Statistics for the number of points on cyclic trigonal curves and other families of curves over finite fields

Matilde N. Lalín
University of Alberta mlalin@math.ualberta.ca
http://www.math.ualberta.ca/~mlalin
joint with A. Bucur, C. David, B. Feigon
WENTS 2010
February 25, 2010

Zeta functions of curves over finite fields

Let C be a smooth and projective curve of genus g over \mathbb{F}_{q}. Let

$$
\begin{gathered}
Z_{C}(T)=\exp \left(\sum_{n=1}^{\infty} N_{n}(C) \frac{T^{n}}{n}\right), \quad|T|<1 / q \\
N_{n}(C)=\left|C\left(\mathbb{F}_{q^{n}}\right)\right|
\end{gathered}
$$

Weil conjectures

$$
\begin{aligned}
Z_{C}(T)= & \frac{P_{C}(T)}{(1-T)(1-q T)} \quad \text { (Rationality) } \\
& P_{C}(T) \in \mathbb{Z}[T], \quad \operatorname{deg} P_{C}=2 g
\end{aligned}
$$

and

$$
P_{C}(T)=\prod_{j=1}^{2 g}\left(1-T \alpha_{j, C}\right), \quad\left|\alpha_{j, C}\right|=\sqrt{q} . \quad \text { (Riemann Hypothesis) }
$$

Counting points and the zeros of $Z_{C}(T)$

$$
Z_{C}(T)=\exp \left(\sum_{n=1}^{\infty} N_{n}(C) \frac{T^{n}}{n}\right)=\frac{\prod_{j=1}^{2 g}\left(1-T \alpha_{j, C}\right)}{(1-T)(1-q T)},
$$

Taking logarithms on both sides,

$$
\begin{aligned}
N_{1}(C) & =q+1-\sum_{j=1}^{2 g} \alpha_{j, C} \\
& =q+1-\operatorname{Tr}\left(\operatorname{Frob}_{C}\right)
\end{aligned}
$$

Zeta functions of curves and Random Matrix theory

Zeta functions of curves over finite fields, the zeros are the reciprocal of eigenvalues of Frobenius acting on the first cohomology (with ℓ-adic coefficients) of the curve.

Katz and Sarnak (1999) used this spectral interpretation to prove that the zeros of zeta functions of curves in various families were distributed as eigenvalues of random matrices in the monodromy group associated to the family as q tends to ∞.

Hyperelliptic curves

$$
C_{F}: Y^{2}=F(X)
$$

$F(X)$ is a square-free polynomial of degree $d \geq 3$.
This is a curve of genus $g=\left[\frac{d-1}{2}\right]$.
We want to study the variation of

$$
\operatorname{Tr}\left(\operatorname{Frob}_{C_{F}}\right)=\sum_{i=1}^{2 g} \alpha_{j, C_{F}}
$$

as C_{F} varies over the family of hyperelliptic curves where $F(X)$ has degree $2 g+1$ or $2 g+2$.

Distribution of $\operatorname{Tr}\left(\mathrm{Frob}_{C}\right)$ for $q \rightarrow \infty$

Writing $\alpha_{j, C}=\sqrt{q} e^{2 \pi i \theta_{j, C}}$,

$$
P_{C}(T)=\prod_{i=1}^{2 g}\left(1-T \sqrt{q} e^{2 \pi i \theta_{j, C}}\right)=\operatorname{det}\left(I-T \sqrt{q} \Theta_{c}\right)
$$

where Θ_{C} is a unitary symplectic matrix in $\operatorname{USp}(2 g)$ (defined up to conjugation) with eigenvalues $e^{2 \pi i \theta_{j, C}}$.

When g is fixed and $q \rightarrow \infty$, Katz and Sarnak showed that the roots $\theta_{j, C}$ are distributed as the eigenvalues of matrices in USp $(2 g)$.

Then, $\operatorname{Tr}\left(\mathrm{Frob}_{C}\right) / \sqrt{q}$ is distributed as the trace of a random matrix in $\operatorname{USp}(2 g)$ of $2 g \times 2 g$ as $q \rightarrow \infty$.

Hyperelliptic Curves

By counting the number of points of $Y^{2}=F(X)$ over $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$, we can write

$$
N_{1}\left(C_{F}\right)=q+1-\operatorname{Tr}\left(\operatorname{Frob}_{C_{F}}\right)=\sum_{x \in \mathbb{F}_{q}}\left[1+\chi_{2}(F(x))\right]+N_{\infty}\left(C_{F}\right)
$$

where χ_{2} is the quadratic character of \mathbb{F}_{q}^{*}, and

$$
N_{\infty}\left(C_{F}\right)= \begin{cases}1 & \operatorname{deg} F \text { odd, } \\ 2 & \operatorname{deg} F \text { even, leading coeff of } F \in \mathbb{F}_{q}^{2}, \\ 0 & \operatorname{deg} F \text { even, leading coeff of } F \notin \mathbb{F}_{q}^{2}\end{cases}
$$

is the number of points at infinity.

Hyperelliptic Curves

$$
-\operatorname{Tr}\left(\operatorname{Frob}_{C_{F}}\right)=\sum_{x \in \mathbb{F}_{q}} \chi_{2}(F(x))+\left(N_{\infty}\left(C_{F}\right)-1\right)=\sum_{x \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)} \chi_{2}(F(x))
$$

One can study the variation of

$$
S_{2}(F)=\sum_{x \in \mathbb{F}_{q}} \chi_{2}(F(x))
$$

over the family of hyperelliptic curves and translate it into a variation for $\operatorname{Tr}\left(\right.$ Frob $\left._{C_{F}}\right)$.

This amounts to evaluate the probability that a random square-free polynomial $F(x)$ of degree d takes a prescribed set of values $F\left(x_{1}\right)=a_{1}, \ldots, F\left(x_{q+1}\right)=a_{q+1}$ for the distinct elements of $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$.

Distribution of $\operatorname{Tr}\left(\operatorname{Frob}_{C_{F}}\right)$ for $d \rightarrow \infty$

When q is fixed and $d \rightarrow \infty$, Kurlberg and Rudnick showed that $S_{2}(F)$ is distributed as a sum of q independent identically distributed (i.i.d.) trinomial variables $\left\{X_{i}\right\}_{i=1}^{q}$ taking values $0, \pm 1$ with probabilities $1 /(q+1), 1 / 2\left(1+q^{-1}\right)$ and $1 / 2\left(1+q^{-1}\right)$ respectively.

Theorem (Kurlberg and Rudnick)

$$
\begin{aligned}
\lim _{d \rightarrow \infty} \operatorname{Prob}\left(S_{2}(F)=s\right) & =\lim _{d \rightarrow \infty} \frac{\left|\left\{F \in \mathcal{F}_{d}: S_{2}(F)=s\right\}\right|}{\left|\mathcal{F}_{d}\right|} \\
& =\operatorname{Prob}\left(X_{1}+\cdots+X_{q}=s\right)
\end{aligned}
$$

Distribution of $\operatorname{Tr}\left(\right.$ Frob $\left._{C_{F}}\right)$ for $g \rightarrow \infty$

This result may be formulated directly in terms of the genus g.

Theorem

The distribution of the trace of the Frobenius endomorphism associated to C as C ranges over the moduli space \mathcal{H}_{g} of hyperelliptic curves of genus g defined over \mathbb{F}_{q}, with q fixed and $g \rightarrow \infty$, is that of the sum of X_{1}, \ldots, X_{q+1} :

$$
\frac{\left|\left\{C \in \mathcal{H}_{g}: \operatorname{Tr}\left(\operatorname{Frob}_{C}\right)=-s\right\}\right|^{\prime}}{\left|\mathcal{H}_{g}\right|^{\prime}}=\operatorname{Prob}\left(\sum_{i=1}^{q+1} X_{i}=s\right)\left(1+O\left(q^{(3 q-2-2 g) / 2}\right)\right.
$$

Theorem

For any positive integer k, let $M_{k}(q, g)$ be the moments

$$
\frac{1}{\left|\mathcal{H}_{g}\right|^{\prime}} \sum_{C \in \mathcal{H}_{g}}^{\prime}\left(\frac{\operatorname{Tr}\left(\mathrm{Frob}_{C}\right)}{\sqrt{q+1}}\right)^{k} .
$$

Let X_{1}, \ldots, X_{q+1} be as before. Then,

$$
M_{k}(q, g)=\mathbb{E}\left(\left(\frac{1}{\sqrt{q+1}} \sum_{i=1}^{q+1} X_{i}\right)^{k}\right)+O\left(q^{(3 k-3-2 g) / 2}\right)
$$

By comparing moments of the previous distributions,
Theorem (Kurlberg and Rudnick)
When q, g tend to infinity, the limiting distribution of the normalized trace

$$
\operatorname{Tr}\left(\operatorname{Frob}_{c}\right) / \sqrt{q+1}
$$

is a standard Gaussian with mean zero and variance one.

Main step in the proof

Proposition (Kurlberg and Rudnick)

Let $x_{1}, \ldots, x_{\ell+m} \in \mathbb{F}_{q}$ be distinct elements, let $a_{1}, \ldots, a_{\ell} \in \mathbb{F}_{q}^{*}$, and let $a_{\ell+1}=\cdots=a_{\ell+m}=0$. Let \mathcal{F}_{d} be the set of monic square-free polynomials of degree d. Then

$$
\begin{aligned}
& \frac{\left|\left\{F \in \mathcal{F}_{d}: F\left(x_{i}\right)=a_{i}, 1 \leq i \leq m+\ell\right\}\right|}{\left|\mathcal{F}_{d}\right|}=\left(\frac{q-1}{q^{2}-1}\right)^{m}\left(\frac{q}{q^{2}-1}\right)^{\ell} \\
& \times\left(1+O\left(q^{(3 m+2 \ell-d) / 2}\right)\right)
\end{aligned}
$$

Heuristic

In \mathcal{F}_{d}, replace square-free condition with no double root in \mathbb{F}_{q} condition.
F monic, $\operatorname{deg} F=d$ such that $\left(X-x_{i}\right)^{2}$ XF $1 \leq i \leq \ell+m$.
Chinese Remainder Theorem:
$\#\{$ monic polynomials of degree $d\} \times\left(1-q^{-2}\right)$ for each condition,

$$
\Rightarrow q^{d}\left(1-q^{-2}\right)^{\ell+m} \text { polynomials. }
$$

$a_{1}, \ldots, a_{\ell} \in \mathbb{F}_{q}^{*}$ and $a_{\ell+1}, \ldots, a_{\ell+m}=0$, count polynomials as before such that $F\left(x_{i}\right)=a_{i}$.
$i \geq \ell+1: F(X) \equiv 0 \bmod \left(X-x_{i}\right): q-1$ of $q^{2}-1$ residues $\not \equiv 0 \bmod \left(X-x_{i}\right)^{2}$
$i \leq \ell: F(X) \equiv a_{i} \bmod \left(X-x_{i}\right): q$ of $q^{2}-1$ residues $\not \equiv 0 \bmod \left(X-x_{i}\right)^{2}$

$$
\begin{aligned}
& \frac{\mid\left\{F \in \mathbb{F}_{q}[X]: \operatorname{deg} F=d, F \text { monic, }\left(X-x_{i}\right)^{2} \nmid F, F\left(x_{i}\right)=a_{i}\right\} \mid}{\mid\left\{F \in \mathbb{F}_{q}[X]: \operatorname{deg} F=d, F \text { monic, }\left(X-x_{i}\right)^{2} \nmid F\right\} \mid} \\
& =\left(\frac{q-1}{q^{2}-1}\right)^{m}\left(\frac{q}{q^{2}-1}\right)^{\ell}
\end{aligned}
$$

The square-free condition cuts uniformly across these sets, and being square-free is an event independent of imposing values at a finite number of points.
The error term occurs because if one interprets the square-free condition as a collection of conditions indexed by irreducible polynomials, these individual conditions are only jointly independent in small numbers.

Cyclic Trigonal Curves

Let $q \equiv 1(\bmod 3)$. Consider the family of curves

$$
C_{F}: Y^{3}=F(X)
$$

where $F(X) \in \mathbb{F}_{q}[X]$ is cube-free of degree d.
We write

$$
F(X)=a F_{1}(X) F_{2}^{2}(X)
$$

where F_{1} and F_{2} are monic square-free polynomials of degree d_{1} and d_{2} respectively, $\left(F_{1}, F_{2}\right)=1$.

Then, $d=d_{1}+2 d_{2}$, and the genus is

$$
g=\left\{\begin{array}{lll}
d_{1}+d_{2}-2 & \text { if } d=d_{1}+2 d_{2} \equiv 0 & (\bmod 3) \\
d_{1}+d_{2}-1 & \text { if } d=d_{1}+2 d_{2} \not \equiv 0 & (\bmod 3)
\end{array}\right.
$$

Moduli Space of Cyclic Trigonal Curves

The moduli space $\mathcal{H}_{g, 3}$ of cyclic trigonal curves of genus g parametrizes the cyclic trigonal curves of genus g up to isomorphism.

It splits into irreducible components $\mathcal{H}^{\left(d_{1}, d_{2}\right)}$ for pairs $\left(d_{1}, d_{2}\right)$ such that

$$
\mathcal{H}_{g, 3}=\bigcup_{\substack{d_{1}+2 d_{2} \equiv 0 \\ g=d_{1}+d_{2}-2}} \mathcal{H}^{\left(d_{1}, d_{2}\right)} .
$$

The union is disjoint.

Cyclic Trigonal Curves

By counting the number of points of $C_{F}: Y^{3}=F(X)$ over $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$, we can write

$$
\begin{aligned}
& q+1-\operatorname{Tr}\left(\left.\operatorname{Frob}_{C}\right|_{H_{\chi_{3}}^{1}}\right)-\operatorname{Tr}\left(\left.\operatorname{Frob}_{C}\right|_{H_{\chi_{3}}}\right) \\
= & \sum_{x \in \mathbb{F}_{q}}\left[1+\chi_{3}(F(x))+\chi_{3}(F(x))\right]+N_{\infty}\left(C_{F}\right)
\end{aligned}
$$

χ_{3} is the cubic character of \mathbb{F}_{q}^{*} given by

$$
\chi_{3}(x) \equiv x^{(q-1) / 3} \quad(\bmod q)
$$

taking values in $\left\{1, \omega, \omega^{2}\right\}$ where ω is a third root of unity, and
$N_{\infty}\left(C_{F}\right)=\left\{\begin{array}{llllll}1 & \operatorname{deg} F \not \equiv 0 & (\bmod 3), & & & \\ 0 & \operatorname{deg} F \equiv 0 & (\bmod 3) & \text { lead coeff } F \notin \mathbb{F}_{q}^{3}, & & \\ 1 & \operatorname{deg} F \equiv 0 & (\bmod 3) & \text { lead coeff } F \in \mathbb{F}_{q}^{33} & q \equiv-1 & (\bmod 3), \\ 3 & \operatorname{deg} F \equiv 0 & (\bmod 3) & \text { lead coeff } F \in \mathbb{F}_{q}^{3} & q \equiv 1 & (\bmod 3) .\end{array}\right.$

Cyclic Trigonal Curves

Then we study the variation of

$$
-\operatorname{Tr}\left(\left.\operatorname{Frob}_{C}\right|_{H_{x 3}}\right)=\sum_{x \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)} \chi_{3}(F(x)),
$$

where F runs over a family of irreducible components of the moduli space of cyclic trigonal curves of genus g with the property that $g \rightarrow \infty$.

Trace on cyclic trigonal curves

Theorem (BDFL)

If q is fixed and $d_{1}, d_{2} \rightarrow \infty$, the distribution of the trace of the Frobenius endomorphism associated to C as C ranges over $\mathcal{H}^{\left(d_{1}, d_{2}\right)}$ is that of the sum of $q+1$ i.i.d. random variables X_{1}, \ldots, X_{q+1}, where each X_{i} takes the value 0 with probability $2 /(q+2)$ and $1, \omega, \omega^{2}$ each with probability $q /(3(q+2))$. More precisely, for any $s \in \mathbb{Z}[\omega] \subset \mathbb{C}$ with $|s| \leq q+1$, we have for any $1>\varepsilon>0$,

$$
\begin{gathered}
\frac{\left|\left\{C \in \mathcal{H}^{\left(d_{1}, d_{2}\right)}: \operatorname{Tr}\left(\left.\operatorname{Frob}_{C}\right|_{{\chi_{3}}_{3}^{1}}\right)=-s\right\}\right|^{\prime}}{\left|\mathcal{H}^{\left(d_{1}, d_{2}\right)}\right|^{\prime}}=\operatorname{Prob}\left(\sum_{i=1}^{q+1} X_{i}=s\right) \\
\times\left(1+O\left(q^{-(1-\varepsilon) d_{2}+q}+q^{-\left(d_{1}-3 q\right) / 2}\right)\right) .
\end{gathered}
$$

When $q, d_{1}, d_{2} \rightarrow \infty$

Theorem (BDFL)

For any positive integers j and k, let $M_{j, k}\left(q,\left(d_{1}, d_{2}\right)\right)$ be the moments

$$
\frac{1}{\left|\mathcal{H}^{\left(d_{1}, d_{2}\right)}\right|^{\prime}} \sum_{c \in \mathcal{H}^{\left(d_{1}, d_{2}\right)}}^{\prime}\left(\frac{-\operatorname{Tr}\left(\left.\operatorname{Frob}_{C}\right|_{H_{x_{3}}^{1}}\right)}{\sqrt{q+1}}\right)^{j}\left(\frac{-\operatorname{Tr}\left(\left.\operatorname{Frob}_{c}\right|_{\mu_{\bar{x}_{3}}}\right)}{\sqrt{q+1}}\right)^{k} .
$$

Let ε and X_{1}, \ldots, X_{q+1} be as before. Then

$$
\begin{aligned}
M_{j, k}\left(q,\left(d_{1}, d_{2}\right)\right)= & \mathbb{E}\left(\left(\frac{1}{\sqrt{q+1}} \sum_{i=1}^{q+1} X_{i}\right)^{j}\left(\frac{1}{\sqrt{q+1}} \sum_{i=1}^{q+1} \overline{X_{i}}\right)^{k}\right) \\
& \times\left(1+O\left(q^{-(1-\varepsilon) d_{2}+\varepsilon(j+k)}+q^{-d_{1} / 2+j+k}\right)\right) .
\end{aligned}
$$

When $q, d_{1}, d_{2} \rightarrow \infty$

Corollary (BDFL)

When q, d_{1}, d_{2} tend to infinity, the limiting distribution of the normalized trace

$$
\operatorname{Tr}\left(\left.\operatorname{Frob}_{C}\right|_{H_{x_{3}}^{1}}\right) / \sqrt{q+1}
$$

is a complex Gaussian with mean zero and variance one.

Main step in the proof

$$
\begin{gathered}
\mathcal{F}_{\left(d_{1}, d_{2}\right)}=\left\{F=F_{1} F_{2}^{2}: F_{1}, F_{2}\right. \text { monic, square-free and coprime } \\
\left.\operatorname{deg} F_{1}=d_{1}, \operatorname{deg} F_{2}=d_{2}\right\}
\end{gathered}
$$

Proposition

Let $0 \leq \ell \leq q$, let x_{1}, \ldots, x_{ℓ} be distinct elements of \mathbb{F}_{q}, and $a_{1}, \ldots, a_{\ell} \in \mathbb{F}_{q}^{*}$. Then for any $1>\varepsilon>0$, we have

$$
\begin{aligned}
\left|\left\{F \in \mathcal{F}_{\left(d_{1}, d_{2}\right)}: F\left(x_{i}\right)=a_{i}, 1 \leq i \leq \ell\right\}\right| & =\frac{K q^{d_{1}+d_{2}}}{\zeta_{q}(2)^{2}}\left(\frac{q}{(q+2)(q-1)}\right)^{\ell} \\
& \times\left(1+O\left(q^{-(1-\varepsilon) d_{2}+\varepsilon \ell}+q^{-d_{1} / 2+\ell}\right)\right) \\
K=\prod_{P \text { monic irreducible }} & \left(1-\frac{1}{(|P|+1)^{2}}\right) .
\end{aligned}
$$

We prove

$$
\begin{array}{r}
\left|\left\{F \in \mathcal{F}_{\left(d_{1}, d_{2}\right)}: F\left(x_{i}\right)=a_{i}, 1 \leq i \leq \ell\right\}\right|=\frac{q^{d_{1}-\ell}}{\zeta_{q}(2)\left(1-q^{-2}\right)^{\ell}} \sum_{\operatorname{deg} F=d_{2}} b(F) \\
+O\left(q^{d_{2}+d_{1} / 2}\right)
\end{array}
$$

where for any polynomial F,

$$
b(F)= \begin{cases}\mu^{2}(F) \prod_{P \mid F}\left(1+|P|^{-1}\right)^{-1} & F\left(x_{i}\right) \neq 0,1 \leq i \leq \ell \\ 0 & \text { otherwise }\end{cases}
$$

To evaluate $\sum_{\operatorname{deg} F=d_{2}} b(F)$, we consider the Dirichlet series

$$
\begin{aligned}
& G(s)=\sum_{F} \frac{b(F)}{|F|^{s}}=\prod_{\substack{P \\
P\left(x_{i}\right) \neq 0,1 \leq i \leq \ell}}\left(1+\frac{1}{|P|^{s}} \cdot \frac{|P|}{|P|+1}\right) \\
& =\frac{\zeta_{q}(s)}{\zeta_{q}(2 s)} H(s)\left(1+\frac{1}{q^{s-1}(q+1)}\right)^{-\ell},
\end{aligned}
$$

where

$$
H(s)=\prod_{P}\left(1-\frac{1}{\left(|P|^{s}+1\right)(|P|+1)}\right) .
$$

and apply a function field version of the Wiener-Ikehara Tauberian Theorem, we get that

$$
\sum_{\operatorname{deg} F=d_{2}} b(F)=\frac{K}{\zeta_{q}(2)}\left(\frac{q+1}{q+2}\right)^{\ell} q^{d_{2}}+O\left(q^{\varepsilon\left(d_{2}+\ell\right)}\right)
$$

General result for p-fold covers of $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$.

$$
Y^{p}=F(X)
$$

Theorem (BDFL)

Let X_{1}, \ldots, X_{q+1} be complex i.i.d. random variables taking the value 0 with probability $(p-1) /(q+p-1)$ and each of the p-th roots of unity in \mathbb{C} with probability $q /(p(q+p-1))$. As $d_{1}, \ldots, d_{p-1} \rightarrow \infty$,

$$
\begin{aligned}
& \frac{\left|\left\{C \in \mathcal{H}^{\left(d_{1}, \ldots, d_{p-1}\right)}: \operatorname{Tr}\left(\left.\operatorname{Frob}_{C}\right|_{H_{\chi_{p}}^{1}}\right)=-s\right\}\right|^{\prime}}{\left|\mathcal{H}^{\left(d_{1}, \ldots, d_{p-1}\right)}\right|^{\prime}}=\operatorname{Prob}\left(\sum_{i=1}^{q+1} X_{i}=s\right) \\
& \times\left(1+O\left(q^{\varepsilon\left(d_{2}+\cdots+d_{p-1}\right)+q}\left(q^{-d_{2}}+\cdots+q^{-d_{p-1}}\right)+q^{-\left(d_{1}-3 q\right) / 2}\right)\right)
\end{aligned}
$$

for any $s \in \mathbb{C},|s| \leq q+1$ and $0>\varepsilon>1$.

Theorem (BDFL)

As $q, d_{1}, \ldots, d_{p-1} \rightarrow \infty$,
$\operatorname{Tr}\left(\left.\operatorname{Frob}_{C}\right|_{H_{\chi_{p}}^{1}}\right) / \sqrt{q+1}$
has a complex Gaussian distribution with mean 0 and variance 1 as C varies in $\mathcal{H}^{\left(d_{1}, \ldots, d_{p-1}\right)}\left(\mathbb{F}_{q}\right)$.

General smooth curves

$$
F(X, Y, Z)=0
$$

non-singular of degree d.

Theorem (BDFL)

Let $X_{1}, \ldots, X_{q^{2}+q+1}$ be $q^{2}+q+1$ i.i.d. random variables taking the value 1 with probability $(q+1) /\left(q^{2}+q+1\right)$ and the value 0 with probability $q^{2} /\left(q^{2}+q+1\right)$. Then, for $0 \leq t \leq q^{2}+q+1$,

$$
\begin{aligned}
& \frac{\#\left\{F \in S_{d}^{\mathrm{ns}}: \# C_{F}\left(\mathbb{F}_{q}\right)=t\right\}}{\# S_{d}^{\mathrm{ns}}}=\operatorname{Prob}\left(X_{1}+\cdots+X_{q^{2}+q+1}=t\right) \\
& \times\left(1+O\left(q^{t}\left(d^{-1 / 3}+(d-1)^{2} q^{-\min \left(\left\lfloor\frac{d}{p}\right\rfloor+1, \frac{d}{3}\right)}+d q^{-\left\lfloor\frac{d-1}{p}\right\rfloor-1}\right)\right)\right),
\end{aligned}
$$

The proof uses a sieving process by Poonen.

Heuristic

Look at the chances that $[0: 0: 1] \in C_{F} f(x, y)=F(X, Y, 1)$

$$
f(x, y)=a_{0,0}+a_{1,0} x+a_{0,1} y+\ldots
$$

$\left(a_{0,0}, a_{1,0}, a_{0,1}\right) \neq(0,0,0),\left(C_{F}\right.$ smooth $)$
We need $a_{0,0}=0$ for $[0: 0: 1] \in C_{F}$.

$$
\operatorname{Prob}\left([0: 0: 1] \in C_{F}\right)=\frac{q^{2}-1}{q^{3}-1}=\frac{q+1}{q^{2}+q+1}
$$

Assuming each point imposes an independent condition, the probability that $X=1$ (respectively $X=0$) is the probability that a point $P \in \mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$ belongs (respectively does not belong) to a smooth curve $F(X, Y, Z)=0$.

Theorem

Let k be a positive integer, and let

$$
M_{k}(q, d)=\frac{1}{\# S_{d}^{\mathrm{ns}}} \sum_{F \in S_{d}^{\mathrm{ns}}}\left(\frac{\# C_{F}\left(\mathbb{F}_{q}\right)-(q+1)}{\sqrt{q+1}}\right)^{k}
$$

Then,

$$
\begin{aligned}
& M_{k}(q, d)=\mathbb{E}\left(\left(\frac{1}{\sqrt{q+1}}\left(\sum_{i=1}^{q^{2}+q+1} X_{i}-(q+1)\right)\right)^{k}\right) \\
& \times\left(1+O\left(q ^ { \operatorname { m i n } (k , q ^ { 2 } + q + 1) } \left(q^{-k} d^{-1 / 3}+(d-1)^{2} q^{-\min \left(\left\lfloor\frac{d}{p}\right\rfloor+1, \frac{d}{3}\right)}+d q\right.\right.\right.
\end{aligned}
$$

Corollary

When q and d tend to infinity and $d>q^{1+\varepsilon}$,

$$
\frac{\# C_{F}\left(\mathbb{F}_{q}\right)-(q+1)}{\sqrt{q+1}} \rightarrow N(0,1)
$$

