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Abstract With high-dimensional data, the number of covariates is considerably larger than the sample size.

We propose a sound method for analyzing these data. It performs simultaneously clustering and variable

selection. The method is inspired by the plaid model. It may be seen as a multiplicative mixture model

that allows for overlapping clustering. Unlike conventional clustering, within this model an observation

may be explained by several clusters. This characteristic makes it specially suitable for gene expression

data. Parameter estimation is performed with the Monte Carlo expectation maximization algorithm and

importance sampling. Using extensive simulations and comparisons with competing methods, we show the

advantages of our methodology, in terms of both variable selection and clustering. An application of our
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approach to the gene expression data of kidney renal cell carcinoma taken from The Cancer Genome Atlas

validates some previously identified cancer biomarkers.

Keywords classification · model selection · multiplicative mixture model · Monte Carlo EM · kidney

cancer genomic data

1 Introduction1

Microarray data consist of many thousands of gene expression profiles but only tens or hundreds of samples.2

These data are typical examples of high-dimensional data for which the number of covariates (genes) is3

considerably larger than the sample size. Having so much information poses problems for model selection.4

It implies making decisions as to which data should be investigated or even retained. For this reason, a5

classical way to start the analysis of high-dimensional data is with exploratory techniques such as clustering6

or biclustering (Madeira and Oliveira, 2004; Tanay et al, 2005). Both techniques may be used for data7

compression and/or dimensionality reduction. However, in many situations clustering is the goal, such as8

when trying to detect subtypes of a disease. In this case, having a sound and efficient methodology to9

perform variable selection is key to advancing the study of the disease. For example, in cancer research,10

only a few genes in the genome are known to contribute to most of the characterization of cancer subtypes.11

Several authors have treated the problem of variable selection in the context of clustering. Tadesse et al12

(2005) formulated the clustering problem in a Bayesian context. In their model, the non-discriminating13

variables follow a multivariate normal distribution, while the discriminating ones follow a multivariate14

normal mixture model with an unknown number of components. In their model, a binary exclusion/inclusion15

latent vector is introduced to indicate whether a variable is selected (i.e., is discriminating) or not. Other16

authors (Kim et al, 2006; Hoff, 2006) have also introduced Bayesian variable selection methods through17

binary latent vectors to select the discriminating variables. Another approach to variable selection within18

a mixture model for clustering, described by Raftery and Dean (2006), uses Bayes factors. Raftery and19

Dean (2006) proposed a greedy search algorithm to find a local optimum in the model space, and used the20

Bayesian information criterion (BIC) to approximate the Bayes factor. A generalization of the Raftery and21

Dean (2006) model proposed by Maugis et al (2009a) does not need any prior assumptions about the linear22

link between the discriminating and the discarded variables.23
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Another class of models for variable selection uses penalization methods for model-based clustering24

(Pan and Shen, 2007; Xie et al, 2008; Wang and Zhu, 2008). A popular approach among these methods is25

that of Pan and Shen (2007), which is based on a penalized likelihood approach with an L1 penalty term.26

Specifically, following Hoff (2006), Pan and Shen (2007) parameterized the cluster means, say µk, for each27

variable j = 1, . . . , p, as µjk = υj + βjk, where υj is the overall cluster-independent mean for variable j.28

They inferred that if βjk = 0 for all clusters k, then the variable j is uninformative for clustering (at least29

in terms of the mean). The model is fitted with an expectation maximization (EM) algorithm. Witten and30

Tibshirani (2010) also apply a Lasso-type penalty to select the variables. Their method is based on sparse31

K-means and sparse hierarchical clustering. The method of Witten and Tibshirani (2010) differs from that32

of Pan and Shen (2007), for the Lasso penalty is applied on the weights of each variable. These weights are33

defined as the contribution of the variables to the resulting sparse clustering. The gap statistic (Tibshirani34

et al (2000)) is used to determine the optimal value of the tuning parameter for their sparse clustering35

algorithms.36

Here, we propose a novel method to select the variables in the context of clustering. This method is37

inspired by the plaid model of Lazzeroni and Owen (2002). Let Y = {y1, y2, . . . , yn} ⊂ Rp be a random38

sample of n observations. Assume that the data have a structure consisting of K clusters. We introduce the39

latent variables for cluster labeling as ρ = {ρik}n,Ki=1,k=1 and the latent variables for variable selection as40

κ = {κj}pj=1. They are indicator variables, so that ρik = 1 if the i-th observation is in cluster k; otherwise41

it is set to zero. Similarly, κj = 1 if the j-th variable is a discriminating variable; otherwise it is set to42

zero. We also use the notation ρi = {ρik}Kk=0, where ρi0 =
∏K
k=1(1 − ρik), i = 1, . . . , n. Note that the43

i-th observation has ρi0 = 1 if it does not belong to any of the K clusters, that is, if it belongs to the44

background or zero cluster (see point (A) below). Our variable selection model for clustering is defined45

as follows. For any given pair (ρ, κ), the expectation of yij is a sum of layers or plaids E(yij |ρi, κj) =46

κj
∑K
k=0 ρik(µk + αik + βjk) + (1 − κj)υj , where µk is the overall mean of the objects in cluster k,47

βjk is the effect of the j-th variable in cluster k, αik is the random effect in cluster k associated with48

the i-th observation, and υj is the background mean of variable j (see below for further explanation). For49

identifiability purposes, we impose the constraints
∑n
i=1 ρikαik =

∑p
j=1 κjβjk = 0, k = 1, ..,K. Each50

plaid corresponds to a cluster. Note that the expectation of yij in the usual mixture model may be written as51

3



µjk = E(yij |k) = µk + βjk. Our model differs from other variable selection models based on mixtures in52

the three following ways.53

(A) We consider the possibility that some observations are not well explained by the main clusters, but rather54

lie in what we call the zero cluster (k = 0) (note that the background mean υj is the zero cluster mean of55

variable j). These observations satisfy the constraints αi0 = βj0 = 0, for all i = 1, . . . , n and j = 1, . . . , p.56

The presence of this cluster may be justified by some observations in real data sets. In clustering, there is57

often a “ragbag” cluster for data that do not belong to any well-defined cluster and which are thus considered58

to be noise. Hence, it is desirable to consider a model that can leave a few points un-clustered if necessary.59

(B) We incorporate random effects in the observations. Therefore, the observations and the variables play a60

symmetrical role in each cluster. The random effects take into account the potential influence of single ob-61

servations in the model. In addition, they introduce compound symmetry in the variance-covariance matrix62

associated with observations given the clusters. When this is not appropriate for the data at hand, then we63

can either simply eliminate the random effects from the model, or consider them as fixed effects (i.e., as64

parameters to be estimated). For example, in the case of gene expression data, the effect of each gene (the65

observations) is of interest, so it makes sense to incorporate fixed gene effects in the model (as opposed to66

random gene effects) and to avoid imposing compound symmetry. In particular, if µk + βjk > 0 for one67

gene j, then this gene is upregulated within cluster k; otherwise, it is downregulated. In the present study,68

we work with the assumption of fixed effects in the observations69

(C) The observations may be explained by more than a single cluster (
∑K
k=1 ρik ≥ 1). This produces an70

aggregate overlapping (superimposition) of clusters that is different from the distributional overlapping of71

clusters (that is, when the mixture component densities overlap) implicit in the usual mixture model. For72

example, in clinical applications (Bhattacharya, 2005), a patient may belong to more than one clinical group,73

i.e., a patient who complains of headache may have migraine symptoms and other causes of headache (such74

as nasal or sinus problems/disease). Methods to address overlapping clustering are available in the literature75

(Fu and Banerjee, 2008, 2009; Heller and Ghahramani, 2007). These models, which are motivated by the76

product-of-experts model (Hinton, 2002), are often called multiplicative mixture models. We show that our77

approach is related to these approaches.78
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Similar to many models for clustering available in the literature, our model involves latent labels ρ, κ;79

thus, to estimate the parameters, we use a stochastic version of the EM algorithm that is based on the so-80

called Monte Carlo EM (MCEM) algorithm (Wei and Tanner, 1990). This is a modified EM algorithm in81

which the expectation in the E-step is computed numerically through Monte Carlo simulations. We use a82

Gibbs sampler to perform Monte Carlo sampling in each iteration of the MCEM algorithm. However, as83

suggested by Levine and Casella (2001), we also use importance sampling to overcome the computational84

cost of the Monte Carlo sampling at each step of the EM algorithm.85

We apply our method to the analysis of gene expression data associated with kidney renal cell carci-86

noma (KIRC), the most prevalent form of kidney cancer. Most treatments target the clear cell carcinoma87

type, which accounts for 80% of all KIRC cases. The data were obtained from The Cancer Genome Atlas88

(TCGA) (https://tcga-data.nci.nih.gov/tcga/), a large public repository for cancer-related89

genomic data. We aim to cluster the kidney cancer samples and identify important genes related to cancer90

development and progression that are capable of discriminating among the samples/patients.91

The paper is organized as follows: Section 2 describes the proposed plaid mixture model for variable92

selection. The Monte Carlo EM procedure devised to estimate the parameters of the model is explained93

in Section 3. In Section 4 , we propose information criteria suitable to select the number of clusters. A94

simulation to compare the performance of our model with that of other popular methods is presented in95

Section 5. In section 6, we show an application of our approach to the analysis of KIRC gene expression96

data. Our conclusions are stated in Section 7.97

2 The plaid mixture model98

Throughout the paper, we follow the notation provided in the introduction. Inspired by the plaid model of99

Lazzeroni and Owen (2002), we propose a general model for variable selection in the context of clustering.100

Our model comprises the clustering label parameters ρ, the variable selection parameters κ, the variance101

parameters Σ = ({%2j}
p
j=1, {σ2

jk}
p,K
j=1,k=0), and the mean parameters Ψ = (µ, {µk}Kk=0, β, α), with α =102

{αik}n,Ki=1,k=0 and β = {βjk}p,Kj=1,k=0. The model is given by103

yij = κj(

K∑
k=0

(µk + αik + βjk)ρik + ηij) + (1− κj)(υj + εij), (1)
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where the ηij’s and εij’s are assumed to follow independent zero-mean normal distributions. The variance104

of εij is %2j . The variance of ηij is the harmonic mean of the variances σ2
jk, which may depend on the cluster105

k and the variable j. It is given by τ2ij =
∑K
k=0 ρik/

∑K
k=0(ρik/σ

2
jk) =

(∑K
k=0 ρik/riσ

2
jk

)−1
, where106

ri =
∑K
k=0 ρik ≥ 1 is the number of plaids (that is, clusters) that jointly explain observation yij . This form107

of the variance allows us to cast our model as a multiplicative mixture model for which the variances for108

cluster k are riσ2
jk (see equation (3)).109

Prior Distribution110

We assume that the prior probabilities that any given variable j is selected are the same for all j = 1, . . . , p.111

This is denoted by π = P (κj = 1), any j. Thus, the prior distribution for the number of variables is112

binomial, with mean pπ. This assumption is very common in the Bayesian variable selection setup (George113

and McCulloch, 1997; Li and Zhang, 2010).114

The prior probability that the i-th observation is explained by cluster k is assumed to be the same for115

all observations i = 1, . . . , n. It is denoted by πk = P (ρik = 1) i = 1, . . . , n. We denote by Π =116

(π, {πk}Kk=0) all the prior probability parameters. In addition, we assume that the Bernoulli latent variables117

({ρi}ni=1, {κj}
p
j=1) are mutually independent.118

Likelihood119

Let φ(.) denote the density function of the standard normal distribution. Hereafter, we write µijk for µk +

αik + βjk. Let θ = (Σ,Ψ,Π). The complete data likelihood is given by

L(θ|Y, ρ, κ) = P (Y|ρ, κ,Σ, Ψ)
∏
i,k

πk
ρik(1− πk)1−ρik

∏
j

πκj (1− π)1−κj

=
∏
i,j

[
1

τij
φ

(
yij −

∑K
k=0 µijkρik
τij

)]κj [
1

%j
φ

(
yij − υj
%j

)]1−κj

×
∏
i,k

πk
ρik(1− πk)1−ρik

∏
j

πκj (1− π)1−κj (2)

Let κ∗ = {j : κj = 1, j = 1, . . . , p} be the set of the selected variables. One can show that the density of Y120

on the selected discriminating variables, that is j ∈ κ∗, is given by121

P (Y|ρ, κ∗, θ) =
∏
i,j

1

cij(ρ, κ∗, θ)

K∏
k=0

[
1

√
riσjk

φ

(
yij − µijkriσ2

jk/τ
2
ij√

riσjk

)]ρik
, (3)
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where

cij(ρ, κ
∗, θ) =

τij
√
2π∏

k(
√
riσjk

√
2π)ρik

exp

 1

2τ2ij

(
K∑
k=0

µijkρik

)2

− 1

2τ4ij

K∑
k=0

riµ
2
ijkρikσ

2
jk

 .

Equation (3) shows that our model is similar to the multiplicative mixture model for overlapping clustering122

described by Fu and Banerjee (2008, 2009), and Heller and Ghahramani (2007) (see Section A in the123

Supplementary Material for more details). Our likelihood is proportional to124

∏
i,k

[
1∏

j(
√
2πriσjk)

exp{−1

2
(ỹi − µ̃ik)TD−1ik (ỹi − µ̃ik)}

]ρik
, (4)

where Dik is the diagonal matrix with the main diagonal given by the vector {riσ2
jk}

p
j=1, ỹi = {yij}pj=1,125

and µ̃ik = {µijkriσ2
jk/τ

2
ij}

p
j=1. Within this model, the mean and variance parameters associated with126

cluster k are µ̃ik and Dik. Note that when there is no aggregate overlapping of clusters (i.e., ri = 1 for127

all i = 1, . . . , n), the mean and the variance of cluster k are simply given by the parameters µ̃ijk = µijk128

and σ2
jk. Equation (3) is also related to the product of experts (PoE) of Hinton (2002). Indeed, the PoE129

model with K + 1 components can be expressed as P (Y|θ) ∝
∏K
k=0 pk(Y|θk), where θk and pk(Y|θk) are130

respectively the set of parameters and density associated with component k. So when all components of ρ131

are set to 1, our multiplicative model (4) becomes a PoE model.132

3 Estimation133

The EM algorithm is particularly suitable for learning the parameters of our model (2) because the like-134

lihood of the complete data (Y, ρ, κ) is much easier to calculate than the likelihood of the observed data135

Y. More specifically, the EM algorithm starts with an initial guess of the unknown parameters, θ(0) =136

(Σ(0), Ψ (0), Π(0)), and iteratively aims to estimate the maximum likelihood estimator (MLE) θ?. Each iter-137

ation consists of the expectation (E) step and the maximization (M) step. Next, we show some of the details138

of the algorithm, which is summarized in Section 3.4139

3.1 The E-step140

Given an estimate of θ at the current iteration t, say θ(t), the conditional expectation of the complete data141

log-likelihood with respect to the density P (ρ, κ|Y, θ) is computed in the E-step:142

Q(θ|θ(t)) = E
(
log(P (Y, ρ, κ|θ)) |Y, θ(t)

)
, t ≥ 0. (5)
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We cannot compute the exact expectation (5) because we do not have a tractable closed-form expression143

for the joint conditional density P (ρ, κ|Y, θ). However, since the full conditionals of ρ and κ are easily144

obtained, we propose to estimate Q(θ|θ(t)) via an MCEM algorithm (Wei and Tanner, 1990). The proposed145

estimator is given by146

Qm(θ|θ(t)) = 1

m

m∑
l=1

log(P (Y, ρ(l), κ(l)|θ)), (6)

where ρ(l), κ(l), l = 1, ..,m are samples from the conditional joint distribution of the latent variables ρ, κ147

given the observed data Y and the current value of the parameters θ(t). The estimator in (6) converges to148

the theoretical expectation in (5) by the law of large numbers. Below, we explain how to obtain the label149

samples via a Gibbs sampler.150

3.2 The M-step151

The M-step maximizes the sum (6) with respect to θ subject to the identifiability constraints
∑
i ρikαik =152 ∑

j κjβjk = 0, for all k. To overcome the computational cost of performing MCMC sampling within the153

MCEM algorithm when m is large, Levine and Casella (2001) proposed using importance sampling (IS)154

(Robert and Casella, 2004). The algorithm is initialized by m samples, ρ(l), κ(l), l = 1, ..,m from the joint155

distribution P (ρ, κ|Y, θ(0)). At iteration t, we estimate Q(θ|θ(t)) by IS:156

QIS,m(θ|θ(t)) = 1∑m
l=1 w

(t)
l

m∑
l=1

w
(t)
l log(P (Y, ρ(l), κ(l)|θ)) (7)

where w(t)
l = P (Y|ρ(l), κ(l), θ(t))/P (Y|ρ(l), κ(l), θ(0)). Thus, we do not need to obtain a new sample of157

m labels from P (ρ, κ|Y, θ(t)) at each iteration t in order to estimate Q(θ|θ(t)). The cost of obtaining a new158

sample of m labels at each iteration is higher than that of obtaining the IS weights. Note that the weights159

may be written as160

w
(t)
l =

∏
i,j

w
(t)
l (i, j), with w(t)

l (i, j) =
P (yij |ρi(l), κj(l), θ(t))
P (yij |ρi(l), κj(l), θ(0))

. (8)

The EM updating equations are given in Section B of the Supplementary Material.161

3.2.1 Increasing the IS size m162

As pointed out by Robert and Casella (2004), the IS estimator in (7) would be inaccurate if the initial pa-163

rameter values θ(0) were poor. In addition, the estimator would take a long time to converge. Hence, as164
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suggested by Levine and Casella (2001), we obtain MCMC samples from P (ρ, κ|Y, θ(t)) for the first few165

iterations. The choice of the MCMC sample size m is an issue within the MCEM algorithm because we do166

not want to use a large m when θ(t) is far from the true MLE θ̂. The trade-off between the computational167

cost and the accuracy of the estimator of Q(θ|θ(t)) can be resolved by increasing the sample size m as168

θ(t) approaches the true MLE during the progression of the EM algorithm. This is what Booth and Hobert169

(1999) proposed within the context of generalized linear mixed models. In their procedure, the increase in170

m obeys a schedule induced by a simple confidence region test: at the (t+ 1)th iteration of the MCEM, an171

approximate 100(1 − α)% confidence ellipsoid for θ̂(t+1) = argmaxθ Q(θ|θ(t)) is constructed using the172

central limit theorem. If the previous estimate of the parameter θ(t) lies in this region, then the procedure173

declares that “the EM-Step was swamped by Monte Carlo error” and the number of simulations, m, is in-174

creased. We note that this schedule is based on true Monte Carlo samples, whereas we use MCMC samples.175

The dependency between the MCMC samples does not allow us to directly use the central limit theorem176

to construct a confidence interval. However, we overcome this limitation by borrowing some ideas from177

Robert et al (1999) and Levine and Casella (2001) to limit the effect of the correlation between successive178

samples. We choose a sequence ur, r = 1, ..., N such that ur − 1 ∼ Poisson(νr) where νr = νrd for some179

ν ≥ 0 and d > 0. The sums lr =
∑r
j=1 ur are used as the sub-sampling points, and N, the number of180

such sub-samples taken from the m samples, is set to sup{r : lr ≤ m}. For a more detailed description, see181

Section B1 of the Supplementary Material.182

3.3 Sampling the Labels183

As mentioned, the joint density of the labels P (ρ, κ|Y, θ(t)) is not known in closed form; therefore, we

cannot perform the Monte Carlo sampling of the labels (ρ, κ) required to compute QIS,m(θ|θ(t)). How-

ever, we can obtain an MCMC estimate of this quantity. This is carried out with a Gibbs sampler because

the marginal conditional distributions of the labels are known. For i ∈ {1, . . . , n} and k ∈ {0, . . . ,K},

let ρ(k)i0 =
∏
k′ 6=k(1 − ρik′), and ρ−ik = ρk \ {ρik}. The labels ρi for each i = 1, ..., n and κj for

each j = 1, .., p are generated independently according to the odds P (ρik = 1|Y, ρ−ik, κ, θ)/P (ρik =

0|Y, ρ−ik, κ, θ) and P (κj = 1|Y, ρ, θ)/P (κj = 0|Y, ρ, θ) which are respectively given by equations (9) and

9



(10).

exp


p∑
j=1

κj
2σ2

j

(µijk − µ0ρ
(k)
i0 )(2yij − 2

∑
k′ 6=k

µijk′ρik′ − µ0ρ
(k)
i0 − µijk)

 πk
1− πk

(9)

184

%nj
σnj

exp

{
−1
2σ2

j

n∑
i=1

(yij −
∑
k

µijkρik)
2 +

1

2%2j

n∑
i=1

(yij − υj)2
}

π

1− π
(10)

In the case of non-aggregate overlapping clusters, that is, ri = 1 for all i, the Gibbs sampler alter-185

natively uses P (ρik = 1|κ, θ) = Aik/
∑K
k=0Aik, and P (κj = 1|ρ, θ) = Bj1/Bj0 + Bj1, where186

Aik =
∏
j

[
1
σkj

φ
(
yij−µk−αik−βjk

σkj

)]κj

πk, Bj1 =
∏
i,k

[
1
σkj

φ
(
yij−µk−αik−βjk

σkj

)]ρik
π, and187

Bj0 =
∏
i

[
1
%j
φ
(
yij−µ
%j

)]
(1− π).188

3.4 The Algorithm189

The sampling algorithm to estimate the model parameters is summarized below. In addition to the E-step190

and M-step, it includes a Monte Carlo error checking step to decide whether to increase the sampling size191

m of the IS scheme.192

1. Initialize m, and θ(0) = (Σ(0), Ψ (0), Π(0)) (See Section 5.2 for further details). Set t = 0.193

2. Generate m label samples ρ(l), κ(l), l = 1, ..,m using the Gibbs sampler according to equations (9) and194

(10).195

3. Compute the importance weights wl(i, j) for all i, j using the equation (8).196

4. E-step: Estimate Q(θ|θ(t)) by: EIS(κj |Y, θ(t)) =
∑m
l=1 wlκj(l)/

∑m
l=1 wl, EIS(ρik|Y, θ(t)) =197 ∑m

l=1 wlρik(l)/
∑m
l=1 wl, and EIS(ρikκj |Y, θ(t)) =

∑m
l=1 wlρik(l)κj(l)/

∑m
l=1 wl.198

5. M-step: Maximize Qm(θ|θ(t)) over θ to obtain θ(t+1) through the EM updating equations given in the199

Supplementary Material.200

6. MC error: Perform the tests described in Section 3.2.1. If any one of the tests is negative, that is, if any201

one of the components of the vector Q(1)
IS,m(θ(t)|θ(t−1)) lies in the corresponding confidence interval, then202

(a) Set m0 = m; (b) Set m = m0 + bm0/cc, where c = 3 in our simulations; and (c) Generate new labels203

ρ(l), κ(l), l = m0 + 1, ...,m via the Gibbs sampler.204

7. Set t = t+ 1. Repeat steps 3 through 6 until convergence is achieved.205
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As stated previously, if the initial value θ(0) is poor, that is, if P (ρ, κ|Y, θ(0)) is far from P (ρ, κ|Y, θ∗),206

then the algorithm will take a long time to converge. Thus, in our simulations, we include a burn-in period207

in step 1 so that at each burn-in iteration, we estimate Qm(θ|θ(t)) via MCMC instead of IS. Thus, our208

computations during the burn-in period behave like the MCEM algorithm described by McCulloch (1997).209

4 Model selection210

We propose a modified BIC (Schwarz, 1978) to use in model selection within our multiplicative plaid211

mixture model: BICplaid = −2 logL(θ̂|Y) + de log(n), where L(θ̂|Y) is the likelihood of the incomplete212

data, θ̂ is the MLE, and de = d − s is the effective number of parameters given by the difference between213

d, the total number of parameters, and s, the number of uninformative parameters. The latter number is214

given by the number of null parameters, αik = 0, βjk = 0, and the number of parameters associated215

with σ2
j for variables excluded from the model (κj = 0), or with υj = 0 and %2j for variables included216

in the model (κj = 1). More formally, de =
∑K
k=1 nk + p′0 × (K + 1) + 2, where nk is the number of217

samples in cluster k and p′0 is the estimated number of selected variables. Table 2 of the supplementary218

material (see Section 5.1) shows that in scenario 1, de is much smaller that d. This definition of BIC is219

inspired by that of Pan and Shen (2007) for penalized model-based clustering with variable selection. We220

use it as a goodness-of-fit criterion to select an appropriate number of clusters K. The optimal K is the221

one that minimizes BICplaid. Note that our BICplaid is the analog of the usual BIC used in model-based222

clustering, since only those parameters actually used in the model are considered in the penalty term. The223

term L(θ̂|Y) is intractable because it involves the sum of all possible combinations of label values. So,224

in order to compute BICplaid, we use an estimate of L(θ̂|Y) derived by IS. This is given by LIS(θ̂|Y) =225 ∑m
l=1 wlP (Y, ρ(l), κ(l)|θ̂)/

∑
wl. In our experiments, we use BICIS,plaid = −2 logLIS(θ̂|Y)+de log(n).226

We also looked at the model selection results yielded by a modified Akaike information criterion (AIC)227

(Akaike, 1974). Similar to the construction of the BICIS,plaid, we consider a modified AIC, computed228

using IS, and given by AICIS,plaid = −2 logLIS(θ̂|Y) + 2de. In our experiments and simulations, the229

criteria AICIS,plaid and BICIS,plaid performed similarly. We also applied the DIC (Deviance information230

criterion, Spiegelhalter et al (2002)) and ICL (Integrated Completed Likelihood, Biernacki et al (2000))231

criteria to our data. The results from ICL, which are based on the complete likelihood, were very similar232
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to ones from BIC. On the other hand, DIC tended to select a much larger number of clusters than the true233

number of clusters.234

5 Comparison of methods by simulation235

In this section, we illustrate the effectiveness of our method by conducting a simulation study with two236

different data scenarios. The first one mimics the synthetic data described by Pan and Shen (2007), withK =237

1 (i.e., two clusters) and no aggregate overlapping clusters. The second scenario concerns synthetic data238

sets built with aggregate sample overlap between clusters. By definition, for K = 1, there is no aggregate239

overlapping among the clusters. We applied two versions of the plaid model to the simulated data. The240

first one assumes that there are aggregate overlapping clusters. The second version assumes there is no241

aggregate overlapping at all. We respectively refer to these two versions of the model as Plaid-Full and Plaid-242

Restricted. We compare the performance of these two models with that of the Lasso-type L1-penalization243

method of Pan and Shen (2007), the sparse K-means Lasso-type of Witten and Tibshirani (2010), and the244

Gaussian model-based clustering for variable selection of Maugis et al (2009a,b) , which generalized the245

procedure of Raftery and Dean (2006). We refer to these three methods as L1-Penalty, SK-Means and SVM,246

respectively.247

The L1-Penalty of Pan and Shen (2007) penalizes the L1-norm of the cluster means so as to obtain248

sparseness in the mean vectors. In this approach, a zero component across all cluster means corresponds to249

a variable not being selected. The L1-Penalty algorithm was run with a maximum of 100 iterations, and 10250

clusters. The penalty parameter λ, whose values were restricted to the interval [1, 21], was estimated using251

the BIC criterion. We also try the method of Zhou et al (2009). This generalizes the approach of Pan and252

Shen (2007) by allowing unconstrained covariance matrices in a Normal mixture model. In our simulations,253

this method presented computational difficulties when run with data with a large number of variables. The254

SK-Means of Witten and Tibshirani (2010) uses an iterative algorithm to maximize a weighted between-255

cluster sum of squares subject to constraints on the weights. A weight of zero means that the corresponding256

feature is not involved in the clustering. When the weights are equal for all variables, the problem simply257

reduces to the standard K-means clustering criterion. We chose the gap-statistics to estimate both the tuning258

parameter and the number of clusters. To select the tuning parameter (an L1-bound on variable weights),259
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we run their permutation approach algorithm with 10 permutations of the data and a possible choice of260

20 tuning parameters ranging from 1.5 to 4. The “best” tuning was used to run their algorithm with a261

maximum of 30 iterations and 7 clusters. The SVM variable selection of Maugis et al (2009b) generalizes the262

Raftery and Dean (2006) method by accounting for three possible roles for variables: the relevant clustering263

variables (discriminative variables), the irrelevant clustering variables (non-discriminative) that depend on264

some relevant variables, and the irrelevant clustering variables (non-discriminative) totally independent of265

all relevant variables. We run their algorithm with the “general” family of the mixture model. We assumed266

three possible forms of the covariance matrix for the linear regression between some relevant and irrelevant267

variables: spherical, diagonal and general forms. For the other irrelevant variables, we considered the two268

possible covariance matrix forms: spherical and diagonal forms. We selected the best model using the BIC269

criterion. We used the R code published by Zhou (2009), the R packages sparcl and SelvarMix to run the L1-270

Penalty, the SK-Means and the SVM methods, respectively. It is important to remember that our clustering271

model contains K + 1 clusters, which includes the zero cluster. If another clustering method selects two272

clusters, for example, then the corresponding K for comparison with our model is K = 1.273

5.1 Simulated Data274

Scenario 1. In the first scenario, we closely followed the simulation carried out by Pan and Shen (2007)275

so as to be able to compare fairly our results with those given by the L1-Penalty method of Pan and Shen276

(2007). We generated a two-cluster 1000-dimensional data set with a hundred observations. To have un-277

balanced cluster sample sizes, eighty-five observations are located in the first cluster; the remaining fif-278

teen are located in the second cluster. Only the first 80 variables are discriminating variables for cluster-279

ing. Specifically, the first 80 variables were independent and identically distributed (iid) and generated as280

yij ∼ I{1≤i≤85}N(0, σ2) + I{86≤i≤100}N(1.5, σ2), j = 1, . . . , 80, whereas the remaining 920 variables281

were all iid N(0, σ2). As these data do not present fixed effects ({αik} and {βjk}) in the response, any of282

the two clusters may be considered the zero cluster of the multiplicative plaid mixture model.283

In order to study the effect of the level of noise in the analysis, we have varied the overall variance284

σ2 for different datasets. We consider the values σ2 = 0.64, 1, 1.21, 1.44, 1.69, which give respectively285

signal-to-noise ratios of 1.87, 1.5, 1.36, 1.25 and 1.15.286
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Furthermore, in order to study the robustness of our model against the presence of dependent vari-287

ables, we have extended scenario 1 by considering data with different variable correlation structures. The288

first 40 discriminative variables are not correlated with any other variable. The second 40 discriminative289

variables are correlated within each other with correlation τw ∈ {0, 0.2, 0.3}, and also with 40 other non-290

discriminative variables with correlation τb ∈ {0, 0.1}. The overall variance was kept at σ2 = 1.69. In the291

terminology of Maugis et al (2009b), this setup corresponds to 80 relevant variables for clustering (40 of292

them are relevant dependent variables), and 920 irrelevant variables (880 of them are irrelevant independent293

variables).294

Scenario 2. In this scenario, we simulate datasets with more complicated clustering structures according295

to our model for K = 2 (that is, 3 clusters). Besides finding out how the plaid methods compared with296

those of Pan and Shen (2007), Maugis et al (2009b) and Witten and Tibshirani (2010), we want to study the297

behavior of the five methods with respect to the sample size and the number of (discriminating) variables.298

With these goals in mind, we generate ten replications of each of the six p-dimensional datasets with n299

observations, with n ∈ {50, 100}, and p ∈ {100, 500, 1000}. We set the number of discriminating variables300

as p0 = p/20. Moreover, we create data with aggregate overlapping clusters. More specifically, the number301

of overlap samples between cluster k = 1 and k = 2 is n/5. The first p0 variables are independently302

distributed N(
∑2
k=0(µk + αik + βjk)ρik, 1), whereas the other p − p0 variables are all iid N(υj , %

2
j ),303

i = 1, ..., n. More details on the simulation setup are provided in the supplementary material, Section C.304

We would expect a better performance of the Plaid-Full model since some clusters overlap. In addition, we305

would also expect a better clustering performance when n = 100 and p0 is large.306

Further simulation results based on this scenario but with larger number of clusters or with varying level307

of noise in the data are presented in the supplementary material, Section C.2 and Section D.2.308

5.2 Results309

The algorithms to fit the plaid models were run with m = 60. We included a burn-in period of 20 samples.310

We set a maximum of 100 iterations for finding the optimal parameters. In practice, our algorithm converged311

in much fewer iterations (about 50 iterations), and the time to achieve the convergence was approximately312
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2 minutes for p = 1000. We used a computer cluster of 24 cores at 2.6 GHz and 20 gigabytes of RAM in313

a 64-bit Red Hat Linux platform. The program was written in Java and only uses one core. To obtain good314

starting values for any given K, we ran the MCEM algorithm several times with random starting values.315

In order to initialize the labels, we randomly started several K-means algorithms. To find initial values for316

the cluster labels ρ, we ran K-means with K + 1 clusters, and found a ”good” zero cluster among them. To317

do so, we repeated the algorithm K + 1 times by initializing the zero cluster as the K-means cluster k for318

every k = 0, ...,K. To initialize the variable labels κ, we also ran K-means algorithms, but on the variables.319

We set K = 2 and separately considered each of the two clusters as possible initial selected variables.320

For any given K, we performed multiple runs of this procedure. Initial values θ(0) of θ were computed as321

follows. For each run and cluster k, we initialized µk as the sample mean of the data that were assigned to322

this cluster, and σj as the sample standard deviation of all the data for which κj = 1. The effects αik and323

βjk were initialized to zero. Finally, the variances %2j for the non-discriminative variables were initialized324

as the sample variance of the data yij for which κj = 0. The final results were the ones associated with the325

optimal runs, that is, with the ones that yielded the highest log-likelihood for any given K.326

In order to measure the quality of the clustering estimated by the methods, we compared the estimated327

clustering with the true clustering of the data through the so-called F1-measure. This is defined as the328

harmonic average between recall and precision, which are two measures of retrieval quality introduced in329

the text mining literature (Allan et al, 1998). Let A,B be two clusters, and |A| and |B| be the number of330

elements inA andB, respectively. Recall and precision are given by recall = |A∩B|/|B|, precision = |A∩331

B|/|A|. So, recall is the proportion of elements inB that are inA, and precision is the proportion of elements332

in A that are also found in B. The F1-measure between A and B is given by F1(A,B) = 2|A ∩B|/(|A|+333

|B|). When an estimated clustering M1 = {A1, . . . , AK} is to be compared with the true clustering M2 =334

{B1, . . . , BL}, we use the F1-measure average: F1(M1,M2) =
1
K

∑K
k=1 maxj F1(Ak, Bj).We would like335

to stress that the more common measure of clustering quality, the adjusted Rand index (Rand, 1971; Hubert336

and Arabie, 1985), is not properly defined for overlapping clusters. Instead, in this case, the F1-measure337

is preferred in the literature. We computed the F1-measure associated with the clustering of observations338

(F1), and the F1-measure associated with the selected variables (F v1 ). We also report their corresponding339

standard deviations (in brackets). F v1 may be interpreted as a measure of the power of the method to detect340
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all discriminative variables. It can be written as F v1 = 2(p0−Z1)/(p0−Z1 + p−Z2), where p0 is the true341

number of informative variables, Z1 is the number of discriminating variables excluded from the model,342

and Z2 is the number of non-informative variables excluded from the model.343

Table 1 shows the results for the first scenario based on 10 replications of each simulated dataset. As we344

can see, when the level of noise is small (σ2 ∈ {0.64, 1}) the four methods, Plaid-Full, Plaid-Restricted,345

SK-Means and L1-Penalty, detected the true structure of the clustering. But when the noise σ2 is large, the346

plaid methods (Plaid-Full and Plaid-Restricted) performed much better than the other three methods. The347

clustering results of the SVM method of Maugis et al (2009b) are not as good as those obtained by the other348

methods (the F1 is smaller). The plaid methods also performed better than the other three methods in terms349

of discriminative variable detection (larger F v1 ), but tended to keep slightly fewer (about 1.7% excluded)350

informative variables than the L1-Penalty method. On average, SVM selected only about four variables351

among the 80 informative variables and any of the 920 noise variables. On average, the SK-Means method352

selected only 40 variables among the 80 informative variables and selected some noise variables for large353

σ2.354

Table 2 shows the results for scenario 1 with correlated data both within discriminative variables, and355

between discriminative and non-discriminative variables. In terms of discriminative variable detection, the356

plaid methods still perform much better than all the competitive methods considered here. In most cases,357

they also perform better in terms of clustering. However, when τw > 0 and τb = 0.1, the L1-Penalty358

performs as well as the Plaid-Restricted. As observed previously (see Table 1), SVM has a consistently359

lowest discriminative variable detection across all the cases.360

Table 3 shows the results associated with each method for the second scenario. From this table, we361

observe in general that all the methods performed better when n = 100. The Plaid-Full method performed362

better in terms of clustering than the Plaid-Restricted method, which is expected since Plaid-Full accounts363

for the overlapping between clusters. It is clear from this table that the plaid methods performed much better364

than the three other methods in terms of both quality of clustering and discriminative variable detection (F v1365

is one for all cases). We stress that detecting all discriminative variables is of particular important in certain366

applications, such as those involving gene expression data. The table also shows that: (1) the L1-Penalty367

method picks the right variables a good proportion of the time, but it does not obtain the data clustering368
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Table 1 Scenario 1: Results with variables generated independently with µ0 = 0, µ1 = 1.5, and different values of σ2. F1 is the

F1 measure evaluated between the true clustering and the clustering estimated by the corresponding method. F v
1 is the F1 measure

evaluated between the discriminative variables and the variables selected by the corresponding method. Z1 is the number of variables

excluded from the model out of the 80 informative variables. Z2 is the number of variables excluded from the model out of the 920

noise variables. The numbers in the parentheses are the corresponding standard errors obtained from 10 replications of each dataset.

Method σ2 F1 F v
1 Z1 Z2

L1-Penalty 0.64 1.00 (0.00) 0.91 (0.01) 0.00 ( 0.00) 904.44 (1.91)

Plaid-Full 0.64 1.00 (0.00) 1.00 (0.00) 0.00 ( 0.00) 920.00 (0.00)

Plaid-Restricted 0.64 1.00 (0.00) 1.00 (0.00) 0.11 ( 0.11) 920.00 (0.00)

SK-Means 0.64 1.00 (0.00) 0.52 (0.01) 51.78 ( 0.83) 920.00 (0.00)

SVM 0.64 0.97 (0.01) 0.13 (0.01) 74.56 ( 0.53) 920.00 (0.00)

L1-Penalty 1 1.00 (0.00) 0.90 (0.01) 0.22 ( 0.15) 903.11 (2.06)

Plaid-Full 1 1.00 (0.00) 0.98 (0.00) 2.71 ( 0.42) 919.57 (0.26)

Plaid-Restricted 1 1.00 (0.00) 0.98 (0.00) 3.11 ( 0.61) 919.67 (0.24)

SK-Means 1 0.98 (0.02) 0.55 (0.02) 49.67 ( 1.34) 920.00 (0.00)

SVM 1 0.84 (0.03) 0.08 (0.01) 76.44 ( 0.38) 920.00 (0.00)

L1-Penalty 1.21 1.00 (0.00) 0.91 (0.01) 0.89 ( 0.31) 904.44 (1.63)

Plaid-Full 1.21 1.00 (0.00) 0.96 (0.01) 4.12 ( 0.63) 918.38 (0.53)

Plaid-Restricted 1.21 1.00 (0.00) 0.96 (0.01) 4.62 ( 0.47) 918.38 (0.53)

SK-Means 1.21 0.77 (0.04) 0.69 (0.02) 37.89 ( 1.63) 920.00 (0.00)

SVM 1.21 0.79 (0.03) 0.08 (0.01) 76.78 ( 0.36) 920.00 (0.00)

L1-Penalty 1.44 1.00 (0.00) 0.89 (0.01) 1.78 ( 0.55) 903.11 (2.06)

Plaid-Full 1.44 1.00 (0.00) 0.93 (0.01) 7.62 ( 0.73) 916.38 (0.64)

Plaid-Restricted 1.44 1.00 (0.00) 0.93 (0.01) 7.62 ( 0.73) 916.25 (0.66)

SK-Means 1.44 0.75 (0.04) 0.68 (0.02) 38.56 ( 2.30) 919.89 (0.11)

SVM 1.44 0.62 (0.04) 0.05 (0.01) 77.89 ( 0.26) 920.00 (0.00)

L1-Penalty 1.69 0.96 (0.01) 0.49 (0.16) 37.78 (13.36) 911.78 (2.74)

Plaid-Full 1.69 1.00 (0.00) 0.89 (0.01) 10.00 ( 0.99) 912.67 (1.91)

Plaid-Restricted 1.69 1.00 (0.00) 0.89 (0.01) 10.22 ( 0.95) 912.33 (2.10)

SK-Means 1.69 0.79 (0.05) 0.63 (0.05) 41.44 ( 4.22) 918.78 (0.88)

SVM 1.69 0.56 (0.04) 0.06 (0.00) 77.67 ( 0.17) 920.00 (0.00)

with the same accuracy; and that (2) SK-Means is not able to only select discriminative variables when p is369

small (very poor F v1 ).370

We also looked at the model selection results yielded by the plaid models using the AICIS,plaid crite-371

rion. The results were very similar to those obtained with BICIS,plaid. Overall, there was no statistically372

significant difference between the F1 results from BIC and AIC. However, we note that AIC gives more373

pronounced peaks at the right number of clusters than BIC. It appears from our simulations that BIC tends374

to over-penalizes the number of clusters when the dimension is very large. These and further results are375
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Table 2 Scenario 1: Results based on 5 replications of each dataset with correlated variables with µ0 = 0, µ1 = 1.5. F1, F v
1 ,

Z1 and Z2 are as in Table 1. τb is the correlation between discriminative and irrelevant variables, and τw is the correlation within

discriminative variables. The numbers in the parentheses are the corresponding standard errors.

Method τw τb F1 F v
1 Z1 Z2

L1-Penalty 0 0 0.98 (0.02) 0.67 (0.22) 22.25 (19.28) 907.75 ( 4.40)

Plaid-Full 0 0 1.00 (0.00) 0.89 (0.02) 10.75 ( 2.17) 912.75 ( 4.61)

Plaid-Restricted 0 0 1.00 (0.00) 0.88 (0.03) 11.00 ( 2.04) 912.25 ( 5.11)

SK-Means 0 0 0.89 (0.06) 0.62 (0.06) 43.25 ( 5.72) 919.75 ( 0.25)

SVM 0 0 0.57 (0.09) 0.05 (0.01) 77.75 ( 0.25) 920.00 ( 0.00)

L1-Penalty 0.2 0 0.99 (0.01) 0.90 (0.02) 0.75 ( 0.48) 902.75 ( 3.54)

Plaid-Full 0.2 0 0.99 (0.01) 0.93 (0.01) 4.00 ( 0.71) 913.25 ( 2.81)

Plaid-Restricted 0.2 0 0.98 (0.02) 0.94 (0.01) 4.75 ( 0.75) 915.50 ( 2.84)

SK-Means 0.2 0 0.82 (0.06) 0.61 (0.08) 43.50 ( 6.76) 919.00 ( 1.00)

SVM 0.2 0 0.63 (0.08) 0.05 (0.01) 77.75 ( 0.25) 920.00 ( 0.00)

L1-Penalty 0.3 0 0.84 (0.09) 0.60 (0.21) 20.25 (19.59) 870.00 (25.19)

Plaid-Full 0.3 0 1.00 (0.00) 0.96 (0.01) 3.00 ( 0.58) 916.00 ( 1.58)

Plaid-Restricted 0.3 0 1.00 (0.00) 0.96 (0.01) 3.00 ( 0.58) 916.00 ( 1.58)

SK-Means 0.3 0 0.82 (0.09) 0.48 (0.05) 52.75 ( 2.78) 913.50 ( 4.72)

SVM 0.3 0 0.65 (0.12) 0.06 (0.01) 77.50 ( 0.29) 920.00 ( 0.00)

L1-Penalty 0 0.1 0.90 (0.06) 0.60 (0.21) 21.00 (19.67) 889.75 (16.06)

Plaid-Full 0 0.1 0.91 (0.06) 0.89 (0.01) 11.00 ( 0.71) 914.25 ( 1.65)

Plaid-Restricted 0 0.1 0.91 (0.06) 0.88 (0.02) 11.75 ( 0.63) 913.00 ( 1.91)

SK-Means 0 0.1 0.80 (0.11) 0.60 (0.07) 44.25 ( 6.29) 919.75 ( 0.25)

SVM 0 0.1 0.63 (0.08) 0.05 (0.01) 77.75 ( 0.25) 920.00 ( 0.00)

L1-Penalty 0.2 0.1 0.92 (0.07) 0.82 (0.07) 0.50 ( 0.50) 882.00 (17.69)

Plaid-Full 0.2 0.1 0.81 (0.12) 0.84 (0.11) 13.00 ( 8.01) 906.25 (10.27)

Plaid-Restricted 0.2 0.1 0.88 (0.09) 0.91 (0.05) 7.25 ( 2.59) 912.25 ( 5.81)

SK-Means 0.2 0.1 0.81 (0.08) 0.43 (0.13) 55.50 ( 7.98) 912.00 ( 8.00)

SVM 0.2 0.1 0.69 (0.10) 0.06 (0.01) 77.50 ( 0.29) 920.00 ( 0.00)

L1-Penalty 0.3 0.1 0.75 (0.11) 0.58 (0.15) 17.25 (16.92) 856.00 (19.76)

Plaid-Full 0.3 0.1 0.69 (0.10) 0.73 (0.11) 18.50 ( 8.21) 893.50 ( 9.87)

Plaid-Restricted 0.3 0.1 0.77 (0.14) 0.75 (0.13) 19.75 (10.63) 899.25 (11.14)

SK-Means 0.3 0.1 0.69 (0.09) 0.30 (0.12) 63.00 ( 6.81) 906.50 ( 5.95)

SVM 0.3 0.1 0.66 (0.13) 0.07 (0.01) 77.25 ( 0.48) 920.00 ( 0.00)

shown with more details in the supplementary material, Section D.2. Based on these results, we decided to376

favor the results hinted by AIC in the applications with gene expression data described in the next section.377

6 Application to TCGA Kidney Cancer Data378

TCGA is a large public repository for cancer-related genomic data. In addition to detailed patient clinical379

information (age, overall survival time, tumor stage, etc.), TGCA has data on DNA methylation, mRNA380
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Table 3 Scenario 2: Results based on 10 replicates with µ0 = 0, µ1 = 3 and µ2 = 6. Cluster 1 and cluster 2 present an overlap.

F1 and F v
1 are as in Table 1. Z1 is the number of variables excluded from the model out of the p0 informative variables. Z2 is the

number of variables excluded from the model out of the p− p0 noisy variables. The numbers in the parentheses are the corresponding

standard errors.

Method p n F1 F v
1 Z1 Z2

L1-Penalty 100 100 0.74 (0.00) 0.84 (0.25) 0.00 (0.00) 90.50 (10.34)

Plaid-Full 100 100 0.87 (0.08) 1.00 (0.00) 0.00 (0.00) 95.00 ( 0.00)

Plaid-Restricted 100 100 0.84 (0.06) 1.00 (0.00) 0.00 (0.00) 95.00 ( 0.00)

SK-Means 100 100 0.87 (0.00) 0.10 (0.00) 0.00 (0.00) 0.00 ( 0.00)

SVM 100 100 0.76 (0.01) 1.00 (0.00) 0.00 (0.00) 95.00 ( 0.00)

L1-Penalty 1000 100 0.75 (0.00) 0.92 (0.06) 0.00 (0.00) 940.50 ( 7.50)

Plaid-Full 1000 100 0.86 (0.14) 1.00 (0.00) 0.00 (0.00) 950.00 ( 0.00)

Plaid-Restricted 1000 100 0.82 (0.09) 1.00 (0.00) 0.00 (0.00) 950.00 ( 0.00)

SK-Means 1000 100 0.87 (0.00) 0.67 (0.04) 25.00 (2.20) 950.00 ( 0.00)

SVM 1000 100 0.83 (0.07) 0.14 (0.05) 46.29 (1.50) 950.00 ( 0.00)

L1-Penalty 500 100 0.75 (0.00) 0.93 (0.05) 0.00 (0.00) 471.00 ( 2.88)

Plaid-Full 500 100 0.92 (0.11) 1.00 (0.00) 0.00 (0.00) 475.00 ( 0.00)

Plaid-Restricted 500 100 0.85 (0.07) 1.00 (0.00) 0.00 (0.00) 475.00 ( 0.00)

SK-Means 500 100 0.87 (0.00) 0.92 (0.02) 3.75 (0.71) 475.00 ( 0.00)

SVM 500 100 0.78 (0.02) 0.38 (0.08) 19.00 (1.41) 475.00 ( 0.00)

L1-Penalty 100 50 0.75 (0.04) 0.85 (0.15) 0.00 (0.00) 92.88 ( 2.36)

Plaid-Full 100 50 0.93 (0.07) 1.00 (0.00) 0.00 (0.00) 95.00 ( 0.00)

Plaid-Restricted 100 50 0.78 (0.14) 1.00 (0.00) 0.00 (0.00) 95.00 ( 0.00)

SK-Means 100 50 0.87 (0.00) 0.10 (0.00) 0.00 (0.00) 0.00 ( 0.00)

SVM 100 50 0.76 (0.05) 0.70 (0.22) 2.12 (1.36) 95.00 ( 0.00)

L1-Penalty 1000 50 0.74 (0.00) 0.88 (0.10) 0.00 (0.00) 935.25 (14.57)

Plaid-Full 1000 50 0.86 (0.14) 1.00 (0.00) 0.00 (0.00) 950.00 ( 0.00)

Plaid-Restricted 1000 50 0.84 (0.07) 1.00 (0.00) 0.00 (0.00) 950.00 ( 0.00)

SK-Means 1000 50 0.87 (0.00) 0.68 (0.03) 24.25 (1.49) 950.00 ( 0.00)

SVM 1000 50 0.87 (0.01) 0.06 (0.02) 48.38 (0.52) 950.00 ( 0.00)

L1-Penalty 500 50 0.73 (0.03) 0.97 (0.03) 0.00 (0.00) 473.25 ( 1.67)

Plaid-Full 500 50 0.95 (0.09) 1.00 (0.00) 0.00 (0.00) 475.00 ( 0.00)

Plaid-Restricted 500 50 0.86 (0.06) 1.00 (0.00) 0.00 (0.00) 475.00 ( 0.00)

SK-Means 500 50 0.87 (0.00) 0.93 (0.01) 3.12 (0.64) 475.00 ( 0.00)

SVM 500 50 0.81 (0.10) 0.22 (0.08) 21.88 (1.36) 475.00 ( 0.00)

expression, microRNA expression, protein expression, single nucleotide polymorphism and copy number381

variations across 20 different cancers (http://cancergenome.nih.gov). We applied our methodol-382

ogy to 473 samples from TCGA KIRC data, using the mRNA log-expression information collected from the383

Illumina HiSeq2000 platform (which contains approximately 20,000 protein coding genes). This data set384
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Plaid-Restricted

cluster 0 cluster 1 cluster 2 cluster 3 cluster 4

Sample size 11 (11) 260 (260) 47 (47) 24 (24) 131 (131)

µk 0.77 1.99 -1.13 2.47 1.13

Plaid-Full

cluster 0 cluster 1 cluster 2 cluster 3 cluster 4

Sample size 20 (20) 248 (62) 227 (81) 130 (103) 48 (13)

µk -0.12 1.58 0.61 1.33 0.98

Table 4 Overall means of each clustering. The numbers between parentheses are the number of samples that belong only to the

corresponding cluster.

was assessed by The Cancer Genome Atlas Research Network (2013), who used unsupervised clustering to385

identify four molecular subsets in mRNA expression data that were associated with patient survival times.386

We first reduced the number of genes by taking the standard deviations (SDs) of all genes, then looking at387

the mean of the SDs; the distribution of the SD for all genes ranged between 0.1 and 4.3, with a mean SD388

of 0.7. The SD of the SD was 0.4. For our analysis, we selected genes with SD above the mean +1-SD, for389

a total number of 2835 genes. We then removed genes that contained more than 30% missing data, which390

removed 439 genes, leaving a total of 2396 genes. The remaining missing data were imputed using the391

k-nearest neighbor imputation method, with k = 10 of Troyanskaya et al (2001).392

We fitted the plaid model for K ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The BIC (and AIC) selected K = 4 (5393

clusters with the zero cluster included). Both plaid models (Plaid-Restricted and Plaid-Full) deemed that394

156 genes (approximately 6% of the genes considered) were discriminative. However, they shared only 133395

genes in common. The overall means µk’s and the sizes of each cluster are summarized in Table 4. We see396

that the smallest size is the zero cluster for both clustering methods. In addition, there are 141 samples that397

belong to clusters 1 and 2. In general, only a small number of samples belong to more than one cluster. For398

example, only one sample belongs to clusters 1, 2 and 4. Only two samples belong to clusters 1, 2 and 3;399

and only two samples belong to clusters 2 and 3. Only three samples belong to clusters 1, 3 and 4; 2 and 4;400

and 3 and 4.401

To determine whether our clustering schemas are associated with survival outcomes (65% observations402

are censored), we fitted two multivariate Cox regressions with covariates as clusters obtained from the403

Plaid-Full and the Plaid-Restricted clusterings. In addition to these covariates, we added some prognostic404

20



factors such as age, sex and tumor stage. Clusters 1, 2 and 3 from the Plaid-Full clustering results provide405

negative associations with survival time (p-values<0.03) with respective hazard ratios of 0.51, 0.62 and406

0.60. Similarly, clusters 1, 3 and 4 also have strong negative associations, with respective relative risks of407

0.19, 0.1782 and 0.30 (p-values<0.002) compared to the 0 cluster. Both regressions have good predictive408

performance, with concordance indices of about 0.78. To compare the associated survival time between409

clusters, we performed two stratified Cox regressions with strata as clusters. Clusters from the Plaid-Full410

method were partitioned by combining samples that belong to both clusters 1 and 2, 1 and 3, and 1 and411

4. Figure 1 from the stratified Cox regressions shows that clusters are associated with different survival412

outcomes for each clustering method. In particular, for both of our proposed clustering methods, samples in413

the zero cluster are associated with short survival times. Those belonging to both clusters 1 and 2 (cluster414

12) are associated with long survival times. Clusters 1 and 3 from the Plaid-Restricted method are also415

associated with long survival times. Note that these clusters have the largest overall gene expression means,416

µk.417

Fig. 1 The overall survival time associated with each non-overlapping cluster: (a) Plaid-Full method; (b) Plaid-Restricted method.

Legend: 0 is zero cluster; 1 is cluster 1, which contains samples belonging only to cluster 1; 12 is the cluster with samples belonging

only to clusters 1 and 2, etc. The other combinations of clusters are excluded as they contain a small number of samples (fewer than

4).

Using Ingenuity Pathway Analysis (IPA)1, we determined which top-ranked biological function and418

disease categories would be statistically overrepresented with our 151 discriminating genes. An analysis419

of the over-represented diseases and disorders with our set of genes (p-value<0.001, Figure 2) shows that420

1 IPA (Ingenuity R© Systems, www.ingenuity.com) is a software for interactive pathway analysis of complex ’omic data.
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cancer is the most represented. Many other diseases or disorders related to kidney cancer such as renal421

and urological disease and metabolic disease are also over-represented. Linehan et al (2010) showed that422

more effective forms of therapy for kidney cancer can be achieved by targeting the fundamental metabolic423

abnormalities present in this disease.424

Fig. 2 Diseases and disorders over-represented.

7 Discussion and conclusions425

In this work, we proposed two variable selection models that are inspired by the plaid model of Lazzeroni426

and Owen (2002). Our first model, the Plaid-Full model, assumes that each observation may be explained by427

more than one cluster, producing an aggregated clustering model. This model is related to the multiplicative428

mixture model for overlapping clustering that was developed by Fu and Banerjee (2008, 2009), and Heller429

and Ghahramani (2007). Our second model, the Plaid-Restricted model, forces each observation to belong430

to only one cluster. This model is more conventional in the sense that clusters are modeled as separate431

objects.432

22



We can also link our models to an extreme type of biclustering (Madeira and Oliveira, 2004; Tanay433

et al, 2005; Chekouo and Murua, 2015). Biclustering is the simultaneous clustering of the observations434

(rows) and variables (columns) of a data matrix. The biclusters obtained are submatrices in which the rows435

exhibit a similar pattern across a subset of columns and vice versa. Note that when the same subset of436

columns is selected for each bicluster, then we have really obtained a clustering of the observations given437

by a selected subset of variables. This is a key observation that links our multiplicative plaid mixture model438

for simultaneous clustering and variable selection to a very particular case of biclustering. We stress that the439

methodology we proposed herein is not for biclustering. Rather, one can think of our model as an adaptation440

of the plaid model to the problem of variable selection within the framework of clustering (as opposed to441

biclustering).442

We would like to stress that our model is cast into a Bayesian framework, and a full MCMC computa-443

tional approach is possible. In particular, this would allow us to estimate the parameters associated with the444

compound symmetry (positive correlation) between the variables. However, in this work we have favored445

a faster estimation algorithm on a simpler model that only considers fixed effects. This is a Monte Carlo446

EM algorithm that efficiently estimate the parameters of our models. Despite the restriction of the simpler447

model, we have been able to show through our simulations that the simpler model performs very well and448

appears to be robust against the hypothesis of positively correlated variables. Furthermore, we also showed,449

through extensive simulations, that (a) the performance of the plaid models in terms of discriminative vari-450

able detection is much better than the performance of competing models such as the L1-Penalty method of451

Pan and Shen (2007), the Gaussian model-based clustering for variable selection method of Maugis et al452

(2009b), and the SK-Means method of Witten and Tibshirani (2010); and (b) the performance of the plaid453

models in terms of quality of clustering is comparable to that of the aforementioned models. Our simulation454

study revealed that when the number of variables is large, the AICIS,plaid criterion appears to select better455

models than theBICIS,plaid criterion (See Table 3 of the supplementary material). This was a bit surprising456

given the popularity of BIC in the clustering literature. It appears that BIC over-penalizes larger models due457

to the large number of variables involved in the models.458
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The application of our methodology to kidney cancer data showed the usefulness of the plaid models.459

We found clusters that can be differentiated by the associated survival times. Moreover, the discriminating460

biomarkers (variables selected) found by the plaid models are related to kidney cancer.461

In a Bayesian framework, prior distributions similar to those considered in the work of Chekouo and462

Murua (2015) within the context of biclustering may be incorporated within the context of clustering as463

well. Posterior inference may be achieved through an appropriate MCMC algorithm. In particular, the num-464

ber of clustersK+1 could be made a model parameter. In the case of the standard clustering (non-aggregate465

clustering), many Bayesian approaches have been proposed. A popular choice, is the use of nonparametric466

Bayesian models, such as the Dirichlet process, to model the prior probabilities of variable inclusion. How-467

ever, one would need to adapt such processes to the case of aggregate clusters (to our knowledge, this has468

not yet been done, and it does not seem easy to do). Another possibility would be to assume that K follows469

a uniform or truncated Poisson distribution. The use of reversible jump techniques may be useful in these470

latter cases.471

Supplementary Materials472

The accompanying supplementary document presents: a more detailed description of the similarity of our473

model with the multiplicative mixture model (Section A); further details on the EM updating equations and474

the Monte Carlo error (Section B), the simulation setup (Section C), and the effective number of parameters,475

including a comparison between AIC and BIC results (Section D).476
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