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1. Mahler Measure

Definition 1 For P ∈ C[x±1
1

, . . . , x±1
n ], the (logarithmic) Mahler measure is defined by

m(P ) :=

∫
1

0

. . .

∫
1

0

log |P (e2πiθ1 , . . . , e2πiθn)|dθ1 . . .dθn (1)

=
1

(2πi)n

∫

Tn

log |P (x1, . . . , xn)|dx1

x1

. . .
dxn

xn
(2)

For more about Mahler Measures of several-variable polynomials, see [2], [5]
Jensen’s formula provides a simple expression for the Mahler measure in the one-variable

case. The several-variable case is more complicated. Many examples with explicit formulas
have been produced. (See [4], [10], [12], [13], [14], [15], [16])

The simplest example with two variables is due to Smyth [13]:

m(1 + x + y) =
3
√

3

4π
L(χ−3, 2) = L′(χ−3,−1) (3)

Where

L(χ−3, s) :=
∞∑

n=1

χ−3(n)

ns

is the L-series in the character of conductor 3:

χ−3(n) =







1 if n ≡ 1 mod 3
−1 if n ≡ −1 mod 3

0 otherwise

The analogous example with three variables is also due to Smyth:

m(1 + x + y + z) =
7

2π2
ζ(3) (4)

The general linear case with two variables is due to Cassaigne and Maillot, [10] : for
a, b, c ∈ C,

πm(a + bx + cy) =







D
(∣
∣a
b

∣
∣ eiγ

)
+ α log |a| + β log |b| + γ log |c| 4

π log max{|a|, |b|, |c|} not 4
(5)

Here 4 stands for the statement that |a|, |b|, and |c| are the lengths of the sides of a
triangle, and α, β, and γ are the angles opposite to the sides of lengths |a|, |b|, and |c|
respectively. See Figure 1.
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Figure 1: The main term in Caissaigne – Maillot formula is the volume of the ideal hyper-
bolic tetrahedron over the triangle.

D stands for the Bloch–Wigner dilogarithm (see definition later). The term with the
dilogarithm can be interpreted as the volume of the ideal hyperbolic tetrahedron which has
the triangle as basis and the fourth vertex is infinity (see [11], [17]).

2. Examples of higher weight

We have obtained (see [9]) examples of polynomials in several variables whose Mahler
measures depend on polylogarithms, special values of the Riemann zeta function and special
values of a certain L-series. See Table 1.

χ−4 is the real odd character of conductor 4, i.e.

χ−4(n) =







1 if n ≡ 1 mod 4
−1 if n ≡ −1 mod 4

0 otherwise

Let us observe that all the presented formulas share a common feature. If we assign
weight 1 to any Mahler measure and to π, then all the formulas are homogeneous, meaning
all the monomials have the same weight, and this weight is equal to the number of variables
of the corresponding polynomial.

In addition to the formulas in Table 1, we proved

Theorem 2 The Mahler measure of an n-variable polynomial in the first or in the third
families is a homogeneous (of weight n) linear combination (with coefficients in Q[π]) of
special (odd) values of the Riemann zeta function.

Analogously, the Mahler measure of an n-variable polynomial in the second family is a
homogeneous (of weight n) linear combination (with coefficients in Q[π]) of special (even)
values of the L-series in the Dirichlet character of conductor 4.

3. Polylogarithms

We need the following definitions (see [6], [7], [8])
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π2m
(

1−x1

1+x1
+ α1−y1

1+y1
z
)

7 ζ(3)

π4m
(

1−x1

1+x1

1−x2

1+x2
+ 1−y1

1+y1

1−y2

1+y2
z
)

62ζ(5) + 28ζ(2)ζ(3)

π6m
(

1−x1

1+x1

1−x2

1+x2

1−x3

1+x3
+ 1−y1

1+y1

1−y2

1+y2

1−y3

1+y3
z
)

381ζ(7) + 372ζ(2)ζ(5) + 336ζ(4)ζ(3)

πm ((1 + y) + α(1 − y)z) 2L(χ−4, 2)

π3m
(

1−x1

1+x1
(1 + y) + α1−y1

1+y1
(1 − y)z

)

24L(χ−4, 4) + 6ζ(2)L(χ−4, 2)

π5m
(

1−x1

1+x1

1−x2

1+x2
(1 + y) + 1−y1

1+y1

1−y2

1+y2
(1 − y)z

)

160L(χ−4, 6) + 120ζ(2)L(χ−4, 4) +
135

2
ζ(4)L(χ−4, 2)

π2m ((1 + x) + α(1 + y)z) 7

2
ζ(3)

π4m
(

1−x1

1+x1
(1 + x) + α1−y1

1+y1
(1 + y)z

)

93ζ(5)

π6m
(

1−x1

1+x1

1−x2

1+x2
(1 + x) + 1−y1

1+y1

1−y2

1+y2
(1 + y)z

)
15·127

2
ζ(7) + 186ζ(2)ζ(5)

π8m
(

1−x1

1+x1

1−x2

1+x2

1−x3

1+x3
(1 + x) + 1−y1

1+y1

1−y2

1+y2

1−y3

1+y3
(1 + y)z

)

14 · 511ζ(9) + 30 · 127ζ(2)ζ(7) + 48 ·
31ζ(4)ζ(5)

π3m ((1 + w)(1 + x) + α(1 − w)(1 + y)z) 12ζ(2)L(χ−4, 2) + 2iL3,1(i, i)

π5m
(

1−x1

1+x1
(1 + w)(1 + x) + 1−y1

1+y1
(1 − w)(1 + y)z

)

144ζ(2)L(χ−4, 4)+90ζ(4)L(χ−4, 2)+
16iL3,3(i, i) + 24iζ(2)L3,1(i, i)

π2m((1 + w)(1 + y) + (1 − w)(x − y)) 7

2
ζ(3) + π2

2
log 2

Table 1: Here α is a nonzero complex number. The second column indicates the value of
the first column for α = 1.
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Definition 3 Multiple polylogarithms are defined as the power series

Lik1,...,km
(x1, . . . , xm) :=

∑

0<n1<n2<...<nm

xn1

1
xn2

2
. . . xnm

m

nk1

1
nk2

2
. . . nkm

m

(6)

which are convergent for |xi| < 1. The weight of a polylogarithm function is the number
w = k1 + . . . + km and its length is the number m.

Definition 4 Hyperlogarithms are defined as the iterated integrals

Ik1,...,km
(a1 : . . . : am : am+1) :=

∫ am+1

0

dt

t − a1

◦ dt

t
◦ . . . ◦ dt

t
︸ ︷︷ ︸

k1

◦ dt

t − a2

◦ dt

t
◦ . . . ◦ dt

t
︸ ︷︷ ︸

k2

◦ . . . ◦ dt

t − am
◦ dt

t
◦ . . . ◦ dt

t
︸ ︷︷ ︸

km

(7)

where ki are integers, ai are complex numbers, and

∫ bl+1

0

dt

t − b1

◦ . . . ◦ dt

t − bl

=

∫

0≤t1≤...≤tl≤bl+1

dt1

t1 − b1

. . .
dtl

tl − bl

The value of the integral above only depends on the homotopy class of the path con-
necting 0 and am+1 on C \ {a1, . . . , am}.

It is easy to see that

Ik1,...,km
(a1 : . . . : am : am+1) = (−1)mLik1,...,km

(
a2

a1

,
a3

a2

, . . . ,
am

am−1

,
am+1

am

)

(8)

Lik1,...,km
(x1, . . . , xm) = (−1)mIk1,...,km

(
1

x1 . . . xm
: . . . :

1

xm
: 1

)

(9)

which gives an analytic continuation to multiple polylogarithms. For instance, with the
convention about integrating over a real segment, simple polylogarithms have an analytic
continuation to C \ [1,∞).

There are modified versions of these functions which are analytic in larger sets, like the
Bloch-Wigner dilogarithm,

D(z) := Im(Li2(z)) + log |z| arg(1 − z) z ∈ C \ [1,∞) (10)

which can be extended as a real analytic function in C \ {0, 1} and continuous in C.
In the table, the numbers L3,n(i, i) stand for certain combination of Li3,n(±i,±i). It

is possible to express these numbers as linear combinations of special values of L-series of
length 2.

4. First general method for building examples

We have developed two methods that allowed us to build the examples. The first method,
although more complex, can be applied to more general cases. It goes as follows:

1. Let Pα ∈ C[x1, . . . , xn] whose coefficients depend polynomially on a parameter α ∈ C.
For instance, start with Pα(x) = 1 + αx, whose Mahler measure is log+ |α|.
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2. We replace α by α1−y
1+y

and obtain a polynomial P̃α ∈ C[x1, . . . , xn, y]. In the example,

P̃α(x, y) = 1 + y + α(1 − y)x.

3. The Mahler measure of the second polynomial is a certain integral of the Mahler
measure of the first polynomial.

m(P̃α) =
1

2πi

∫

T1

m
(

P
α

1−y

1+y

) dy

y

(

in the example, =
1

2πi

∫

T1

log+

∣
∣
∣
∣
α

1 − y

1 + y

∣
∣
∣
∣

dy

y

)

4. If the Mahler measure depends just on the absolute value of α, we can make a change

of variables u =
∣
∣
∣α

1−y
1+y

∣
∣
∣ (to be precise, first write y = eiθ and then set u = |α| tan

(
θ
2

)
).

We obtain,

m(P̃α) =
2

π

∫ ∞

0

m (Pu)
|α|du

u2 + |α|2 =
i

π

∫ ∞

0

m (Pu)

(
1

u + i|α| −
1

u − i|α|

)

du

In the example,

m(1 + y + α(1 − y)x) =
i

π

∫ ∞

0

log+ u

(
1

u + i|α| −
1

u − i|α|

)

du

=
i

π

∫
1

0

∫
1

s

dt

t

(

1

s + i

|α|

− 1

s − i

|α|

)

ds

=
i

π

(

I2

(

− i

|α| : 1

)

− I2

(
i

|α| : 1

))

= − i

π
(Li2(i|α|) − Li2(−i|α|))

If we look back at the table, all the Mahler measures of polynomials that contain α

have been computed by this method. The same is true for the Mahler measure of the last
polynomial.

We have splitted the examples into five families. The first two families were developed
starting from 1+αx, the third and fourth family start from (1+x)+α(y+z) (see [2], [16]).
The last polynomial was obtained by integrating one particular case of Maillot’s formula:
1 + αx + (1 − α)y.

5 Second general method for building examples

The following method is very good for some specific examples and can indeed give us some
information for the general n variable case.

1. Let P (x, z) = p(x) + αq(x)z ∈ C[x, z] such that we know its Mahler measure as a
function of α, a complex parameter.

For instance, start with the polynomial P (x, y, z) = (1+x)+α(1+y)z, whose Mahler
measure is 2

π2 (Li3(α) − Li3(−α)) for α ≤ 1.

2. We will compute the Mahler measure of the polynomial

P̃ =

(
1 − x1

1 + x1

)

. . .

(
1 − xm

1 + xm

)

p(x) +

(
1 − y1

1 + y1

)

. . .

(
1 − yn

1 + yn

)

q(x)z
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For example, consider P̃ = 1−x1

1+x1
(1 + x) + 1−y1

1+y1
(1 + y)z.

It is easy to see that, for Mahler measure purposes, the general case is reduced to
the following two cases: either we consider n factors in each term or we consider one
term with n factors and the other with n + 1 factors.

3. After some basic transformations (including the same change of variables as in the
other method) we get a linear combination of terms of the form

∫

T∗

∫ ∞

0

∫ ∞

0

log max {x|p(x)|, y|q(x)|} logj x
dx

x2 ± 1
logk y

dy

y2 ± 1

dx

x

It is crucial to use the fact that

∫ ∞

0

x logk xdx

(x2 + a2)(x2 ± 1)
=

Tk(log a)

(a2 ∓ 1)
Tk[x] ∈ Q[x] deg Tk = k + 1

In the example, we get

π4m

(
1 − x1

1 + x1

(1 + x) +
1 − y1

1 + y1

(1 + y)z

)

=
1

(2i)2

∫

T2

∫ π

0

∫ π

0

log max

{∣
∣
∣
∣

1 − eiθ

1 + eiθ

∣
∣
∣
∣
|1 + x|,

∣
∣
∣
∣

1 − eiτ

1 + eiτ

∣
∣
∣
∣
|1 + y|

}

dθdτ
dx

x

dy

y

=
8

(2i)2

∫

T2

∫ ∞

0

∫ x1

0

log max{x1|1 + x|, y1|1 + y|} dx1

x2
1
+ 1

dy1

y2
1

+ 1

dx

x

dy

y

4. We know that

1

(2i)∗

∫

T∗

log max {|p(x)|, α|q(x)|} dx

x
= π∗m(p(x) + αq(x)z)

If this formula is a multiple polylogarithm, we get a multiple polylogarithm again.

Following the example,

1

(2i)2

∫

T2

log max{|1 + x|, α|1 + y|}dx

x

dy

y
= −4

∫ α

0

ds

s2 − 1
◦ ds

s
◦ ds

s

Then, we set z = y1

x1
so we can eliminate the variable y1. We get x1dz = dy1.

=
8

(2i)2

∫

T2

∫ ∞

0

∫
1

0

(log x1 + log max{|1 + x|, z|1 + y|}) x1dx1

x2
1
+ 1

dz

z2x2
1
+ 1

dx

x

dy

y

= 8

∫ ∞

0

∫
1

0

(

log x1 − 4

∫ z

0

ds

s2 − 1
◦ ds

s
◦ ds

s

)
x1dx1

x2
1
+ 1

dz

z2x2
1
+ 1

= 8π2

∫
1

0

log2 z

2(1 − z2)
dz + 8

∫
1

0

(

−4

∫ z

0

ds

s2 − 1
◦ ds

s
◦ ds

s

) − log z

1 − z2
dz

= 7π2ζ(3) + 8(Li3,2(1, 1) − Li3,2(−1, 1) + Li3,2(1,−1) − Li3,2(−1,−1))
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Looking back at the table, the polynomials that do not contain α have been computed
exclusively in this way. The others can be computed with this method as well, except by
the last polynomial.

It is possible to apply this method to obtain the more general results for any α ∈ C.

6. The example with 93ζ(5)

Back to Table 1, the first and second families were built starting from the funcion log which
in a sense can be interpreted as having length 0. In that context, it is natural to expect
polylogarithms of length 1 and these are easy to relate to zeta functions and L-series.

It is not clear from the methods described above how to obtain the zeta values for the
third family. The basic formula has length 1 and so we expect the results to have length 2.
We will describe the main tool that we used as we follow the simplification of the example
above, which finally yields 93ζ(5).

Very often we get the Mahler measure expressed as combinations of what is called
alternating Euler sums:

∑

0<n1<n2<...<nm

(±1)n1(±1)n2 . . . (±1)nm

nk1

1
nk2

2
. . . nkm

m

We see that these numbers are indeed Lik1,...,km
(±1, . . . ,±1).

Recall that we have

π4m

(
1 − x1

1 + x1

(1 + x) +
1 − y1

1 + y1

(1 + y)z

)

= 7π2ζ(3) + 8(Li3,2(1, 1) − Li3,2(−1, 1))

+8(Li3,2(1,−1) − Li3,2(−1,−1)) (11)

A property about alternating Euler sums, is that when they have length 2 and weight
odd they can be simplified by using the formula (75) of [1]. In this particular case, it states
that

Li3,2(x, y) = −1

2
Li5(x y) + Li3(x) Li2(y) + 3Li5(x) + 2Li5(y) − Li2(x y)(Li3(x) + 2Li3(y))

for x, y = ±1.
Taking into account that

Lik(1) = ζ(k) and Lik(−1) =

(
1

2k−1
− 1

)

ζ(k) (12)

we get

Li3,2(1, 1) − Li3,2(−1, 1) + Li3,2(1,−1) − Li3,2(−1,−1) = −21

4
ζ(2)ζ(3) +

93

8
ζ(5)

We obtain the result by using that ζ(2) = π2
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