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1. Mahler Measure

Definition 1 For P ∈ C[x±1
1 , . . . , x±1

n ], the (logarithmic) Mahler measure is defined by

m(P ) :=

∫ 1

0
. . .

∫ 1

0
log |P (e2πiθ1 , . . . , e2πiθn)|dθ1 . . .dθn (1)

=
1

(2πi)n

∫

Tn

log |P (x1, . . . , xn)|dx1

x1
. . .

dxn

xn
(2)

It is possible to prove that this integral is not singular and that m(P ) always exists.
Because of Jensen’s formula:

∫ 1

0
log |e2πiθ − α|dθ = log+ |α|1 (3)

we have

for P (x) = a
∏

j

(x − αj), then m(P ) = log |a| +
∑

j

log+ |αj | (4)

which gives a simple expression for the Mahler measure in the one-variable case, as a
function on the roots of the polynomial.

2. Polylogarithms and L-functions

The several-variable case is more complicated. Many examples with explicit formulae have
been produced. Before going to these examples, recall the definition of polylogarithm and
L-functions.

Definition 2 Multiple polylogarithms are defined as the power series

Lik1,...,km
(x1, . . . , xm) :=

∑

0<n1<n2<...<nm

xn1

1 xn2

2 . . . xnm
m

nk1

1 nk2

2 . . . nkm
m

(5)

which are convergent for |xi| < 1. The weight of a polylogarithm function is the number
w = k1 + . . . + km and its length is the number m.

We see that, for lenght 1, weight w > 1 and x = 1, we recover the zeta function in w.

1log+
x = log max{1, x} for x ∈ R≥0
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Definition 3 Hyperlogarithms are defined as the iterated integrals

Ik1,...,km
(a1 : . . . : am : am+1) :=

∫ am+1

0

dt

t − a1
◦ dt

t
◦ . . . ◦ dt

t
︸ ︷︷ ︸

k1

◦ dt

t − a2
◦ dt

t
◦ . . . ◦ dt

t
︸ ︷︷ ︸

k2

◦ . . . ◦ dt

t − am
◦ dt

t
◦ . . . ◦ dt

t
︸ ︷︷ ︸

km

where ki are integers, ai are complex numbers, and
∫ bl+1

0

dt

t − b1
◦ . . . ◦ dt

t − bl

=

∫

0≤t1≤...≤tl≤bl+1

dt1

t1 − b1
. . .

dtl

tl − bl

The value of the integral above only depends on the homotopy class of the path con-
necting 0 and am+1 on C \ {a1, . . . , am}.

It is easy to see that,

Ik1,...,km
(a1 : . . . : am : am+1) = (−1)mLik1,...,km

(
a2

a1
,
a3

a2
, . . . ,

am

am−1
,
am+1

am

)

Lik1,...,km
(x1, . . . , xm) = (−1)mIk1,...,km

(
1

x1, . . . , xm
: . . . :

1

xm
: 1

)

which gives an analytic continuation to multiple polylogarithms. For instance, with the
convention about integrating over a real segment, simple polylogarithms have an analytic
continuation to C \ [1,∞).

There are modified versions of these functions which are analytic in larger sets, like the
Bloch-Wigner dilogarithm,

D(z) := Im(Li2(z)) + log |z| arg(1 − z) z ∈ C \ [1,∞) (6)

which can be extended as a real analytic function in C \ {0, 1} and continuous in C.

Definition 4 The L-series in the character χ is defined to be the function

L(χ, s) :=
∞∑

n=1

χ(n)

ns

We are going to use the real characters

χ−f (n) :=

(−f

n

)

where the symbol in the right is Kronecker’s extension to Jacobi’s symbol. In particular,

χ−3(n) =
(n

3

)

χ−4(n) =







(
−1
n

)
if n odd

0 if n even

χ−8(n) =







(
−2
n

)
if n odd

0 if n even
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3. Examples for two and three variables

• The simplest example with two variables is due to Smyth [13]:

m(1 + x + y) =
3
√

3

4π
L(χ−3, 2) = L′(χ−3,−1) (7)

• The above example can be extended to three variables, also due to Smyth:

m(1 + x + y + z) =
7

2π2
ζ(3) (8)

More generally, Smyth [14] computed the Mahler measure of a+b 1
x
+cy+(a+bx+cy)z,

for a, b and c any real numbers, from which the above result can be deduced. Another
corollary is the formula

m

(

1 +
1

x
+ y + (1 + x + y)z

)

=
14

3π2
ζ(3) (9)

• The Dilogarithm appears as the Mahler measure of certain polynomials in two vari-
ables. Perhaps the simplest example is Maillot’s in [10]: for a, b, c ∈ C,

πm(a + bx + cy) =







D
(∣
∣a
b

∣
∣ eiγ

)
+ α log |a| + β log |b| + γ log |c| 4

π log max{|a|, |b|, |c|} not 4

(10)

Here 4 stands for the statement that |a|, |b|, and |c| are the lengths of the sides of a
triangle, and α, β, and γ are the angles opposite to the sides of lengths |a|, |b|, and
|c| respectively.

• Vandervelde [15] studied the example of axy + bx + cy + d. He developed a general
formula for this case. Some particular cases are:

m(1 + x + y + ixy) =

√
2

π
L(χ−8, 2) =

1

4
L′(χ−8,−1) (11)

m(1 + x + y + e
πi

3 xy) =
4
√

2

15π
L(χ−8, 2) =

1

15
L′(χ−8,−1) (12)

• Vandervelde also generalized Smyth’s example. For a ∈ R>0,

π2m(1 + x + ay + az) =







2(Li3(a) − Li3(−a)) if a ≤ 1

π2 log a + 2
(
Li3

(
1
a

)
− Li3

(
−1
a

))
if a ≥ 1

(13)

This can be also proved by adapting the elementary proof given in Boyd [2]. For
0 ≤ a ≤ 1:

π2m(1 + x + ay + az) = π2m(1 + ay + x(1 + aw)) = π2m

(
1 + ay

1 + aw
+ x

)
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=

∫ π

0

∫ π

0
log+

∣
∣
∣
∣

1 + aeit

1 + aeis

∣
∣
∣
∣
dsdt =

∫

0≤t≤s≤π

log |1 + aeit| − log |1 + aeis|dsdt

=

∫ π

0
(π − t) log |1 + aeit|dt −

∫ π

0
s log |1 + aeis|ds = −2

∫ π

0
t log |1 + aeit|dt

(here we have used that 0 ≤ a ≤ 1, and Jensen’s formula).

Now use that

log |1 + aeit| = Re

∞∑

n=1

(−1)n−1

n
aneint =

∞∑

n=1

(−1)n−1 cos(n t)

n
an (14)

and apply integration by parts,

π2m(1 + x + ay + az) = −2
∞∑

n=1

(−1)n−1 sin(n t)

n2
ant

∣
∣
∣
∣
∣

π

0

+2

∫ π

0

∞∑

n=1

(−1)n−1 sin(n t)

n2
andt = 4

∞∑

n=1 (odd)

an

n3
= 2(Li3(a) − Li3(−a))

When a ≥ 1, use that

m(1 + x + ay + az) = log a + m

(
1

a
+

x

a
+ y + z

)

4. Examples of higher weight

We have obtained examples of polynomials in several variables whose Mahler measures
depend on polylogarithms. The first column of the table shows the polynomials. Here α is
a complex number different from zero. The second column indicates the values of the first
column for the case α = 1.

πm((1 + y) + α(1 − y)x) 2L(χ−4, 2)

π2m((1 + w)(1 + y) + α(1 − w)(1 − y)x) 7ζ(3)

π3m((1 + v)(1 + w)(1 + y) + α(1 − v)(1 − w)(1 − y)x) 7πζ(3) + 4
∑

0≤j<k
(−1)j

(2j+1)2k2

π2m((1 + x) + α(y + z)) 7
2ζ(3)

π3m((1 + w)(1 + x) + α(1 − w)(y + z)) 2π2L(χ−4, 2) + 8
∑

0≤j<k
(−1)j+k+1

(2j+1)3k

π4m((1 + v)(1 + w)(1 + x) + α(1 − v)(1 − w)(y + z)) 93ζ(5)

π2m((1 + w)(1 + y) + (1 − w)(x − y)) 7
2ζ(3) + π2

2 log 2

Let us observe that all the presented formulae share a common feature. If we assign
weight 1 to any Mahler measure and to π, then all the formulae are homogeneous, meaning
all the monomials have the same weight, and this weight is equal to the number of variables
of the corresponding polynomial.

The idea behind those computations is the following.
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1. Let Pα ∈ C[x1, . . . , xn] whose coefficients depend polynomially on a parameter α ∈ C.
For instance, start with Pα(x) = 1 + αx, whose Mahler measure is log+ |α|.

2. We replace α by α1−y
1+y

and obtain a polynomial P̃α ∈ C[x1, . . . , xn, y]. In the example,

P̃α(x, y) = 1 + y + α(1 − y)x.

3. The Mahler measure of the second polynomial is a certain integral of the Mahler
measure of the first polynomial.

m(P̃α) =
1

2πi

∫

T1

m
(

P
α

1−y

1+y

) dy

y

4. If the Mahler measure depends only on the absolute value of |α|, we can make a

change of variables u =
∣
∣
∣α

1−y
1+y

∣
∣
∣ (to be precise, first write y = eiθ and then make

u = |α| tan
(

θ
2

)
).We obtain,

m(P̃α) =
2

π

∫ ∞

0
m (Pu)

|α|du

u2 + |α|2 =
i

π

∫ ∞

0
m (Pu)

(
1

u + i|α| −
1

u − i|α|

)

du

In the example,

m(1 + y + α(1 − y)x) =
i

π

∫ ∞

0
log+ u

(
1

u + i|α| −
1

u − i|α|

)

du

=
i

π

∫ 1

0

∫ 1

s

dt

t

(

1

s + i
|α|

− 1

s − i
|α|

)

ds

=
i

π

(

I2

(

− i

|α| : 1

)

− I2

(
i

|α| : 1

))

= − i

π
(Li2(i|α|) − Li2(−i|α|))

5. The example with 5 variables

By applying the method described above, we can prove that

π4m((1 + v)(1 + w)(1 + x) + α(1 − v)(1 − w)(y + z)) = 7π2ζ(3) + 8(Li3,2(1, 1) − Li3,2(−1, 1))

+8(Li3,2(1,−1) − Li3,2(−1,−1)) (15)

Now we use formula (75) of [1], which in this particular case, states that

Li3,2(x, y) = −1

2
Li5(x y) + Li3(x) Li2(y) + 3Li5(x) + 2Li5(y) − Li2(x y)(Li3(x) + 2Li3(y))

for x, y = ±1.
Taking into account that

Lik(1) = ζ(k) and Lik(−1) =

(
1

2k−1
− 1

)

ζ(k) (16)

we get

Li3,2(1, 1) − Li3,2(−1, 1) + Li3,2(1,−1) − Li3,2(−1,−1) = −21

4
ζ(2)ζ(3) +

93

8
ζ(5)

We obtain the result by using that ζ(2) = π2
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