,

$$
m\left(f_{1}, \ldots, f_{r}\right)=\frac{1}{(2 \pi \mathrm{i})^{n}} \int_{\mathbb{T}^{n}} \max \left\{\log \left|f_{1}\right|, \ldots, \log \left|f_{r}\right|\right\} \frac{\mathrm{d} x_{1}}{x_{1}} \cdots \frac{\mathrm{~d} x_{n}}{x_{n}}
$$

Generalized Mahler measure

Gon \& Oyanagi (2004)
For $f_{1}, \ldots, f_{r} \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$,

$$
m\left(f_{1}, \ldots, f_{r}\right)=\frac{1}{(2 \pi \mathrm{i})^{n}} \int_{\mathbb{T}^{n}} \max \left\{\log \left|f_{1}\right|, \ldots, \log \left|f_{r}\right|\right\} \frac{\mathrm{d} x_{1}}{x_{1}} \ldots \frac{\mathrm{~d} x_{n}}{x_{n}}
$$

Note

$$
m\left(f_{1}, f_{2}\right)=m\left(f_{1}+z f_{2}\right)
$$

Examples

The particular case when $f_{j}=P\left(x_{j}\right)$ for some $P \in \mathbb{C}[x]$. Gon \& Oyanagi (2004)

$$
\begin{gathered}
m\left(1-x_{1}, \ldots, 1-x_{n}\right)=\sum_{j=1}^{\left[\frac{n}{2}\right]} c_{j, n} \frac{\zeta(2 j+1)}{\pi^{2 j}} \\
m\left(1-x_{1}, 1-x_{2}\right)=\frac{7}{2 \pi^{2}} \zeta(3) \\
m\left(1-x_{1}, 1-x_{2}, 1-x_{3}\right)=\frac{9}{2 \pi^{2}} \zeta(3) \\
m\left(1-x_{1}, 1-x_{2}, 1-x_{3}, 1-x_{4}\right)=-\frac{93}{2 \pi^{4}} \zeta(5)+\frac{9}{\pi^{2}} \zeta(3)
\end{gathered}
$$

Can be also computed using regulators.
$|P(x)|$ is montononous when $0 \leq \arg x \leq \pi$.
In this case, $|P(x)|=2\left|\sin \frac{\arg x}{2}\right|$.

$$
m\left(P\left(x_{1}\right), \ldots, P\left(x_{n}\right)\right)=\frac{n!}{(\pi \mathrm{i})^{n}} \int_{0 \leq \arg x_{n} \leq \cdots \leq \arg x_{1} \leq \pi} \eta\left(P\left(x_{1}\right), x_{1}, \ldots, x_{n}\right)
$$

L. (2005)

$$
\begin{gathered}
m\left(\frac{1-x_{1}}{1+x_{1}}, \ldots, \frac{1-x_{n}}{1+x_{n}}\right)=\sum_{j=1}^{\left[\frac{n}{2}\right]} c_{j, n}^{\prime} \frac{\zeta(2 j+1)}{\pi^{2 j}} \\
m\left(\frac{1-x_{1}}{1+x_{1}}, \frac{1-x_{2}}{1+x_{2}}\right)=\frac{7}{\pi^{2}} \zeta(3) \\
m\left(\frac{1-x_{1}}{1+x_{1}}, \ldots, \frac{1-x_{3}}{1+x_{3}}\right)=\frac{21}{2 \pi^{2}} \zeta(3) \\
m\left(\frac{1-x_{1}}{1+x_{1}}, \ldots, \frac{1-x_{4}}{1+x_{4}}\right)=-\frac{93}{\pi^{4}} \zeta(5)+\frac{21}{\pi^{2}} \zeta(3)
\end{gathered}
$$

$m\left(1+x_{1}-x_{1}^{-1}, \ldots, 1+x_{n}-x_{n}^{-1}\right)=$ combination of polylogarithms.
$m\left(1+x_{1}-x_{1}^{-1}\right)=-\log (\varphi)$,
$m\left(1+x_{1}-x_{1}^{-1}, 1+x_{2}-x_{2}^{-1}\right)$
$=\frac{1}{\pi^{2}} \operatorname{Re}\left(\operatorname{Li}_{3}\left(\varphi^{2}\right)-\operatorname{Li}_{3}\left(-\varphi^{2}\right)+\operatorname{Li}_{3}\left(\varphi^{-2}\right)-\operatorname{Li}_{3}\left(-\varphi^{-2}\right)\right)$
for $\varphi=\frac{-1+\sqrt{5}}{2}$.

