Statistics for traces of cyclic trigonal curves over finite fields

Matilde N. Lalín
University of Alberta
mlalin@math.ualberta.ca
http://www.math.ualberta.ca/~mlalin

joint with A. Bucur, C. David, B. Feigon
2009 CMS Winter meeting - Number Theory special session
December 6, 2009

Zeta functions of curves over finite fields

Let C be a smooth and projective curve of genus g over \mathbb{F}_{q}. Let

$$
\begin{gathered}
Z_{C}(T)=\exp \left(\sum_{n=1}^{\infty} N_{n}(C) \frac{T^{n}}{n}\right), \quad|T|<1 / q \\
N_{n}(C)=\left|C\left(\mathbb{F}_{q^{n}}\right)\right|
\end{gathered}
$$

Weil conjectures

$$
\begin{aligned}
Z_{C}(T)= & \frac{P_{C}(T)}{(1-T)(1-q T)} \quad \text { (Rationality) } \\
& P_{C}(T) \in \mathbb{Z}[T], \quad \operatorname{deg} P_{C}=2 g
\end{aligned}
$$

and

$$
P_{C}(T)=\prod_{j=1}^{2 g}\left(1-T \alpha_{j, C}\right), \quad\left|\alpha_{j, C}\right|=\sqrt{q} . \quad \text { (Riemann Hypothesis) }
$$

Counting points and the zeroes of $Z_{C}(T)$

$$
Z_{C}(T)=\exp \left(\sum_{n=1}^{\infty} N_{n}(C) \frac{T^{n}}{n}\right)=\frac{\prod_{j=1}^{2 g}\left(1-T \alpha_{j, C}\right)}{(1-T)(1-q T)},
$$

Taking logarithms on both sides,

$$
\begin{aligned}
N_{1}(C) & =q+1-\sum_{j=1}^{2 g} \alpha_{j, C} \\
& =q+1-\operatorname{Tr}\left(\operatorname{Frob}_{C}\right)
\end{aligned}
$$

Distribution of $\operatorname{Tr}\left(\mathrm{Frob}_{C}\right)$ for $q \rightarrow \infty$

Writing $\alpha_{j, C}=\sqrt{q} e^{2 \pi i \theta_{j, C}}$,

$$
P_{C}(T)=\prod_{i=1}^{2 g}\left(1-T \sqrt{q} e^{2 \pi i \theta_{j, C}}\right)=\operatorname{det}\left(I-T \sqrt{q} \Theta_{c}\right)
$$

where Θ_{C} is a unitary symplectic matrix in $\operatorname{USp}(2 g)$ (defined up to conjugation) with eigenvalues $e^{2 \pi i \theta_{j, C}}$.

When g is fixed and $q \rightarrow \infty$, Katz and Sarnak showed that the roots $\theta_{j, C}$ are distributed as the eigenvalues of matrices in USp $(2 g)$.

Then, $\operatorname{Tr}\left(\mathrm{Frob}_{C}\right) / \sqrt{q}$ is distributed as the trace of a random matrix in $\operatorname{USp}(2 g)$ of $2 g \times 2 g$ as $q \rightarrow \infty$.

Hyperelliptic curves

$$
C_{F}: Y^{2}=F(X)
$$

$F(X)$ is a square-free polynomial of degree $d \geq 3$.
This is a curve of genus $g=\left[\frac{d-1}{2}\right]$.
We want to study the variation of

$$
\operatorname{Tr}\left(\operatorname{Frob}_{C_{F}}\right)=\sum_{i=1}^{2 g} \alpha_{j, C_{F}}
$$

as C_{F} varies over the family of hyperelliptic curves where $F(X)$ has degree $2 g+1$ or $2 g+2$.

Hyperelliptic Curves

By counting the number of points of $Y^{2}=F(X)$ over $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$, we can write

$$
N_{1}\left(C_{F}\right)=q+1-\operatorname{Tr}\left(\operatorname{Frob}_{C_{F}}\right)=\sum_{x \in \mathbb{F}_{q}}\left[1+\chi_{2}(F(x))\right]+N_{\infty}\left(C_{F}\right)
$$

where χ_{2} is the quadratic character of \mathbb{F}_{q}^{*}, and

$$
N_{\infty}\left(C_{F}\right)= \begin{cases}1 & \operatorname{deg} F \text { odd, } \\ 2 & \operatorname{deg} F \text { even, leading coeff of } F \in \mathbb{F}_{q}^{2}, \\ 0 & \operatorname{deg} F \text { even, leading coeff of } F \notin \mathbb{F}_{q}^{2}\end{cases}
$$

is the number of points at infinity.

Hyperelliptic Curves

$$
-\operatorname{Tr}\left(\operatorname{Frob}_{C_{F}}\right)=\sum_{x \in \mathbb{F}_{q}} \chi_{2}(F(x))+\left(N_{\infty}\left(C_{F}\right)-1\right)=\sum_{x \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)} \chi_{2}(F(x))
$$

One can study the variation of

$$
S_{2}(F)=\sum_{x \in \mathbb{F}_{q}} \chi_{2}(F(x))
$$

over the family of hyperelliptic curves and translate it into a variation for $\operatorname{Tr}\left(\right.$ Frob $\left._{C_{F}}\right)$.

This amounts to evaluate the probability that a random square-free polynomial $F(x)$ of degree d takes a prescribed set of values $F\left(x_{1}\right)=a_{1}, \ldots, F\left(x_{q+1}\right)=a_{q+1}$ for the distinct elements of $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$.

Distribution of $\operatorname{Tr}\left(\operatorname{Frob}_{C_{F}}\right)$ for $g \rightarrow \infty$

When q is fixed and $g \rightarrow \infty$, Kurlberg and Rudnick showed that $S_{2}(F)$ is distributed as a sum of q independent identically distributed (i.i.d.) trinomial variables $\left\{X_{i}\right\}_{i=1}^{q}$ taking values $0, \pm 1$ with probabilities $1 /(q+1), 1 / 2\left(1+q^{-1}\right)$ and $1 / 2\left(1+q^{-1}\right)$ respectively.

Theorem (Kurlberg and Rudnick)
Let \mathcal{F}_{d} be the set of monic square-free polynomials of degree d. Then,

$$
\begin{aligned}
\lim _{d \rightarrow \infty} \operatorname{Prob}\left(S_{2}(F)=s\right) & =\lim _{d \rightarrow \infty} \frac{\left|\left\{F \in \mathcal{F}_{d}: S_{2}(F)=s\right\}\right|}{\left|\mathcal{F}_{d}\right|} \\
& =\operatorname{Prob}\left(X_{1}+\cdots+X_{q}=s\right)
\end{aligned}
$$

Distribution of $\operatorname{Tr}\left(\right.$ Frob $\left._{C_{F}}\right)$ for $g \rightarrow \infty$

This result may be formulated directly in terms of the genus g.

Theorem

The distribution of the trace of the Frobenius endomorphism associated to C as C ranges over the moduli space \mathcal{H}_{g} of hyperelliptic curves of genus g defined over \mathbb{F}_{q}, with q fixed and $g \rightarrow \infty$, is that of the sum of X_{1}, \ldots, X_{q+1} :

$$
\frac{\left|\left\{C \in \mathcal{H}_{g}: \operatorname{Tr}\left(\operatorname{Frob}_{C}\right)=-s\right\}\right|^{\prime}}{\left|\mathcal{H}_{g}\right|^{\prime}}=\operatorname{Prob}\left(\sum_{i=1}^{q+1} X_{i}=s\right)\left(1+O\left(q^{(3 q-2-2 g) / 2}\right)\right.
$$

By comparing moments of the previous distributions,
Theorem (Kurlberg and Rudnick)
When q, g tend to infinity, the limiting distribution of the normalized trace

$$
\operatorname{Tr}\left(\operatorname{Frob}_{c}\right) / \sqrt{q+1}
$$

is a standard Gaussian with mean zero and variance one.

Cyclic Trigonal Curves

Let $q \equiv 1(\bmod 3)$. Consider the family of curves

$$
C_{F}: Y^{3}=F(X)
$$

where $F(X) \in \mathbb{F}_{q}[X]$ is cube-free of degree d.
We write

$$
F(X)=a F_{1}(X) F_{2}^{2}(X)
$$

where F_{1} and F_{2} are monic square-free polynomials of degree d_{1} and d_{2} respectively, $\left(F_{1}, F_{2}\right)=1$.

Then, $d=d_{1}+2 d_{2}$, and the genus is

$$
g=\left\{\begin{array}{lll}
d_{1}+d_{2}-2 & \text { if } d=d_{1}+2 d_{2} \equiv 0 & (\bmod 3) \\
d_{1}+d_{2}-1 & \text { if } d=d_{1}+2 d_{2} \not \equiv 0 & (\bmod 3) .
\end{array}\right.
$$

Moduli Space of Cyclic Trigonal Curves

The moduli space $\mathcal{H}_{g, 3}$ of cyclic trigonal curves of genus g parametrizes the cyclic trigonal curves of genus g up to isomorphism.

It splits into irreducible components $\mathcal{H}^{\left(d_{1}, d_{2}\right)}$ for pairs $\left(d_{1}, d_{2}\right)$ such that

$$
\mathcal{H}_{g, 3}=\bigcup_{\substack{d_{1}+2 d_{2} \equiv 0 \\ g=d_{1}+d_{2}-2}} \mathcal{H}^{\left(d_{1}, d_{2}\right)} .
$$

The union is disjoint.

Cyclic Trigonal Curves

By counting the number of points of $C_{F}: Y^{3}=F(X)$ over $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$, we can write

$$
\begin{aligned}
& q+1-\operatorname{Tr}\left(\left.\operatorname{Frob}_{C}\right|_{H_{\chi_{3}}^{1}}\right)-\operatorname{Tr}\left(\left.\operatorname{Frob}_{C}\right|_{H_{\chi_{3}}}\right) \\
= & \sum_{x \in \mathbb{F}_{q}}\left[1+\chi_{3}(F(x))+\chi_{3}(F(x))\right]+N_{\infty}\left(C_{F}\right)
\end{aligned}
$$

χ_{3} is the cubic character of \mathbb{F}_{q}^{*} given by

$$
\chi_{3}(x) \equiv x^{(q-1) / 3} \quad(\bmod q)
$$

taking values in $\left\{1, \omega, \omega^{2}\right\}$ where ω is a third root of unity, and

Cyclic Trigonal Curves

Then we study the variation of

$$
-\operatorname{Tr}\left(\left.\operatorname{Frob}_{C}\right|_{H_{x 3}}\right)=\sum_{x \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)} \chi_{3}(F(x)),
$$

where F runs over a family of irreducible components of the moduli space of cyclic trigonal curves of genus g with the property that $g \rightarrow \infty$.

Trace on cyclic trigonal curves

Theorem (BDFL)

If q is fixed and $d_{1}, d_{2} \rightarrow \infty$, the distribution of the trace of the Frobenius endomorphism associated to C as C ranges over $\mathcal{H}^{\left(d_{1}, d_{2}\right)}$ is that of the sum of $q+1$ i.i.d. random variables X_{1}, \ldots, X_{q+1}, where each X_{i} takes the value 0 with probability $2 /(q+2)$ and $1, \omega, \omega^{2}$ each with probability $q /(3(q+2))$. More precisely, for any $s \in \mathbb{Z}[\omega] \subset \mathbb{C}$ with $|s| \leq q+1$, we have for any $1>\varepsilon>0$,

$$
\begin{gathered}
\frac{\left|\left\{C \in \mathcal{H}^{\left(d_{1}, d_{2}\right)}: \operatorname{Tr}\left(\left.\operatorname{Frob}_{C}\right|_{H_{3}} ^{1}\right)=-s\right\}\right|^{\prime}}{\left|\mathcal{H}^{\left(d_{1}, d_{2}\right)}\right|^{\prime}}=\operatorname{Prob}\left(\sum_{i=1}^{q+1} X_{i}=s\right) \\
\times\left(1+O\left(q^{-(1-\varepsilon) d_{2}+q}+q^{-\left(d_{1}-3 q\right) / 2}\right)\right) .
\end{gathered}
$$

When $q, d_{1}, d_{2} \rightarrow \infty$

Theorem (BDFL)

For any positive integers j and k, let $M_{j, k}\left(q,\left(d_{1}, d_{2}\right)\right)$ be the moments

$$
\frac{1}{\left|\mathcal{H}^{\left(d_{1}, d_{2}\right)}\right|^{\prime}} \sum_{c \in \mathcal{H}^{\left(d_{1}, d_{2}\right)}}^{\prime}\left(\frac{-\operatorname{Tr}\left(\left.\operatorname{Frob}_{C}\right|_{H_{x_{3}}^{1}}\right)}{\sqrt{q+1}}\right)^{j}\left(\frac{-\operatorname{Tr}\left(\left.\operatorname{Frob}_{c}\right|_{\mu_{\bar{x}_{3}}}\right)}{\sqrt{q+1}}\right)^{k} .
$$

Let ε and X_{1}, \ldots, X_{q+1} be as before. Then

$$
\begin{aligned}
M_{j, k}\left(q,\left(d_{1}, d_{2}\right)\right)= & \mathbb{E}\left(\left(\frac{1}{\sqrt{q+1}} \sum_{i=1}^{q+1} X_{i}\right)^{j}\left(\frac{1}{\sqrt{q+1}} \sum_{i=1}^{q+1} \overline{X_{i}}\right)^{k}\right) \\
& \times\left(1+O\left(q^{-(1-\varepsilon) d_{2}+\varepsilon(j+k)}+q^{-d_{1} / 2+j+k}\right)\right) .
\end{aligned}
$$

When $q, d_{1}, d_{2} \rightarrow \infty$

Corollary (BDFL)

When q, d_{1}, d_{2} tend to infinity, the limiting distribution of the normalized trace

$$
\operatorname{Tr}\left(\text { Frob }\left._{C}\right|_{H_{x_{3}}^{1}}\right) / \sqrt{q+1}
$$

is a complex Gaussian with mean zero and variance one.

Main step in the proof

$$
\begin{gathered}
\mathcal{F}_{\left(d_{1}, d_{2}\right)}=\left\{F=F_{1} F_{2}^{2}: F_{1}, F_{2}\right. \text { monic, square-free and coprime } \\
\left.\operatorname{deg} F_{1}=d_{1}, \operatorname{deg} F_{2}=d_{2}\right\}
\end{gathered}
$$

Proposition

Let $0 \leq \ell \leq q$, let x_{1}, \ldots, x_{ℓ} be distinct elements of \mathbb{F}_{q}, and $a_{1}, \ldots, a_{\ell} \in \mathbb{F}_{q}^{*}$. Then for any $1>\varepsilon>0$, we have

$$
\begin{aligned}
\left|\left\{F \in \mathcal{F}_{\left(d_{1}, d_{2}\right)}: F\left(x_{i}\right)=a_{i}, 1 \leq i \leq \ell\right\}\right| & =\frac{K q^{d_{1}+d_{2}}}{\zeta_{q}(2)^{2}}\left(\frac{q}{(q+2)(q-1)}\right)^{\ell} \\
& \times\left(1+O\left(q^{-(1-\varepsilon) d_{2}+\varepsilon \ell}+q^{-d_{1} / 2+\ell}\right)\right) \\
K=\prod_{P \text { monic irreducible }} & \left(1-\frac{1}{(|P|+1)^{2}}\right) .
\end{aligned}
$$

We prove

$$
\begin{array}{r}
\left|\left\{F \in \mathcal{F}_{\left(d_{1}, d_{2}\right)}: F\left(x_{i}\right)=a_{i}, 1 \leq i \leq \ell\right\}\right|=\frac{q^{d_{1}-\ell}}{\zeta_{q}(2)\left(1-q^{-2}\right)^{\ell}} \sum_{\operatorname{deg} F=d_{2}} b(F) \\
+O\left(q^{d_{2}+d_{1} / 2}\right)
\end{array}
$$

where for any polynomial F,

$$
b(F)= \begin{cases}\mu^{2}(F) \prod_{P \mid F}\left(1+|P|^{-1}\right)^{-1} & F\left(x_{i}\right) \neq 0,1 \leq i \leq \ell \\ 0 & \text { otherwise }\end{cases}
$$

To evaluate $\sum_{\operatorname{deg} F=d_{2}} b(F)$, we consider the Dirichlet series

$$
\begin{aligned}
& G(s)=\sum_{F} \frac{b(F)}{|F|^{s}}=\prod_{\substack{P \\
P\left(x_{i}\right) \neq 0,1 \leq i \leq \ell}}\left(1+\frac{1}{|P|^{s}} \cdot \frac{|P|}{|P|+1}\right) \\
& =\frac{\zeta_{q}(s)}{\zeta_{q}(2 s)} H(s)\left(1+\frac{1}{q^{s-1}(q+1)}\right)^{-\ell},
\end{aligned}
$$

where

$$
H(s)=\prod_{P}\left(1-\frac{1}{\left(|P|^{s}+1\right)(|P|+1)}\right) .
$$

and apply a function field version of the Wiener-Ikehara Tauberian Theorem, we get that

$$
\sum_{\operatorname{deg} F=d_{2}} b(F)=\frac{K}{\zeta_{q}(2)}\left(\frac{q+1}{q+2}\right)^{\ell} q^{d_{2}}+O\left(q^{\varepsilon\left(d_{2}+\ell\right)}\right)
$$

General result for p-fold covers of $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$.

$$
Y^{p}=F(X)
$$

Theorem (BDFL)

Let X_{1}, \ldots, X_{q+1} be complex i.i.d. random variables taking the value 0 with probability $(p-1) /(q+p-1)$ and each of the p-th roots of unity in \mathbb{C} with probability $q /(p(q+p-1))$. As $d_{1}, \ldots, d_{p-1} \rightarrow \infty$,

$$
\begin{aligned}
& \frac{\left|\left\{C \in \mathcal{H}^{\left(d_{1}, \ldots, d_{p-1}\right)}: \operatorname{Tr}\left(\left.\operatorname{Frob}_{C}\right|_{H_{\chi_{p}}^{1}}\right)=-s\right\}\right|^{\prime}}{\left|\mathcal{H}^{\left(d_{1}, \ldots, d_{p-1}\right)}\right|^{\prime}}=\operatorname{Prob}\left(\sum_{i=1}^{q+1} X_{i}=s\right) \\
& \times\left(1+O\left(q^{\varepsilon\left(d_{2}+\cdots+d_{p-1}\right)+q}\left(q^{-d_{2}}+\cdots+q^{-d_{p-1}}\right)+q^{-\left(d_{1}-3 q\right) / 2}\right)\right)
\end{aligned}
$$

for any $s \in \mathbb{C},|s| \leq q+1$ and $0>\varepsilon>1$.

Theorem (BDFL)

As $q, d_{1}, \ldots, d_{p-1} \rightarrow \infty$,
$\operatorname{Tr}\left(\left.\operatorname{Frob}_{C}\right|_{H_{\chi_{p}}^{1}}\right) / \sqrt{q+1}$
has a complex Gaussian distribution with mean 0 and variance 1 as C varies in $\mathcal{H}^{\left(d_{1}, \ldots, d_{p-1}\right)}\left(\mathbb{F}_{q}\right)$.

