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Mahler measure for one-variable polynomials

Pierce (1918): P ∈ Z[x ] monic,

P(x) =
∏
i

(x − αi )

∆n =
∏
i

(αn
i − 1)

P(x) = x − 2 ⇒ ∆n = 2n − 1
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Lehmer (1933): Consider
∆n+1

∆n

lim
n→∞

|αn+1 − 1|
|αn − 1|

=

{
|α| if |α| > 1
1 if |α| < 1

For
P(x) = a

∏
i

(x − αi )

M(P) = |a|
∏
i

max{1, |αi |}

m(P) = log M(P) = log |a|+
∑

i

log+ |αi |
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Kronecker’s Lemma

P ∈ Z[x ], P 6= 0,

m(P) = 0 ⇔ P(x) = xk
∏

Φni (x)

where Φni are cyclotomic polynomials
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Lehmer’s question

Lehmer (1933)

m(x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1)

= log(1.176280818 . . . ) = 0.162357612 . . .√
∆379 = 1, 794, 327, 140, 357

Does there exist C > 0, for all P(x) ∈ Z[x ]

m(P) = 0 or m(P) > C??

Is the above polynomial the best possible?
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Mahler measure of several variable polynomials

P ∈ C[x±1
1 , . . . , x±1

n ], the (logarithmic) Mahler measure is :

m(P) =

∫ 1

0
. . .

∫ 1

0
log |P(e2πiθ1 , . . . , e2πiθn)|dθ1 . . .dθn

=
1

(2πi)n

∫
Tn

log |P(x1, . . . , xn)|
dx1

x1
. . .

dxn

xn

Jensen’s formula: ∫ 1

0
log |e2πiθ − α|dθ = log+ |α|

recovers one-variable case.
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(joint with Oliver T. Dasbach) Matilde N. Laĺın (UBS-PIMS, MPIM, U of A)Mahler measure under variations of the base group June 1st, 2007 6 / 27



Boyd & Lawton Theorem

P ∈ C[x1, . . . , xn]

lim
k2→∞

. . . lim
kn→∞

m(P(x , xk2 , . . . , xkn)) = m(P(x1, x2, . . . , xn))
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Examples in several variables

Smyth (1981)

m(1 + x + y) =
3
√

3

4π
L(χ−3, 2) = L′(χ−3,−1) =

D
(
e

πi
3

)
π

m(1 + x + y + z) =
7

2π2
ζ(3)

L(χ−3, s) =
∞∑

n=1

χ−3(n)

ns
χ−3(n) =


1 n ≡ 1 mod 3
−1 n ≡ −1 mod 3
0 n ≡ 0 mod 3

ζ(s) =
∞∑

n=1

1

ns
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Boyd, Deninger, Rodriguez-Villegas (1997)

m

(
x +

1

x
+ y +

1

y
− k

)
?
=

L′(Ek , 0)

Bk
k ∈ N, k 6= 4

Ek determined by x + 1
x + y + 1

y − k = 0.

m

(
x +

1

x
+ y +

1

y
− 4

√
2

)
=L′(E4

√
2, 0)

E4
√

2 : Y 2 = X 3 − 44X + 112
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The general technique

Rodriguez-Villegas (1997)

Pλ(x , y) = 1− λP(x , y) P(x , y) = x +
1

x
+ y +

1

y

m(P, λ) := m(Pλ)

m(P, λ) =
1

(2πi)2

∫
T2

log |1− λP(x , y)|dx

x

dy

y
.
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Note

|λP(x , y)| < 1, λ small, x , y ∈ T2

m̃(P, λ) =
1

(2πi)2

∫
T2

log(1− λP(x , y))
dx

x

dy

y

dm̃(P, λ)

dλ
= − 1

(2πi)2

∫
T2

P(x , y)

1− λP(x , y)

dx

x

dy

y
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Let

u(P, λ) =
1

(2πi)2

∫
T2

1

1− λP(x , y)

dx

x

dy

y

=
∞∑

n=0

λn 1

(2πi)2

∫
T2

P(x , y)n
dx

x

dy

y
=

∞∑
n=0

anλ
n

Where
1

(2πi)2

∫
T2

P(x , y)n
dx

x

dy

y
= [P(x , y)n]0 = an
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m̃(P, λ) =
1

(2πi)2

∫
T2

log(1− λP(x , y))
dx

x

dy

y

= −
∫ λ

0
(u(P, t)− 1)

dt

t
= −

∞∑
n=1

anλ
n

n

In the case P = x + 1
x + y + 1

y ,

an = 0 n odd

a2m =

(
2m

m

)2
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Definition

Fx1,...,xl
free group in x1, . . . , xl ,

N / Fx1,...,xl
, Γ = Fx1,...,xl

/N

Q = Q(x1, . . . , xl) =
∑
g∈Γ

cgg ∈ CΓ,

Q∗ =
∑
g∈Γ

cgg−1 ∈ CΓ reciprocal.

P = P(x1, . . . , xl) ∈ CΓ , P = P∗, |λ| < length of P,

mΓ(P, λ) = −
∞∑

n=1

anλ
n

n
,

an = [P(x1, . . . , xl)
n]0 .
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We also write

uΓ(P, λ) =
∞∑

n=0

anλ
n

for the generating function of the an.

Q(x1, . . . , xl) ∈ CΓ

QQ∗ =
1

λ
(1− (1− λQQ∗))

for λ real and positive and 1/λ larger than the length of QQ∗.

mΓ(Q) = − log λ

2
−

∞∑
n=1

bn

2n
, bn = [(1− λQQ∗)n]0 .
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Lück’s combinatorial L2-torsion.

K knot
Γ = π1(S

3 \ K ) = 〈x1, . . . , xg | r1, . . . , rg−1〉

Let

F =


∂r1
∂x1

. . . ∂r1
∂xg

...
. . .

...
∂rg−1

∂x1
. . .

∂rg−1

∂xg

 ∈ M(g−1)×g (CΓ)

Fox matrix.

Delete a column F  A ∈ M(g−1)×(g−1)(CΓ).
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Theorem

(Lück) Suppose K is a hyperbolic knot. Then, for k sufficiently large

1

3π
Vol(S3 \ K ) = 2(g − 1) ln(k)−

∞∑
n=1

1

n
trCΓ

(
(1− k−2AA∗)n

)
.

A ∈ MgC[t, t−1] the right-hand side is 2m(det(A)).
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The Mahler measure over finite groups

P =
∑

i

(δiSi + δiS
−1
i ) +

∑
j

ηjTj ∈ CΓ

Si 6= S−1
i , Tj = T−1

j , δi ∈ C, ηj ∈ R, and Si ,Tj ∈ Γ,

Theorem

For Γ finite

mΓ(P, λ) =
1

|Γ|
log det(I − λA),

A is the adjacency matrix of the Cayley graph (with weights) and
1
λ > ρ(A).

Analytic continuation for mΓ(P, λ) to C \ Spec(A).
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(joint with Oliver T. Dasbach) Matilde N. Laĺın (UBS-PIMS, MPIM, U of A)Mahler measure under variations of the base group June 1st, 2007 18 / 27



Abelian Groups

Γ finite abelian group

Γ = Z/m1Z× · · · × Z/mlZ

Corollary

mΓ(P, λ) =
1

|Γ|
log

 ∏
j1,...,jl

(
1− λP(ξj1

m1
, . . . , ξjl

ml
)
)

where ξk is a primitive root of unity.

Uses description of the spectra of Cayley graphs of finite groups given by
Babai (1979)
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Theorem

For small λ,

lim
m1,...,ml→∞

mZ/m1Z×···×Z/mlZ(P, λ) = mZl (P, λ).

Where the limit is with m1, . . . ,ml going to infinity independently.
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Dihedral groups

Γ = Dm = 〈ρ, σ | ρm, σ2, σρσρ〉.

Theorem

Let P ∈ C[Dm] be reciprocal. Then

[Pn]0 =
1

2m

m∑
j=1

(
Pn

(
ξj
m, 1

)
+ Pn

(
ξj
m,−1

))
,

where Pn is expressed as a sum of monomials ρk , σρk before being
evaluated.
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For Γ = Z/mZ× Z/2Z = 〈x , y | xm, y2, [x , y ]〉,

[Pn]0 =
1

2m

m∑
j=1

(
P

(
ξj
m, 1

)n
+ P

(
ξj
m,−1

)n
)

.

Compare Dm and Z/mZ× Z/2Z with x = ρ and y = σ in Dm.

Theorem

Let

P =
m−1∑
k=0

αkxk +
m−1∑
k=0

βkyxk

with real coefficients and reciprocal in Z/mZ× Z/2Z (therefore it is also
reciprocal in Dm). Then

mZ/mZ×Z/2Z(P, λ) = mDm(P, λ).
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Corollary

Let P ∈ R [Z× Z/2Z] be reciprocal. Then

mZ×Z/2Z(P, λ) = mD∞(P, λ),

where D∞ = 〈ρ, σ |σ2, σρσρ〉.
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Quotient approximations of the Mahler measure

Γm are quotients of Γ:

Theorem

Let P ∈ Γ reciprocal.

For Γ = D∞, Γm = Dm,

lim
m→∞

mDm(P, λ) = mD∞(P, λ).

For Γ = PSL2(Z) = 〈x , y | x2, y3〉, Γm = 〈x , y | x2, y3, (xy)m〉,

lim
m→∞

mΓm(P, λ) = mPSL2(Z)(P, λ).

For Γ = Z ∗ Z = 〈x , y〉, Γm = 〈x , y | [x , y ]m〉,

lim
m→∞

mΓm(P, λ) = mZ∗Z(P, λ).
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Arbitrary number of variables

For P1,l = x1 + x−1
1 + · · ·+ xl + x−1

l ,

uFl
(P1,l , λ) = g2l(λ).

where

gd(λ) =
2(d − 1)

d − 2 + d
√

1− 4(d − 1)λ2
.

is the generating function of the circuits of a d-regular tree (Bartholdi,
1999).
For P2,l = (1 + x1 + · · ·+ xl−1)

(
1 + x−1

1 + · · ·+ x−1
l−1

)
,

uFl−1
(P2,l , λ) = gl(λ).

In particular,
mFl

(P1,l , λ) = mF2l−1
(P2,2l , λ).
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Abelian case.
For P1,l = x1 + x−1

1 + · · ·+ xl + x−1
l ,

[
Pn

1,l

]
0

=
∑

a1+···+al=n

(2n)!

(a1!)2 . . . (al !)2
,

For P2,l = (1 + x1 + · · ·+ xl−1)
(
1 + x−1

1 + · · ·+ x−1
l−1

)
,

[
Pn

2,l

]
0

=
∑

a1+···+al=n

(
n!

a1! . . . al !

)2

.

[
P2n

1,l

]
0

=

(
2n

n

) [
Pn

2,l

]
0
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(a1!)2 . . . (al !)2
,

For P2,l = (1 + x1 + · · ·+ xl−1)
(
1 + x−1

1 + · · ·+ x−1
l−1

)
,

[
Pn

2,l

]
0

=
∑

a1+···+al=n

(
n!

a1! . . . al !

)2

.

[
P2n

1,l

]
0

=

(
2n

n

) [
Pn

2,l

]
0
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Further Study

Why are mΓ, uΓ “too nice”, i.e., algebraic, or coefficients satisfy
recurrences?

Is the new Mahler measure multiplicative?

Further studies with variations of the base group.

What can we say of the combinatorial L2-torsion?
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(joint with Oliver T. Dasbach) Matilde N. Laĺın (UBS-PIMS, MPIM, U of A)Mahler measure under variations of the base group June 1st, 2007 27 / 27



Further Study

Why are mΓ, uΓ “too nice”, i.e., algebraic, or coefficients satisfy
recurrences?

Is the new Mahler measure multiplicative?

Further studies with variations of the base group.

What can we say of the combinatorial L2-torsion?
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