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Abstract

The underlying molecular mechanisms triggered by critical exposure to tobacco smoke
are investigated using time-course microarray transcriptomes of rats exposed to cigarette
smoke. We propose a Bayesian longitudinal data analysis framework that combines func-
tional model-based clustering and the lasso and elastic-net penalization to identify groups
of genes that share similar time-evolving patterns. Individual time-course or longitudinal
curves are assumed to be spanned by a finite basis of orthogonal functions. The space
of coefficients of the curve expansions form an embedding space of unknwon dimension.
Clusters of curves are searched for in this space, whose elements are assumed to be gener-
ated by a mixture of Student’s t-distributions. The lasso penalty is used to elucidate the
intrinsic dimension of the data, as well as to find an appropriate number of functional data
clusters. The proposed model is used to shed light into the molecular dynamics involved
in chronic obstructive pulmonary disease.

Key words: Functional data analysis, gene expression, mixture model, model-based
clustering, penalized likelihood.

1 Introduction

Exposition to tobacco smoke at long-term chronic levels as well as at acute high levels rep-
resents known risks to human health. In order to understand the initial molecular events
of chronic obstructive pulmonary disease (COPD) that leads to smoking related symptoms,
Stevenson et al. [2007] studied the microarray transcriptome of rats exposed to cigarette smoke.
∗Corresponding author: A. Murua. E-mail: murua@dms.umontreal.ca
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During a period of 34 weeks, male Spague-Dawley rats were examined in a time-course study.
This consisted of triplicate measures at 12 precise time points for both groups of rats, exposed
and not exposed to tabacco smoke. The interval periods were chosen so that time-points 2 to 5
may be considered as early stage exposure with acute symptoms, while time-points 8 to 13 may
be considered as prolonged exposure with chronic symptoms. The initial study analyzed the
data with t-statistics associated with gene expression differences between exposed and control
rats. These revealed a strong presence of upregulation of metabolic processes accompanied by
stress response and genes involved in inflammation. During the later phase of smoke exposure
the expression of genes related with immunity, and defense progressively increased.

We are interested in shedding further light into the mechanisms underlying critical exposure
to tobacco smoke by extending the analysis of these data. We propose using a hybrid approach
that marries functional data analysis with model based clustering. The idea is to find groups
of genes or proteins that are either upregulated or downregulated at the different stages of
the exposure. Previous analysis of gene expression profiles were not guided by the temporal
profile of genes. Instead, they isolated a few genes based on individual t-tests on selected days
in the acute or chronic phase of smoke exposure. With these few selected genes, it seemed
possible to separate genes involved in the acute phase from genes involved in the chronic phase.
Here, we present a different approach that considers all time points. Our methodology does not
biased the analysis to the most extreme changes as in the initial previous study. The functional
approach is needed since the data consist of time-course expressions; the model-based approach
is used to cluster the time-courses. This is roughly done by reducing the dimension of the
functional data to a set of latent variables which are in turn used for clustering. The discovery
of the latent variables and the clustering are done simultaneously in the proposed model using
an elastic-net type penalization approach embedded into a Bayesian framework.

Longitudinal data are usually analyzed using linear mixed models (Laird and Ware [1982];
Verbeke and Molenberghs [2000]). These models explicitly decompose the variation in the
data into between and within-subject variability. The work of Zhao et al. [2004] has shown
that functional data analysis can be a very useful complementary technique. Functional data
analysis which was primarily designed for the analysis of random trajectories and infinite-
dimensional data, is rapidly evolving. Many interesting procedures incorporating this approach
have recently emerged in statistics and bioinformatics so as to analyze time-course gene ex-
pression data. Clustering and classification techniques are two of the major applications of the
functional approach with this type of genomic data (Ullah and Finch [2013]). By definition,
functional data clustering is used to search for natural groupings of data with similar charac-
teristics. Recently, Jacques and Preda [2014] reviewed the main literature on functional data
clustering. They noted that most approaches fall within three broad categories: (a) a two-stage
method consisting of applying dimension reduction techniques to the data before performing
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clustering; (b) a machine learning approach that uses nonparametric techniques on specifically
defined distances or dissimilarities between curves; and (c) a model-based clustering approach
which assumes a probabilistic mixture distribution on either the principal components (the
FPCA scores) or the expansion coefficients associated with a functional data expansion into a
finite dimensional basis of functions. Our present work falls into this latter category.

James and Sugar [2003] seems to have been the first authors to introduce a functional model-
based clustering method. Their functional model incorporates a Gaussian-mixture to describe
the expansion coefficients associated with a finite spline basis. For rougher curves, Giacofci
et al. [2013] proposed a Gaussian-mixture model on a wavelet decomposition of the curves.
A different approach has been proposed by Same et al. [2011]. These authors assume that
the curves arise from a mixture of regressions on a polynomial basis, with possible changes in
regime at each instant of time.

We introduced here a Bayesian model based on splines in which the clusters are modeled by a
mixture of Student’s t-distributions. The multivariate student-t distribution allows to consider
fatter tails than those of the normal distribution. In our experiments, we note that time-course
gene-expression data (the kind of data we are dealing with in this paper) are better modeled
by t-mixtures than Gaussian ones. The thickness of the tails depends on the number of degrees
of freedom which can be chosen as a parameter to be estimated. Our method is useful for
the analysis and clustering of general complete or sparse time-course or longitudinal data. It
is inspired by recent works in variable selection for clustering of high-dimensional data (see
for example Bouveyron and Brunet [2014] for a nice review). Nowadays, penalizing criteria
for clustering are the preferred methods for high-dimensional variable selection. Since the
pioneering work of Tibshirani [2011], where the lasso was introduced, several works on model
based clustering have introduced L1 or L∞ penalty terms in the log-likelihood function (Pan
and Shen [2007], Wang and Zhou [2008]). This is done to yield model sparsity in the form of
variable selection (which may also be seen as a form of dimension reduction). Traditionally,
the lasso penalizes the absolute values (L1-norm) of coefficients that are key to the model.
Our procedure uses a double lasso-penalty in the clustering criterion in order to yield optimal
choices for the reduced dimension of the data (similar to variable selection in the regression
context) and the number of clusters. The strength of the lasso regularization is then determined
by two penalization parameters whose optimal values are unknown. Usually, these parameters
are tuning parameters, that is, the model is estimated for some particular values of these
parameters. Their optimal values are usually determined by cross-validation techniques. Note
that for large datasets, cross-validation may be computationally very costly. In this work, we
argue instead for a Bayesian method to elucidate the penalization parameters. Cross-validation
is not needed. The regularization parameters are incorporated in the model through a lasso-
driven prior distribution on the cluster mean vectors.
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The paper is organized as follows. Section 2 introduces the model-based clustering with lasso
penalty (model, parameter estimation, implementation). Section 3 discusses the model selec-
tion method. Section 4 describes a simulation study and comparison with existing methods.
In Section 5 we apply our methodology to the analysis of the tobacco exposure data.

2 Bayesian functional clustering with lasso penalization

In this section we introduce a Bayesian framework for a penalized functional model-based
clustering method. The model combines functional principal components analysis and model-
based clustering in a mixed effects model. Estimation is performed through the expectation-
maximization (EM) algorithm (Dempster et al. [1977]).

2.1 The unpenalized functional clustering model

We recall below the main characteristics of the basis model. If Yi(·) denotes the source function
that originally generates the ni observed measurements Yi = (yi1, ..., yini) at time points
ti = (ti1, ..., tini) for the individual i in a longitudinal study, it’s evaluation at a specific time
t is assumed to be decomposed in the form:{

Yi(t) = µ̂(t) + f̂(t)Tαi + εi(t) (i = 1, ..., N)

αi = µzi + γzi
i

(1)

where µ̂(t) is an overall mean function; the functions f̂j(t) are the k functional principal
components (FPC) with f̂(t)T = (f̂1(t), . . . , f̂k(t)) and the εi(t) are error terms. The k-
dimensional vectors αi = (αi1, ..., αik) are the component scores representing the coefficients
of Yi(t) on the FPCs. Furthermore, a mixed effects framework is imposed on the clustering
model through the component scores. Indeed, the component scores of each individual i are
expressed as the sum of the individual i’s cluster mean µzi and his own effect γzi

i (or the
deviation from it’s cluster effect). The variables zi are the cluster membership indicators.
These are in general unknown, and clustering analysis consists on their estimation. Thus, the
combination of the two expressions of equation (1) yields a 3-term decomposition for the curve
Yi(t) in addition to the error term εi(t): the overall mean [µ̂(t)], the cluster effect

[
f̂(t)Tµzi

]
and the individual-specific effect

[
f̂(t)Tγzi

i

]
. All those terms are rewritten in a matrix form

using the specification of the model in a finite-dimensional basis b(t)T = (b1(t), . . . , bq(t)) of
B-splines to obtain the following expression:

Yi = Biθµ + BiΘµzi + BiΘγ
zi
i + εi. (2)
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In equation (2), the ni-dimensional vector Yi contains the observed measurements at time
points ti and Bi = [b(ti1), ...,b(tini)]

T is the matrix of the spline basis evaluated at those
time points. The q-dimensional vector θµ and the matrix Θ represent, respectively, the coeffi-
cients in the basis of the overall mean function µ̂(t) = b(t)Tθµ and the principal components
functions f̂(t)T = b(t)TΘ. The measurement errors εi are assumed to follow a multivariate
Student’s t distribution with unknown degrees of freedom ν0. The functional model-based clus-
tering in equation (2) is embedded into a Bayesian framework and the following assumptions
are made to complete the setup.

zi ∼ Multinomial(1;π1, . . . , πG) with (π1, . . . , πG) ∼ Dirichlet(a1, . . . , aG)

µg ∼ Nk(0,Γµ) and Γµ ∼ InvWishart(m, (m− k − 1)Ik)

γgi ∼ Nk(0,Γg) and Γg ∼ InvWishart(m, (m− k − 1)D)

D = diag(d11, d22, . . . , dkk) with djj ∼ Invχ2(m) and i.i.d (j = 1, . . . , k)[
εi|νi ∼ Nni(0, σ2νiIni) and νi ∼ Invχ2(ν0)

]
⇒

[
εi ∼ tν0(0, σ2Ini)

]
with σ2 ∼ InvGamma(ασ, βσ).

(3)

In general, the clustering of the individuals based on this model relies essentially on a space of
much reduced dimension than the original longitudinal trajectories through the decomposition
on the functional principal components. Note that choosing k ≤ 3 would allow some form
of visualization of the groups. The model of James and Sugar [2003] add another layer of
parametrization in the clusters so that the clustering is forced to lie in a subspace of very small
dimension. We prefer to let the data tell us which dimension better describe the clustering
structure.

Note that the model suppose that the variance-covariance matrix of the vector of measurements
Y is equal to:

V ar(Y ) = V ar(E(Y |g)) + E(V ar(Y |g))

= V ar(Bθµ +BΘµg) + E(BΘΓgΘ
TBT + σ2I)

= BΘ(Γµ +D)ΘTBT + σ2I.

This can be estimated using the Maximum A Posteriori (MAP) estimators of the parameters,
which are in turn obtained by the EM algorithm described in the Appendix A. As an illus-
tration of this covariance estimate, consider the following yeast cycle data consisting of the
fluctuations of the expression levels of about 6000 genes over two cell cycles comprising 17
time points. For purposes of this example, we consider the 5-phase subset of the data Cho
et al. [1998]. It consists of 386 genes which have been assigned to one of the five phases of the
cells cycle. Experts in yeast cell cycle estimated that five phases are present during the yeast
cell cycle. A Bayesian information criterion (BIC) based selection procedure applied with our
model yields only four clusters. Figure 1 shows the observed and estimated variance-covariance
matrices associated with the four clusters found by our procedure.
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Figure 1: Yeast cycle data. The observed (top row) and estimated (lower row) variance-
covariance matrices by cluster. The clusters are arranged from left to right, starting with
Cluster 1.
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In the perspective of the EM algorithm used to estimate the parameters, the log-likelihood of
the model as stated in equations (2) and (3) is obtained by considering the « complete data »
(Y,W) where Y = {Y1, ...,YN} denotes the observed data composed of the N longitudinal
trajectories (i = 1, ..., N) and W = {z1, ..., zN ,γ

z1
1 , ...,γ

zN
N } = {~z, ~γz} denotes the missing

data composed of the cluster indicators and the individual-specific effects. Let Π denote
the set of the model parameters to be estimated and, let L(Y,W; Π) = log[p(Y,W; Π)]

denote the log-likelihood derived from the distributions involved in the model. Note that
Π = {~ν, ~µ, ~Γ,Λ} where{

~ν = {ν1, ..., νN}; ~µ = {µ1, ...µG}; ~Γ = {Γ1, ...,ΓG};
Λ = {θµ,Θ,D,Γµ, π1, π2, ..., πG, ν0, σ

2}.
(4)

The expression of L(Y,W; Π) is presented in Appendix A as well as the details leading to its
computation.

2.2 The penalized log-likelihood

One of the main goals of our methodology is to adequately determine the two characteristic
model parameters: the number of clusters G and the dimension k of the functional principal
components f̂(t). The dimension q of the B-splines basis is not considered as a parameter.
The number of basis functions is either set to a specific value with respect to the measurement
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time points of all individuals, or indirectly defined by supplying the break points or knots. The
motivation for this decision comes from extensive simulations [Adjogou, 2017] which indicates
that the value of the parameter q has very little influence on the clustering results as measured
by the Adjusted Rand Index (ARI) scores [Rand, 1971, Hubert and Arabie, 1985].

In this new framework, we choose to estimate k and G by penalizing the log-likelihood func-
tion. The two penalizations are lasso-type ones. The main objective is to obtain a sparse
solution with many estimates of cluster means basis coefficients automatically shrinked, thus
realizing dimension reduction and with many inter-cluster distances shrinked, thus merging
homogeneous clusters. The proposed penalized log-likelihood function is defined as

Lpen(Y,W; Π) = L(Y,W; Π)− Pλ(Π) (5)

= log[p(Y,W; Π)]− Pλ(~µ)

where ~µ = {µ1, ...µG} and Pλ(·) denotes a lasso-type penalty function with tuning parameter
λ = (λ1, λ2). A lasso-type penalty function is applied to (i) the cluster mean components asso-
ciated with each dimension, and to (ii) the distances between cluster means. The penalization
Pλ(~µ) takes the form:

Pλ(~µ) =
k∑
j=1

Pλ1

 G∑
g=1

∣∣µjg∣∣
+

G∑
g=1

g∑
h=1

Pλ2
(
Dist(µg,µh)

)

= λ1

k∑
j=1

 G∑
g=1

∣∣µjg∣∣
+ λ2

G∑
g=1

g∑
h=1

Dist(µg,µh) (6)

where the function Dist(., .) can optionally be the L1 norm distance or the L2 norm distance.
The first term of the penalty function which is associated with the hyperparameter λ1 is used
to shrink towards zero, for a given j, the estimates (

∑G
g=1

∣∣µjg∣∣) which are close to zero. As a
consequence, the model will reduce the dimension k of the cluster space by eliminating those
principal components j that are irrelevant for the model. We note that this penalty term may
be viewed as a type of sparse group-lasso penalty [Simon et al., 2013]. The second term of
the penalty function which is associated with the hyperparameter λ2 is used to shrink towards
zero the distances of very similar estimated cluster means. As a consequence, any two clusters
with very similar cluster means will be forced to merge. This will reduce the initial assumed
number of clusters G. Only clusters with very different means are expected to remain. We
note that this penalty term may be viewed as a type of fused-lasso penalty [Tibshirani and
Saunders, 2005].
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2.3 The Bayesian lasso functional clustering model

Most of the literature concerning lasso-type penalization suggest using cross-validation in order
to estimate and fix the value of the penalty parameters λ1 and λ2. Note that this procedure
basically amounts to estimating the model for a given pair of optimal values of (λ1, λ2),
ignoring the fact that the data (and the model) have been previously used to choose the pair
(λ1, λ2). Another issue with cross-validation is its computational cost. This may be large for
large datasets, and for complex models such as the one considered in this paper. Note that in
order to find an optimal pair (λ1, λ2), a grid of values in the two-dimensional space of penalty
parameters must be chosen. Therefore, a third issue with this procedure relates to how to
choose the grid. If a simple uniform grid is to be chosen, then most of the time, the size of the
grid would be too large. For example, for a 20× 20 grid, one already needs to fit 400 models
times the number of the cross-validation folds; if one performs a 5-fold cross-validation, the
number of times one would need to fit the model would be 2000.

We suggest to choose the grid via techniques developed for the optimal design of experiments.
One particular useful technique for computer experiments is Latin hypercube sampling (LHS).
These are designs that try to fill in the search space much more efficiently than a uniform grid.
For example, a uniform grid of size 10× 10 may be too coarse to really find the optimal pair.
But a LHS array of size 100 would cover the space of the penalty parameters in an efficient way.
The LHS technique has been applied to many different computer models since 1975 (Steck
et al. [1976], Iman et al. [1981a,b], Iman and Conover [1982a,b], Iman and Helton [1985], Wyss
and Jorgensen [1998]).

Even though one could manage to reduce the number of model fits considerably by using the
suggested LHS procedure, the cost of the search is sometimes still too high for large datasets.
To alleviate this cost and to make sure we have obtained the optimal penalty parameters, we
propose a model where the penalty function is part of the likelihood. This allows us to consider
the pair (λ1, λ2) as model parameters, just as the rest of the parameters. Since the form of the
penalty function is essential, we simply propose to normalize the penalized likelihood, that is,
to make the penalty term a density. This solution requires finding the normalizing constant of
the penalized likelihood function. The penalized likelihood function derived from the penalized
log-likelihood in equation (5) can be expressed as Lpen(Y,W; Π) = p(Y,W; Π) ·e−Pλ(~µ). The
complete expression of the density function p(Y,W; Π) and details on its computation are
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presented in Appendix A. We simply recall here that p(Y,W; Π) satisfies:

p(Y,W; Π) = p(~Y,~z, ~γz;~ν, ~µ, ~Γ,Λ) (7)

=
N∏
i=1

p(Yi, zi,γ
zi
i

∣∣νi, ~µ, ~Γ,Λ) · p(νi
∣∣~µ, ~Γ,Λ) ·

G∏
g=1

p(µg) · p(Γg) · p(Λ)

= p̄(Y,W; Π) ·
G∏
g=1

p(µg).

where p̄(Y,W; Π) =
∏N
i=1 p(Yi, zi,γ

zi
i

∣∣νi, ~µ, ~Γ,Λ)·p(νi
∣∣~µ, ~Γ,Λ)·

∏G
g=1 p(Γg)·p(Λ). The terms

gathered in p̄(Y,W; Π)) are known density functions of variables or parameters different from
~µ. Therefore, in order to normalize Lpen(Y,W; Π), we only need to normalize the penalty-
induced prior on ~µ, given by

[∏G
g=1 p(µg) · e−Pλ(~µ)

]
. That is, we need to compute the integral

C(λ1, λ2,Γµ) =

∫  G∏
g=1

e−
1
2
µT
gΓ−1

µ µg

(2π)k/2|Γµ|1/2

 e−Pλ(~µ)d(µ1, ...,µG)

 . (8)

The normalized penalized log-likelihood is given by

Lpenc (Y,W; Π) = log[p(Y,W; Π)]− Pλ(~µ)− logC(λ1, λ2,Γµ). (9)

We refer to the model based on this normalized penalized log-likelihood as a Bayesian lasso
functional clustering model or Bayesian lasso FCM for short. Note that the Bayesian lasso
FCM is related but different to what has become known in the literature as Bayesian lasso
[Park and Casella, 2008]. This latter procedure only penalizes individual parameters and does
not involve group or fused-like penalization. A closer paradigm to the Bayesian lasso FCM
would be the elastic-net penalty [Zou and Hastie, 2005] with sparse group and fused lasso
penalties.

We use Monte Carlo numerical integration to estimate the integral in (8). We sample values
{~µm}Mm=1 according to a kG-Multivariate Normal distribution with mean zero and block-
diagonal variance-covariance matrix with G blocks equal to Γµ. The sampling is done with
respect to the prior distribution of ~µ, which is exactly the term in parentheses in the integral
above. Consequently, our estimator C̃(λ1, λ2,Γµ) is given by

C̃(λ1, λ2,Γµ) =

[
1

M

M∑
m=1

e
−λ1

∑k
j=1(

∑G
g=1 |µ

j
g(m)
|)−λ2

∑G
g=1

∑g
h=1D

ist(µg(m),µh(m))

]
. (10)

In what follows we will refer to the unpenalized functional clustering model given by equations
(2) and (3) as the unpenalized FCM. Also, we will refer to the penalized (unnormalized)
functional clustering model given by equation (5) as the penalized FCM.
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As mentioned in Section 2.1, the iterative EM algorithm is used to estimate the parameters of
the model. The function S(Π|Π̄) to be maximized using the EM algorithm for known values
Π̄ of the parameters is defined by:

S(Π|Π̄) = Q(Π|Π̄)− Pλ(~µ)− logC(λ1, λ2,Γµ), (11)

where Q(Π|Π̄) = EW|Y;Π̄[log p(Y,W; Π)]. The observed data Y and the missing data W are
as previously defined in Section 2.1. The computation of Q(Π|Π̄) at the expectation step is
identical to that of the unpenalized model given in Section 2.1. All the analytical developments
leading to its calculus are the same as presented in Appendix A. The maximization step for
all parameters in the model except for the cluster means µg is identical to the one associated
with the unpenalized model. The M-step equations for the cluster means µg of the Bayesian
lasso FCM are shown in Appendix B.

3 Model selection

In this section, we describe the steps toward the selection of the optimal model. Note that
for the unpenalized FCM, model selection may be performed using criteria such as BIC or the
Akaike information (AIC). However, these entail computing all possible models arising from
all possible values of the two basic model parameters k and G. Instead, for the Bayesian lasso
FCM, model selection consists only of the identification of the optimal number of functional
principal components kopt and the optimal number of clusters Gopt from the output of the
EM algorithm. Note that for the penalized FCM, model selection is a two-stage procedure,
since before the identification of the couple (kopt, Gopt), one must identify the optimal values
of the two tuning parameters (λopt1 , λopt2 ) from a grid of proposed values. For the Bayesian
lasso FCM, we have adopted the following steps for identifying the optimal values (kopt, Gopt):

1. Postulate initial values for k and G: Let kpos and Gpos be the postulated initial
values of the number of functional components and the number of clusters, respectively. As
mentioned in Section 2.2, the B-splines basis dimension q is not estimated but rather set
manually. However, the value of q is not chosen at random. Some rules govern its choice.
For a B-splines basis of order mB (with polynomials of degree dB = mB − 1), the number
of basis functions can be expressed as q = mB + iB where iB is the number of interior
knots. And q must satisfy q ≥ mB. For example, q must be at least 4 in the case of cubic
splines. Furthermore, the value of q must be large enough to ensure a significant number of
interior knots that will be equally spaced within the range of the measurement time points
[min tij ,max tij ] (1 ≤ i ≤ N ; 1 ≤ j ≤ ni) in order to span the individual curves. Also,
as the columns of the (q,k)-dimensional matrix Θ are orthonormal due to the orthogonality
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constraint ΘTΘ = Ik [James and Sugar, 2003], the value of q must also satisfy q ≥ kpos. The
values (q,kpos,Gpos) are used to initialize each single run of the EM-algorithm.

2. Perform the EM algorithm with (λ1,λ2): For each couple (λ1, λ2) and for each
postulated (initial) values of the parameters (kpos, Gpos), the Bayesian lasso FCM is fitted using
the whole dataset. The parameters Θ, θµ and σ2 are initialized by assuming a model with a
single cluster. The cluster parameters such as µg, Γg and πg as well as the cluster membership
indicators zi may be initialized by applying any clustering procedure to the scores αi yielded
by the single-cluster model. In our experiments, we used the Gaussian model-based clustering
procedure implemented in the mclust package (Fraley and Raftery [1999, 2003, 2006]).

3. Find (λopt1 ,λopt2 ): Step 2 is performed for each couple (λ1, λ2) in an appropriate grid
(e.g., chosen via LHS). The optimal values (λopt1 , λopt2 ) are defined as the couple (λ1, λ2) that
maximizes the Bayesian lasso FCM log-likelihood. The next step is to determine kopt and
Gopt based on the estimators yielded by the Bayesian lasso FCM parameters associated with
(λopt1 , λopt2 ).

4. Find (kopt,Gopt): The optimal values of G and k are identified by examining, respectively,
the matrix of the between distances of the cluster means, DM , and the vector of elements
vj =

[∑G
g=1

∣∣µjg∣∣] with j = 1, ..., kpos, which will be denoted by VM = (vj)
kpos
j=1 .

• Determining kopt: The optimal number of functional principal components is obtained
by reducing kpos. The elements associated with very small values of vj are dropped from the
model. For that purpose, two criteria are proposed. The optimal k is set to minimum of the
values provided by these criteria. The first criterion is inspired by the notion of inertia in
classical principal components analysis. Recall that the inertia of a factor corresponds to the
information it carried. In our setup, the inertia of a the jth component is associated with its
vj value. Similarly to the criterion of cumulative proportion of total inertia, we search among
the top ranked vj values for the minimum number of principal components contributing to
at least 80% of the cumulative sum; that is, we look for the smallest k∗ ≤ kpos such that∑k∗

j=1 v(j) ≥ 0.80
∑kpos

j=1 vj , where v(1) ≥ v(2) ≥ .... ≥ v(kpos) are the ranked statistics associated
with the components of the vector VM . The other criterion is based on an approximate
multiple testing procedure. Consider {µj1, . . . , µ

j
G}, as a sample, and vj =

∑G
g=1

∣∣µjg∣∣, as an
associated statistic. We would like to test the null hypothesis of zero posterior expectation
E(µjg) = 0, for all g = 1, . . . , G. As a heuristic, we suppose that under the null hypothesis
the posterior of each µjg follows a mean-zero Normal distribution with a common variance σ2

k.
Under the null hypothesis, vj is distributed as a sum of G independent half-Normal(0, σ2

k).
The half-normal distribution is a fold at the mean of an ordinary normal distribution with
mean zero. Although the density associated with vj is not known in closed form, we can
easily estimate percentiles from its distribution by Monte Carlo simulation when σ2

k is known.
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Under the null hypothesis, E(|µjg|) = σk
√

2/π. Therefore, up to a constant, the mean of
the components of the vector VM is an estimate of σk. In practice, we expect only a few
components to be negligible; so the estimate of σk may be taken from only the smallest vjs, or
even just the minimum of the vjs. Since kpos simultaneous tests need to be performed (one for
each vj), we apply a Bonferroni correction and work with a threshold Rα/k so that we do not
reject the null hypothesis if the observed value of vj is smaller or equal to this threshold. Note
that the threshold is given by the equation P (T ≤ Rα/k) = α/k, where T is distributed as σk
times the sum of G independent half-Normal(0, 1). That is, Rα/k = σkqT̃ ,α/k, where qT̃ ,α is the
100αth percentile of the sampled distribution of the sum of G independent half-Normal(0, 1).

• Determining Gopt: We recall that the fundamental idea in the identification of the optimal
number of clusters is the merging of clusters with identical characteristics, that is, with very
small between cluster mean distances . We suppose that the distances between vectors given
by the matrixDM = (Dgh)1≤g,h≤G are Euclidean distances. Our heuristic assumes that under
the null hypothesis of zero distance (that is µg = µh), the posterior distribution of each pair of
means is given by (µg−µh) ∼ Nk(0, σ2

GIk) with a common scale parameter σ2
G. In this case, we

have D2
gh =

∑k
l=1(µlg − µlh)2 ∼ σ2

Gχ
2
k. We estimate the scale parameter σ2

G as the mean of the
squared distances σ̂2

G = 2
G(G−1)

∑k
g<hD

2
gh, and plug this estimator in the above equation. As

in the case of kopt, in practice, we only use the smallest elements Dgh in the estimation of σ̂2
G.

Using the Bonferroni correction for multiple testing, the null hypothesis is not rejected if the
observed value D2

gh is not larger than σ̂2
G times the lower 100(α/G)th percentile of a χ2

k distri-
bution. Note that for simplicity, we have assumed mutual independence between the distances.

4 Simulation study

We conduct a simulation study to examine the performance of the proposed methodology. We
investigate specifically the ability of the method to reproduce and cluster original curves by
correctly estimating the key parameters from postulated values. Following the described model
selection procedure, the simulation study also concentrates on identifying the most relevant
threshold to consider for the determination of Gopt.

Simulations setup
Various curves are generated based on different values of the sample sizeN ∈ {100, 500, 900, 4000},
the spline basis dimension q ∈ {10, 12, 14, 15, 20}, the number of functional principal compo-
nents k ∈ {2, 4, 5, 6, 8} and the number of clusters G ∈ {3, 6, 9, 15, 20, 40}. Overall, for each
combination of (N, q, k,G), the parameters of the model are generated at random according
to the prior distributions assumed in the proposed model. We consider individual curves
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measured at 12 time periods. This choice reflects the size of data from the microarray tran-
scriptome of rats exposed to cigarette smoke (see Section 6). For the simulations, 50 couples
(λ1, λ2) were randomly obtained using a Latin hypercube sampling scheme with values in the
rectangle [0, 50]× [0, 50]. As the B-splines basis dimension q is not estimated, its value is set
to the one used to generate the curves. We postulate kpos = 8 for the number of functional
principal components. For the sake of efficiency in the simulations, the postulated values for
the number of clusters Gpos depended on the true number of clusters G. The corresponding
set of values are given in Table 1.

Table 1: Values of the postulated number of clusters G(pos) according to the true number of
clusters G

G Gpos G Gpos

3 12 10 8 6 4 15 26 24 22 20 18
6 16 14 12 10 8 20 30 28 26 24 22
9 19 17 15 13 11 40 50 48 46 44 42

Simulation analysis tools
The simulation is based on 12 datasets generated as described above, each one correspond-
ing to a specific (and different) combination of (N, q, k,G). For each dataset, the couples
(λ1, λ2) were generated and the procedure was launched for each value of Gpos, with kpos = 8.
The quality of the results is assessed by comparing the partitions (clustering) created by
the model and the original (true) cluster memberships. The comparison was made through
the Adjusted Rand Index (ARI) (Rand [1971], Hubert and Arabie [1985]). A perfect agree-
ment between the two partitions yields an ARI score of 1. The closest the score is to 1, the
more similar the partitions are. The ARI has become the standard measure of comparison
in the statistical literature on clustering. Three different thresholds were proposed to esti-
mate the optimal number of clusters. As mentioned in the previous section, we consider only
the smallest distances for the estimation of σ̂2

G. The first criterion, 1low, uses the smallest
distance in DM ; the second criterion, 25low, uses the mean of the distances falling below
the first quartile of the distances in DM ; and the third criterion, 50low, uses the mean of
the distances falling below the median of the distances in DM . Therefore, in addition to
the model parameters estimates, the relevant quantities yielded by each simulation run are
{kopt, Gopt1low,ARI1low, G

opt
25low,ARI25low, G

opt
50low,ARI50low}, where the subindex represents the

criterion used to choose Gopt. In order to calibrate the ARI index with the difficulty of the
problem, we also report a measure of data complexity as presented by Chen et al. [2002]. Let
N be the total number of curves in the data, ng be the number of curves in cluster g, and
MCg be the mean curve of cluster g. Consider the following measures of Homegeneity and
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Separation given respectively by

H =
1

N

N∑
i=1

Dist(Yi,MCzi), S =
1∑G

g 6=h ngnh

G∑
g 6=h

ngnhD
ist(MCg,MCh).

The homogeneity is calculated as the average distance between each curve and the mean curve
of the cluster it belongs to. It reflects the compactness of the clusters. The separation is
calculated as the weighted average distance between the cluster mean curves. It reflects the
overall distance between clusters. As the indices H and S are closely related to respectively
within-cluster and between-cluster variances, the similarity ratio Ratio = 1−

(
N
N−1

)(
H

H+S

)
,

serves as a measure of homogeneity: datasets with large similarity ratios are easier to cluster
than those with small similarity ratios.

Simulation results
The first element of the simulation study is the comparison of the three threshold criteria
proposed to estimate the optimal number of clusters. For each dataset, we computed, for
each threshold criterion, the average of the ARIs from the five different postulated Gpos. The
results of an analysis of variance indicate that the criteria are significantly different. As shown
in Figure 2, the criterion 1low appears to perform best. In Figure 3, we compare the sim-

Figure 2: Comparison of the three criteria for model selection.

ilarity ratios and the criterion 1low average ARI1low for every dataset. In addition, in this
figure, we also compare the performance of the current model with the unpenalized FCM. This
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latter model uses the Bayesian information criterion (BIC) to choose the model parameters
k, q and G. Because this model evaluates all possible models in a grid of values of (k, q,G),
its performance might be better than that of the Bayesian lasso FMC. However, for the same
reason, its computational cost is much larger. The boxplots in Figure 3 are associated with
the ARI values obtained from the five different postulated Gpos. The figure shows that the

Figure 3: Similarity ratio and model performance.

results from the two different FCMs are comparable. However, the Bayesian lasso FCM has
found the clusterings with much less computational cost. Also, note that the trend in the simi-
larity ratio is also depicted in the ARI averages. This observation indicates that the clustering
performance of the models are highly related to the degree of complexity of the data.

Another element analyzed in the simulation is the impact of the proposed number of cluster
Gpos. The question addressed here is whether there is a significant difference in the clustering
results if Gpos is far from or close to the true number of clusters. The answer would give
an indication on how to select Gpos in practice. For that purpose, we draw in Figure 4 a
scatterplot of the values (

√
Gpos −

√
G) (representing the gap between proposed and true G)

against the corresponding ARI1low criterion. There is no structure nor trend observable from
this figure. The conclusion is that there appears to be no relationship between the clustering
performance and the proposed G in the algorithm. No matter how close or far Gpos is to the
true number of clusters, the model performs similarly.

Finally, we evaluate the capacity of the model to replicate the real number of clusters in the
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Figure 4: Influence of postulated G

data. Consider the gap between the estimated and true G given by (
√
Gest −

√
G). For the

unpenalized FCM, the gap is a single value for each dataset. For the Bayesian lasso FCM,
the gap variable is represented by the set of Gest obtained through the postulated values for
G. This is reflected by the boxplots in Figure 5. Note that the average gap values for the
Bayesian lasso FCM are very small and comparable to the ones from the unpenalized functional
clustering model.

5 Comparison study

We compared the performance of the Bayesian lasso FCM with five other functional cluster-
ing models: fitfclust of James and Sugar [2003], iterSubspace of Chiou and Li [2007],
distFPCA of Peng and Müller [2008], funHDDC of Bouveyron and Jacques [2011], fscm of Gia-
cofci et al. [2013], and funclust of Jacques and Preda [2013]. We use the implementation of
these models given in the R package funcy [Yassouridis, 2017]. Unlike Bayesian lasso FCM,
the models in funcy do not estimate automatically the number of clusters. So to make the
comparison, we run the methods in funcy with several proposed G values and kept the value
that maximized BIC. The results are shown in Figure 6. In the figure, the results associ-
ated with the unpenalized FCM method are denoted by unpenFCM, and the results associated
with the Bayesian lasso FCM are denoted by BLassoFCM. It is clear from this figure that the
unpenalized FCM and the Bayesian lasso FCM are the best performers.
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Figure 5: Comparison of True and estimated number of clusters

Figure 6: Comparison of functional clustering methods
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Running example.
We have also obtained similar results with real dataset experiments (not shown here). As
an illustration, we come back to the yeast cycle data introduced earlier in Section 2.1 Cho
et al. [1998]. Recall that experts estimate that the data reveal fives phases. However, to our
knowledge, there is no clustering procedure that can automatically reproduce these phases
adequately. Our model suggest a four-cluster partition with an associated ARI of slightly over
0.47. These results are highly comparable to those obtained by other studies on the same
data set. Indeed, The Potts model clustering of Murua et al. [2008] yielded nine clusters with
an ARI of 0.45. Yeung et al. [2001] analyzed the same subset of these data using model-
based clustering based on Gaussian mixtures developed in Banfield and Raftery [1993]. They
reported four clusters with an ARI of about 0.43. The bottom two rows in Figure 7 show the
four mean curves associated with the four-cluster solution. The figure displays the observed
and the estimated mean curves. For comparison purposes, we also show in Figure 7 (see top
three rows) the five mean curves associated with the five original clusters proposed by Cho
et al. [1998].

Observe that the mean curves associated with the four estimated clusters are very similar to
the first four clusters found by Cho et al. [1998]. The fifth cluster of Cho et al. [1998] lies
between clusters two and four of the estimated clusters. The covariance structure of the four
estimated clusters is displayed in Figure 1. Observe that there is high correlation between
time points close to valleys and peaks in the mean curves. One can also observe a slightly
negative correlation for points further away from the valleys and peaks. The estimation of
the error-term degrees of freedom is ν = 3. The middle right panel of Figure 7 displays the
distribution of the νi variables associated with each observation. Recall that the error terms
εi were modeled as a convolution of Normal and Inverse-χ2 distributions, so that small values
of νi give evidence of non-nomally distributed errors.

6 Chronic obstructive pulmonary disease

We applied the Bayesian lasso functional clustering model to shed light into the initial molec-
ular events linked to chronic obstructive pulmonary disease (COPD). The dataset, described
previously in the introduction, relates to time-course genetic expression difference between
tobacco-smoke exposed rats (the treatment group) and a control group of non-exposed rats
(Stevenson et al. [2007]). The dataset comes from the project GEO GSE7079 (Gene Expres-
sion Omnibus [2007]) and is related to a study of molecular changes due to the exposure of
rats to tobacco smoke. It is a time-course data with 12 day time-points: 1, 3, 5, 14, 21, 28,
42, 56, 84, 112, 182 and 238. Probesets (genes) without any GO annotation were discarded
(Gene Ontology Consortium [1999-2015]). The 3464 probesets considered in our study corre-
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Figure 7: Yeast cycle data. Top three rows: observed and model-estimated mean curves for
the five clusters found by Cho et al. [1998]. Right panel in third row: distribution of the
νi associated with the error term of the FCM model. Bottom three rows: Observed and
model-estimated mean curves for the four clusters yielded by FCM
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spond to 39.4% of the original 8799 probesets in the dataset.

Analysis
We set the initial proposed number of clusters Gpos to 50, 20, and 10 clusters. These choices
led respectively to models with 22, 11 and 7 clusters. Despite the difference in the num-
ber of clusters, all three partitions are very similar in the sense that those partitions with
smaller number of clusters are basically formed by merging of clusters in the larger partitions.
Figure 8 displays the cluster means from all three partitions. The bottom row shows the esti-
mated cluster-specific mean curves, while the plots on the top row show the two-dimensional
graphical representation of the functional principal components scores. Recall that the cluster
mean curves are given by linear combinations of the functional principal components. For
these particular data, these two-dimensional representations are exact because the estimated
dimension k of the curves is exactly 2.
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Figure 8: The exposure to tobacco smoke data. Cluster mean curves for the three partitions
found by the Bayesian lasso functional clustering model. The top row displays the clusters
in the two-dimensional space of functional principal components (FPC) scores. The bottom
panel shows the cluster mean-curves.
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During statistical analysis, all genes tested for their abundance levels of corresponding mRNAs
(expression) are typically considered as independent entities. While most resultant proteins
(the role of genes is to produce proteins) are independent molecules, they typically act as to
form chains of reactions (e.g., membrane receptors and subsequent intracellular signaling), or
multi-protein complexes. In such cases, all individual elements are required to be present to
allow proper biological functioning. In many cases, it has been observed that the expression
in such subsets of proteins is regulated in a similar way. Also, gene clusters differentially
regulated at specific biological conditions frequently contain pathway footprints that lead to
enrichments in gene-ontologies (such as the hierarchical GO ontology). For this reason, test-
ing enrichment of GO-ontologies and gene-pathway analysis are considered complementary
approaches to statistical testing of differential expression. Gene-pathways are typically built
based on information in databases of protein-protein interactions. Large-scale screening ex-
periments in given organisms, like yeast, allow researchers to determine which proteins form
compact aggregate structures while exercising a given biological role. Such databases are
typically combined with outcome from automated mining of biochemical publications.

In our case, the resulting gene clusters were inspected and characterized for enrichment with
the GO-ontologies (gene functions). Clusters were judged interesting according to their pat-
terns of expression profile, and for their high content of GO-terms associated with smoke-
exposure. These clusters were then submitted to protein-protein network analysis in order to
look for additional enrichment of expression patterns, or functionalities, across selected ele-
ments of the networks obtained. More specifically, the three partitions of genes found by the
Bayesian lasso functional clustering model were inspected for enrichment of functionalities with
the DAVID platform (Huang et al. [2009], Maere et al. [2005], National Institute of Allergy
and Infectious Diseases, NIH [2017]). This partition revealed several clusters highly enriched
in functions previously attributed to acute and chronic exposure to cigarette smoke: immune
response/immune system (clusters 1, 8, and partially 12), inflammation (clusters 15, 16), and
apoptosis (clusters 3, 5, 6, 11). Surprisingly, these latter clusters, which are associated to
late/prolonged exposure with cigarette smoke, do not share general expression patterns such
as global up or down-regulation profiles. However, clusters 15 and 16, associated with early
exposure, do share a common upregulated expression pattern. In the 7-cluster partition, four
clusters may be characterized by enrichment of gene functions directly related to early and
late phases of tobacco smoke exposure. Among them, there is a cluster which despite its large
size still has an interesting expression profile and excellent GO ontology enrichment scores:
it represents genes that are gradually and increasingly repressed during the entire process of
exposure to smoke. Curiously, all clusters enriched in gene functions associated with early
phase of smoke exposure are also enriched in functions associated to long/chronic exposure.
Among these, genes in cluster 2 do not show major expression changes during the late phase.
Probably, these genes are not genes triggering chronic symptoms, but are genes that when
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activated « set the stage », that is, they may be associated with acute sensitivity for devel-
oping symptoms at a prolonged smoke exposure. In contrast, the cluster of genes specifically
upregulated in the late phase has a more fuzzy profile, that is, there is no simple or clear
tendency in the gene expressions. The 11-cluster partition presents three clusters identified as
predominantly characterizing gene-functions associated with exposure to smoke. In all three
clusters, the expression profiles are in perfect accord to whether genes functions are associated
with early or late phases of smoking.

7 Conclusion

In this paper, we introduced a model-based Bayesian lasso functional clustering method for
the analysis of longitudinal data. The model combines dimension reduction and clustering
through functional principal component analysis, and model-based clustering. Model selec-
tion is done through a lasso driven prior for the cluster means. Latin Hypercube Sampling
was used to efficiently explore the space of penalty parameters.

The analysis of gene expression from smoke exposure showed that many deregulation events are
associated with relevant gene-functions. This suggests that gene-repression may be a very com-
mon effect associated with biological effects of smoke exposure. We note that gene-repression
is typically more difficult to find by classical data analysis approaches, and in consequence,
it is frequently less regarded. The case of upregulated genes may thus be more punctual for
specific aspects. In summary, one may conclude that the clustering approach allowed for iden-
tification of large groups of gradually deregulated genes that otherwise might be difficult to
capture using traditional statistical approaches such as multiple testing of two groups (e.g.,
smoke-exposed versus control groups). We recall that we have introduced a different approach
in the analysis of these data by considering all time points without introducing bias, that is,
without restricting our study to the most extreme changes like in the initial study [Stevenson
et al., 2007]. This unbiased view lets us understand that the biology of stress response to
smoke exposure may be more complex that previously thought, specially when compared to
the simplistic view of the initial study. Furthermore, this novel interpretation is in agreement
with other integrative studies, emphasizing that during a cell’s lifetime many genes are used
in many different situations, such as in both acute and chronic phases of stress resulting from
tobacco exposure.

In conclusion, unbiased analysis methods (such as our Bayesian lasso FCM) allow a more
general view of temporal or longitudinal processes that may be easily overseen by traditional
approaches which focus on isolating the most extreme points first. Of course, such “holistic”
approaches favour an integrated view of underlying processes and the complexity of regulatory
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systems that have evolved over long periods of evolution in biology.
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A The likelihood and EM updating equations for the unpenal-
ized model

The log-likelihood log[p(Y,W; Π)] is

N∑
i=1


−ni

2 log(νiσ
2)− 1

2νiσ2

∥∥Yi − (Biθµ + BiΘµzi + BiΘγ
zi
i )
∥∥2

−1
2 log(

∣∣Γzi

∣∣)− 1
2γ

T
i,zi

Γ−1
zi γ
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i +

∑G
g=1 Zig log(πg)

+νo
2 log(νo2 )− log[Γ(νo2 )]− (1 + νo

2 ) log(νi)− νo
2νi


+

G∑
g=1

{
−1

2 log(
∣∣Γµ∣∣)− 1

2µ
T
g Γ−1

µ µg + m
2 log(

∣∣(m− k − 1)D
∣∣)

− (m+k+1)
2 log(

∣∣Γg∣∣)− (m−k−1)
2 trace[DΓ−1

g ]

}
+
{

km
2 log(m− k − 1)− (m+k+1)

2 log(
∣∣Γµ∣∣)− (m−k−1)

2 trace[Γ−1
µ ]

}
+

k∑
j=1

{
+m

2 log(m2 )− log[Γ(m2 )]− (1 + m
2 ) log(djj)− m

2djj

}
+
{
ασ log(βσ)− log[Γ(ασ)]− (ασ + 1) log(σ2)− βσ

σ2

}
+
{
− log[B(a1, ..., aG)] +

∑G
g=1(ag − 1) log(πg)

}
+ C

where C is the normalizing constant, and B(a1, ..., aG) = B(a) is the multivariate Beta func-

tion which can be expressed in terms of the Gamma function Γ(·) as B(a) =
∏G
g=1 Γ(ag)

Γ(
∑G
g=1 ag)

.

We can rewrite the last expression of log[p(Y,W; Π)] as log[p(Y,W; Π)] = L + H where
L groups the terms depending on the individuals i = 1, . . . , N :

L =
N∑
i=1

li(~µ, ~Γ,Λ) =
N∑
i=1

−ni
2

log(νiσ
2)− 1

2νiσ2

∥∥Yi − (Biθµ + BiΘµzi + BiΘγ
zi
i )
∥∥2

− 1

2
log(

∣∣Γzi

∣∣)− 1

2
γT
i,ziΓ

−1
zi γ
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i +

G∑
g=1

zig log(πg)

+
νo
2

log(
νo
2

)− log[Γ(
νo
2

)]− (1 +
νo
2

) log(νi)−
νo
2νi

and H groups the remainder terms.
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At iteration (t+ 1) of the EM algorithm, for Π(t) fixed, the function Q to be maximized is

Q(Π|Π(t)) = EW|Y;Π(t) [log p(Y,W; Π)] = E
Z, ~γz|Y,~ν(t),~µ(t),~Γ

(t)
,Λ(t)

[L+H]

=
N∑
i=1

E
zi,γ

zi
i |Yi,ν

(t)
i ,~µ(t),~Γ

(t)
,Λ(t)

[
li(~µ, ~Γ,Λ)

]
+H

=

N∑
i=1

E
zi|Yi,ν

(t)
i ,~µ(t),~Γ

(t)
,Λ(t)

{
E
γ
zi
i |zi,Yi,ν

(t)
i ,~µ(t),~Γ

(t)
,Λ(t)

[li(~µ, ~Γ,Λ)]

}
+H. (A.1)

Let mi(zi, ~µ, ~Γ,Λ) = E
γ
zi
i |zi,Yi,ν

(t)
i ,~µ(t),~Γ

(t)
,Λ(t)

[li(~µ, ~Γ,Λ)]. In order to compute mi(zi, ~µ, ~Γ,Λ),

we need to find the conditional distribution of γzi
i |Yi, zi, ν

(t)
i , ~µ(t), ~Γ

(t)
,Λ(t). Using Bayes rule,

we have

p(γzi
i |Yi, zi, ν

(t)
i , ~µ(t), ~Γ

(t)
,Λ(t)) =

p(Yi|γzi
i , zi, ν

(t)
i , ~µ(t), ~Γ

(t)
,Λ(t)) p(γzi

i |zi, ν
(t)
i , ~µ(t), ~Γ

(t)
,Λ(t))

p(Yi|zi, ν(t)
i , ~µ(t), ~Γ

(t)
,Λ(t))

Note that all distributions involved in this expression are Gaussian. Let Nr(µ,Σ) denote an
r-variate Gaussian distribution with mean µ and covariance Σ. We have

Yi|γzi
i , zi, ν

(t)
i , ~µ(t), ~Γ

(t)
,Λ(t) ∼ Nni([Biθ

(t)
µ + BiΘ(t)µ

(t)
zi + BiΘ(t)γ

zi
i(t)], [σ

2
(t)ν

(t)
i Ini ])

γzi
i |zi, ν

(t)
i , ~µ(t), ~Γ

(t)
,Λ(t) ∼ Nk(0,Γ

(t)
zi )

Yi|zi, ν(t)
i , ~µ(t), ~Γ

(t)
,Λ(t) ∼ Nni([Biθ

(t)
µ + BiΘ(t)µ

(t)
zi ], [σ2

(t)ν
(t)
i Ini + BiΘ(t)Γ

(t)
zi ΘT

(t)B
T
i ])

These simplifications lead to a multivariate Gaussian distribution

γzi
i |Yi, zi, ν

(t)
i , ~µ(t), ~Γ

(t)
,Λ(t) ∼ Nk(γ̂zi

i , V̂
zi
i ),

with

γ̂zi
i =

{
νi(t)σ

2
(t)Γ

−1(t)
zi + ΘT

(t)B
T
i BiΘ(t)

}−1
ΘT

(t)B
T
i

{
Yi −Biθ

(t)
µ −BiΘ(t)µ

(t)
zi

}
V̂ zi
i =

{
Γ
−1(t)
zi +

ΘT
(t)B

T
i BiΘ(t)

νi(t)σ
2
(t)

}−1

In the expression of li(~µ, ~Γ,Λ), the random variable γzi
i only occurs in the terms∥∥Yi − (Biθµ + BiΘµzi + BiΘγ

zi
i )
∥∥2 and γT

i,zi
Γ−1

zi γi,zi . The other terms are left unchanged
by the expectation. Consider the following identity that applies to any random vector U of
dimension n.

E(UTU) = trace(E[UTU ]) = E(trace[UTU ]) = E(trace[UUT])

= trace(E[UUT]) = ÛTÛ + trace(V̂U ),

28



where Û = E(U), and V̂U = V ar(U). Using this, we get

E
γ
zi
i |Yi,zi,ν

(t)
i ,~µ(t),~Γ

(t)
,Λ(t)

{∥∥Yi − (Biθµ + BiΘµzi + BiΘγ
zi
i )
∥∥2
}

=
∥∥Yi −Biθ

(t)
µ −BiΘ(t)µ

(t)
zi −BiΘ(t)γ̂

zi
i )
∥∥2

+ trace
[
BiΘ(t)V̂
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i ΘT

(t)B
T
i

]
,

and

E
γ
zi
i |Yi,zi,ν

(t)
i ,~µ(t),~Γ

(t)
,Λ(t)

{
γT
i,ziΓ

−1
zi γi,zi

}
= γ̂T

i,ziΓ
−1
zi γ̂i,zi + trace

[
Γ−1

zi V̂
zi
i

]
,

which leads to the computation of mi(zi, ~µ, ~Γ,Λ).
Next, we compute E

zi|Yi,ν
(t)
i ,~µ(t),~Γ

(t)
,Λ(t)

{
mi(zi, ~µ, ~Γ,Λ)

}
. This requires finding the distribu-

tion of the discrete random variable
{
zi|Yi, ν

(t)
i , ~µ(t), ~Γ

(t)
,Λ(t)

}
. Let eg be the G-dimensional

vector whose components are all zero, except for the gth component which is set to 1. We
have,

p(zi = eg|Yi, ν
(t)
i , ~µ(t), ~Γ

(t)
,Λ(t))

=
p(Yi|zi = eg, ν

(t)
i , ~µ(t), ~Γ

(t)
,Λ(t)) p(zi = eg|ν(t)
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(t)
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p(Yi|ν(t)
i , ~µ(t), ~Γ

(t)
,Λ(t))

=
π

(t)
g p(Yi|zi = eg, ν

(t)
i , ~µ(t), ~Γ

(t)
,Λ(t))∑G

h=1 π
(t)
h p(Yi|zi = eh, ν

(t)
i , ~µ(t), ~Γ

(t)
,Λ(t))

. (A.2)

The computation of the expression in (A.2) requires knowledge of the distribution of the
random variable Yi|zi, ν(t)

i , ~µ(t), ~Γ
(t)
,Λ(t), which is a ni-variate Gaussian random variable

with

Ei,zi = Biθ
(t)
µ + BiΘ(t)µ

(t)
zi

Σi,zi = νi(t)σ
2
(t)

[
Ini −BiΘ(t)

(
νi(t)σ

2
(t)Γ

−1(t)
zi + ΘT

(t)B
T
i BiΘ(t)

)−1
ΘT

(t)B
T
i

]
This distribution has been obtained by integrating out the individual random effects

p(Yi|zi, νi, ~µ, ~Γ,Λ) =

∫
γi

p(Yi,γi|zi, νi, ~µ, ~Γ,Λ) dγi,

where

p(Yi,γi|zi, νi, ~µ, ~Γ,Λ) = p(Yi|γi, zi, νi, ~µ, ~Γ,Λ) p(γi|zi, νi, ~µ, ~Γ,Λ)

= Nni(Biθµ + BiΘµzi + BiΘγ
zi
i ;σ2νiIni)×Nk(0; Γzi).
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Let P (t)
ig be the probability that the individual i belongs to group g. We have from Equation

(A.2),

P
(t)
ig = π(t)

g F
(t)
ig

/ G∑
h=1

(π
(t)
h F

(t)
ih ) with

F
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ig = exp
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−1

2

(
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ig

)T
Σ
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ig

(
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ig

)}/{
(2π)ni/2|Σ(t)

ig |
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}

g = 1, . . . , G.

Therefore

E
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=
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)
×mi

(
zi = eg, ~µ

(t), ~Γ
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=
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)
.

Thus, from Equation (A.1), we have:

Q(Π|Π(t)) =
N∑
i=1

E
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=
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+H.

Finally, after the expectation step, the expression of the function Q(Π|Π(t)) where all the
parameters are at their tth updated value is given by:

Q(Π|Π(t)) =
N∑
i=1

G∑
g=1

Pig ×
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B The EM updating equations for the Bayesian lasso FCM
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The results of the M-step for the cluster means µg are presented below for each of the two
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options of the Dist(·, ·) function in the second penalty term from equation (6).
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 for the L2 norm distance
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h=1 sign(µ

j(t)
g −µj(t)h )
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]
for the L1 norm distance.

Note that sign(x) equals −1 if x < 0, equals 1 if x > 0 and equals 0 if x = 0. For identifiability
reasons, we assume the matrices Γµ and D to be diagonal. Also note that in general the matrix
Θ output by the procedure will not necessarily be orthonormal. Therefore, we transform
the output matrix into an orthonormal matrix with the Gram-Schmidt algorithm Golub and
Van Loan [1996].
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