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In this paper we prove that several elementary graphics surrounding a focus
or center in quadratic systems have finite cyclicity. This paper represents an
additional step in the large program to prove the existence of a uniform bound
for the number of limit cycles of a quadratic vector field which we can call the
finiteness part of Hilbert’s 16th problem for quadratic vector fields. It nearly
finishes the part of the program concerned with elementary graphics. In [3]
this problem was reduced to the proof that 121 graphics have finite cyclicity.
The graphics considered here are the hemicycles (H3

4
), (H3

5
) and (H3

6
) together

with (I2

14a
), (I2

15a
), (I2

15b
) and (I2

27
) in the notation of [3] (Figure 1).

1. INTRODUCTION

This paper is part of a large program namely the proof of the finiteness
part of Hilbert’s 16th problem [5] for quadratic systems:

Finiteness part of Hilbert’s 16-th problem for quadratic sys-

tems. There exists a natural number N such that any quadratic vector
field in the plane has at most N limit cycles.

* This work was supported by NSERC and FCAR in Canada.
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In studying this problem it is natural to compactify the phase space to the
Poincaré disc. The parameter space can be compactified as well. We obtain
a family {Xλ}λ∈Λ, of analytic vector fields defined on a compact phase
space and depending on parameters λ varying in a compact set Λ. Using
a compacity argument Roussarie [12] showed that to prove the finiteness
part of Hilbert’s 16-th problem for quadratic vector fields it is sufficient
to prove that any limit periodic set in the family Xλ has finite cyclicity,
i.e. can give rise to a uniformly bounded number of limit cycles in any
perturbation inside the family Xλ.

The following theorem was proved in [3].

Theorem 1.1 [3]. The finiteness part of Hilbert’s 16-th problem for
quadratic vector fields will be proved as soon as the following conjecture is
proved.

Conjecture 1.2. Any limit periodic set surrounding the origin in the
family

ẋ = λx − µy + a1x
2 + a2xy + a3y

2

ẏ = µx + λy + b1x
2 + b2xy + b3y

2,
(1)

with (λ, µ) ∈ S1 and (a1, a2, a3, b1, b2, b3) ∈ S5 has finite cyclicity inside
(1).

The paper [3] then showed that the proof of the Conjecture 1.2 could
be reduced to the proof of the finite cyclicity of 121 graphics, (54 of them
appearing in families of graphics, yielding a total of 85 pictures). Since
1991, where the conjecture was first stated, there has been an intensive
attack to prove the finite cyclicity of the 121 graphics listed in [3], the most
difficult ones being of course the graphics surrounding a center. We are
now approaching 3/4 of the program with the recent progress on graphics
through a nilpotent point ([13] and [14]) and nearly all elementary graphics
inside the family are proved to have finite cyclicity.

In this paper we prove the finite cyclicity of three hemicycles (H3
4 ), (H3

5 )
and (H3

6 ) (Figure 1) with four singular points: two hyperbolic saddles
with opposite hyperbolicity ratio and two saddle nodes. The proof uses
a direct calculation of a displacement map. The first two graphics, (H3

4 ),
(H3

5 ), satisfy genericity conditions while the third one can be perturbed
to a hemicycle with only two singular points and surrounding a center.
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When the hyperbolicity ratios of the saddles are different from one, the
generic graphics have cyclicity 2 as soon as some regular transition has a
non vanishing second derivative. Because the transition occurs along an
invariant line or along the equator we are able to calculate explicitly the
required derivative. When the hyperbolicity ratios are equal to one the
genericity condition is the non-vanishing of the first saddle quantities. The
finite cyclicity of (H3

6 ) follows from a reduction to the previous generic
cases via a Bautin type argument.

We also prove the finite cyclicity of the graphics (I2
14a), (I2

15a), (I2
15b) and

(I2
27) (Figure 1). The finite cyclicity of these graphics was announced in

[1]. However the given elaboration cannot be considered to be a proof since
a connection was incorrectly kept fixed. Here again the proof requires a
condition on the higher derivatives of a regular transition.

Together with the recent proof of the finite cyclicity of (I2
2 ) by Mourtada

[11] this nearly completes the proof of the finite cyclicity of the 58 ele-
mentary graphics listed in [3]. The finite cyclicity of the graphic (I16a) is
still open and a systematic checking of all proofs remain to be done before
anouncing that the part of the program dealing with elementary graphics
is finished. For the remaining graphics, 50 of them have a nilpotent point
(many of which are treated in [13] and [14]) while the remaining 13 have a
line of singular points.

2. FINITE CYCLICITY OF GRAPHICS WITH A PAIR OF
HYPERBOLIC POINTS ON THE EQUATOR AND TWO
SEMI-HYPERBOLIC POINTS OF OPPOSITE NATURE

Theorem 2.1. We consider a graphic Γ of a polynomial vector field
which is a hemicycle. The pair of opposite singular points are two hy-
perbolic saddles P1 and P2 with irrational hyperbolicity ratios satisfying
r1(λ)r2(λ) ≡ 1. There is one attracting saddle-node P3 on the equator
and one repelling saddle-node P4 on the other connection. Both connec-
tions near P3 and P4 are central (Figure 2). In the neighborhood of each
singular point we use Ck-coordinates bringing the family to Ck integrable
normal forms. We define sections to the graphic as in Figure 2. These
sections are parallel to the coordinates axes in the Ck normal coordinates
and parametrized by these. Then, under one of the following conditions:

(1) the regular transition S0 : τ2 → σ3 has a non-vanishing higher order
derivative;

(2) the regular transition R0 : τ4 → σ2 has a non-vanishing higher order
derivative;
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the graphic Γ has finite cyclicity inside Xλ. The cyclicity of Γ is ≤ 2 in the
two following cases:





S′′
0 (0) 6= 0 and r < 1

R′′
0 (0) 6= 0 and r > 1.

Proof. We take sections σi and τi as in Figure 2. Let us denote

r1(λ) =
1

r(λ)
= s(λ) and r2 = r(λ). The connections on the equator are

unbroken.
The technique is standard: we use Ck-coordinates in the neighborhood of

the singular points so that the vector field is in normal form (see for instance
[8] or [1]). This allows to calculate the return map and to conclude to finite
cyclicity by a standard derivation-division algorithm.

In the neighborhood of the saddle points the vector field can be linearized
so that the Dulac maps have the form

Di,λ(xi) = x
ri(λ)
i . (2)

Also, the normal form of the vector field in the neighborhood of P3,4 is

ẋi = x2
i (1 + Ai(λ)x) + εi

ẏi = ±yi,
(3)

yielding that the Dulac maps near P3 and P4 are linear of the form





D3,λ(x3) = m(λ)x3 with limλ→0 m(λ) = 0

D4,λ(x4) = M(λ)x4 with limλ→0 M(λ) = +∞.
(4)

Moreover, by the results of [4], the family of Ck-coordinates in which we
have the normal form (3) is not unique. Using the freedom in the choice
of coordinates it is possible to find normalizing coordinates depending on
λ so that the transition map from τ3 to σ1 is the identity and so that the
transition map from τ1 to σ4 is a mere translation y1 7→ y1 + ε. Let Sλ

(resp. Rλ) be the regular transition from τ2 to σ3 (resp. from τ4 to σ2)
and let fλ (resp. gλ) be its inverse. We have that fλ(x3) = x3f1,λ(x3) =∑k

i=1 ai(λ)xi
3 + o(xk

3) with f1,λ(0) > 0. Let us suppose that gλ(x2) =∑k
i=0 bi(λ)xi

2 + o(xk
2), with b0(0) = 0 and b1(0) 6= 0.

Limit cycles are given by isolated fixed points of the return map or,
equivalently, by isolated solutions of the displacement map Vλ(x3) from σ3
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to τ4. Then, renaming x3 by x

Vλ(x) = M(λ)[D1,λ(m(λ)x) + ε] − gλ ◦ D−1
2,λ ◦ fλ(x). (5)

Then

Vλ(x) = M(λ)ε + M(λ)(m(λ))s(λ)xs(λ) − gλ

(
xs(λ)(f1,λ(x))s(λ)

)
(6)

Note that the map Vλ(x) has a nice expansion in monomials of the form
xis(λ)+j , allowing to perform the usual derivation-division algorithm. A
first derivation kills the constant term. We then divide by xs(λ)−1. A second
derivative removes completely the term with coefficient M(λ)(m(λ))s(λ)

and yields Wλ(x) =

(
V ′

λ(x)

xs(λ)−1

)′

. The remaining part is an expansion in

monomials of the form xis(λ)+j , none of which has an unbounded coefficient
(i.e. containing M(λ)). Here we need to distinguish the two cases:

(1) Let us suppose f
(n)
0 (0) 6= 0. In Vλ(x) appears a monomial xn−1+s(λ)

with nonzero coefficient. After the two derivations and the division it has
produced a monomial xn−2 with nonzero coefficient. We choose the class of
differentiability k sufficiently large so as to be able to continue the classical
derivation division algorithm on Wλ(x) until we kill all monomials of order
of flatness less than n − 2.

(2) Let us suppose g
(n)
0 (0) 6= 0. Similarly in Vλ(x) appears a monomial

xns(λ) with nonzero coefficient. After the two derivations and the division
it has produced a monomial x(n−1)s(λ)−1 with nonzero coefficient. We
choose the class of differentiability k sufficiently high so as to be able to
perform the classical derivation division algorithm on Wλ(x) until we kill
all monomials of order of flatness less than (n − 1)s(λ) − 1.

In the particular case n = 2 with the adequate restriction on r(0) the
monomial we are exhibiting in Wλ(x) is precisely the lower order monomial
so Wλ(x) divided by this monomial does not vanish.

Theorem 2.2. We consider a graphic Γ of a polynomial vector field
which is a hemicycle. The pair of opposite singular points are two hy-
perbolic saddles P1 and P2 with rational hyperbolicity ratios satisfying
r1(λ)r2(λ) ≡ 1. Moreover there is one attracting saddle-node P3 on the
equator and one repelling saddle-node P4 on the other connection. Both
connections near P3 and P4 are central (Figure 2). Then, under one of the
following conditions:
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(1) the regular transition from τ2 to σ3 has a non-vanishing second order
derivative when r1(0) > 1 ;

(2) the regular transition from τ4 to σ2 has a non-vanishing second order
derivative when r1(0) < 1;

(3) the saddle point P2 has a non-vanishing first saddle quantity when
r(0) = 1;

then the graphic Γ has finite cyclicity ≤ 2 inside Xλ.

Proof. The situation is very similar to the study of hemicycles done
by El Morsalani in [6], the only difference lying in the presence of the small
(resp. large) coefficient m(λ) (resp. M(λ)). We consider the same displace-
ment map (5) as in Theorem 2.1. The difference with Theorem 2.1 is that
the Dulac maps Di,λ near Pi, i = 1, 2 have a more complicated expression.
To give it we let r1(0) = p/q = and r2(0) = q/p and α1(λ) = p/q − r1(λ).
Moreover we introduce the Ecalle-Leontovich-Roussarie compensator

ω(x, λ) =





x−α1 − 1

α1
if α1 6= 0

− ln x if α1 = 0.

(7)

Then it is shown in [6] (see also [1]) that the maps D1,λ and D−1
2,λ have the

form

D1,λ(x1) = x
s(λ)
1 [1 +

∑

1≤j≤i≤K(k)

βij(λ)xip
1 ωj(x1, λ)) + Ψ1(x1, λ)], (8)

where Ψ1(x1, λ) = xk
1ψ(x1, λ) is a Ck-function, k-flat with respect to

x1 = 0 and ψ(x1, λ) satisfies the property I∞0 of Mourtada, namely:

∀n ∈ IN lim
x→0

xn ∂nψ

∂xn
(x, λ) = 0 (9)

uniformly for λ in a small neighborhood of the origin in parameter space.
Similarly

D−1
2,λ(x2) = x

s(λ)
2 [1 +

∑

1≤j≤i≤K(k)

γij(λ)xip
2 ωj(x2, λ)) + Ψ2(x2, λ)], (10)

with the same compensator ω. Let also fλ(x3) = a1(λ)x3+a2(λ)x2
3+o(x2

3)

with a1(0) 6= 0 and gλ(x2) = ε2 + x2g1,λ(x2) = ε2 +
∑k

i=1 bi(λ)xi
2 + o(xk

2),
with g1,λ(0) 6= 0.
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Alltogether this yields for Vλ(x) an expansion in monomials of the form
xis(λ)+j ω`(x, λ). Expressions of this type have been studied by El Mor-
salani in [6] and the general derivation-division algorithm described, once
a genericity condition is given. We need only make the connection with
his case by identifying the respective coefficients and making sure that the
quantities m(λ) and M(λ) cause no problem.

The first terms of the expansion have the form:

Vλ(x) = α000(λ) + α100(λ)xs(λ)

+





a200x
2s(λ) + o(x2s(λ)) if s(0) < 1

a110x
s(λ)+1 + o(x1+s(λ)) if s(0) > 1

a111x
s(λ)+1ω(x, λ) + O(xs(λ)+1) if s(0) = 1,

(11)

where

α000(λ) = M(λ)ε − b0(λ)

α100(λ) = M(λ)(m(λ))s(λ) − (a1(λ))s(λ)b1(λ).
(12)

The first part of the algorithm is common to all cases and goes as follows:
We start with a first derivation of Vλ(x) to kill the constant term. The
number of zeros of Vλ(x) is at most one plus the number of zeros of Uλ(x) =
x1−s(λ)V ′

λ(x). A small neighborhood of the origin in parameter space can
be divided into three cones:

(i) the cone
M(λ)m(λ)s(λ)

a1(λ)p/qb1(λ)
< 1/2. In that region Uλ(x) < 0 for suffi-

ciently small λ yielding at most one root of Vλ(x), i.e. at most one limit
cycle;

(ii) the cone
M(λ)m(λ)s(λ)

a1(λ)p/qb1(λ)
> 2. In that region Uλ(x) > 0 for suffi-

ciently small λ yielding at most one root of Vλ(x), i.e. at most one limit
cycle;

(iii) the cone 1/3 <
M(λ)m(λ)s(λ)

a1(λ)p/qb1(λ)
< 3. In that case it is clear

that M(λ)m(λ)s(λ) just behaves as a regular nonzero quantity. We con-

sider as before Wλ(x) =

(
Uλ(x)

xs(λ)−1

)′

. In the monomials of the expan-

sion of Wλ(x) appear some factors xis(λ). We transform them by the rule
xs(λ) = xp/q(1 + α1ω(x, λ)). Then the function Wλ(x) has an expansion
in monomials of the form xip/qωj(x, λ) with j ≤ ip, which is an expansion
exactly of the type studied in [6] (all monomials are well-ordered). We
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analyse the leading term(s) coming from (11) (in the sequel * always de-
notes a nonzero constant, possibly depending on λ but bounded away from
zero):

Wλ(x) =





[O(m(λ) − ∗b2(λ)(a1(λ))s(λ)]xs(λ)−1 + o(xs(λ)−1) if s(0) < 1
[O(m(λ) − ∗b1(λ)(a1(λ))s(λ)a2(λ)]x + o(x) if s(0) > 1
[O(m(λ) − ∗β11(λ)(a1(λ))s(λ)]ω(x, λ) + O(1) if s(0) = 1.

(13)

In each case we have that Wλ(x) 6= 0 for small x > 0 and λ, yielding that
the cyclicity is ≤ 2.

3. FINITE CYCLICITY OF HEMICYCLES AMONG
QUADRATIC SYSTEMS

Theorem 3.1. The graphics (H3
4 ) and (H3

5 ) have finite cyclicity (less
than or equal to 2) when the hyperbolic saddles at infinity have irrational
hyperbolicity ratios.

Proof. The proof is a direct application of Theorem 2.1 if we show
that either the regular transition from τ2 to σ3, or the regular transition
from τ4 to σ2 has a non-vanishing second derivative. In fact we will prove
that both transitions simulaneously have non-vanishing second derivative.
Let us hence consider a quadratic system having a graphic of type (H3

4 )
or (H3

5 ). For simplicity in calculation it is better to work in regions where
the coordinates are positive. All graphics (possibly modulo some change
of sign in y or t) occur inside the family of quadratic systems:

ẋ = x(1 + x + Ay)

ẏ = xy + y2 + Bx,
(14)

with A > 1 and B ∈ IR (see Figure 1) and the center case (H3
6 ) corresponds

to B = 0.
The point P2 is studied in the chart (v, w) = (x/y, 1/y) in which the

system has the form (after multiplication by w)

v̇ = (A − 1)v + vw − Bv2w

ẇ = −w − vw − Bvw2.
(15)
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The point P3 is studied in the chart (u, z) = (y/x, 1/x) in which the system
has the form (after multiplication by z)

u̇ = (1 − A)u2 + Bz − uz

ż = −z − Auz − z2.
(16)

We will show that the second derivatives of the map R : τ4 → σ2 and of
the map S : τ2 → σ3 do not vanish for B(A − 2) 6= 0 (the condition A 6= 2
corresponds to the hyperbolicity ratios of the saddle points being different
from 1).

Calculation of the second derivative of the map R : τ4 → σ2:
The sections τ4 and σ2 need to be taken parallel to the coordinate axes

in the normalizing coordinates. Let us call (X,Y ) (resp. (V,W )) the
normalizing coordinates around P4 (resp. P2). To calculate the second
derivative of R we write R as a composition six maps. The derivatives and
second derivatives of each of them are calculated using the propositions in
the appendix.

(1) the map R1 from {Y = Y1} to the image of {y = y0} in the (X,Y )-
coordinates, where (X,Y ) = (0, Y1) and (x, y) = (0, y0) represent the same
point and where both sections are parametrized by X. Then R′

1(0) = 1

and R′′
1 (0) = −2

h′
1(0)

Y 2
1 (1 − AY1)

, where the section y = y0 has equation

Y = h1(X) = Y1 + O(X);

(2) the map R2 which is the change of coordinate from X to x on {y =
y0}. Let R2(X) = a1X + a2X

2 + o(X2), with a1 > 0;

(3) the map R3(x) which is the transition from {y = y0} (y0 small) to
{y = Y0} (Y0 large) in the (x, y)-coordinates;

(4) the map R4 which is the transition from the coordinate x to the
coordinate v = x/Y0 on {y = Y0}. Then R4 is linear R4(x) = x/Y0 = xW0,
where W0 = 1/Y0. (Note that the section {y = Y0} becomes the section
{w = W0} in the (v, w)-coordinates;

(5) the change of coordinate R5 from v to V on {w = W0}. Let R5(v) =
b1v + b2v

2 + o(v2) with b1 > 0;

(6) the map R6 from the image of {w = W0} in (V,W )-coordinates
to {W = W1}, where (v, w) = (0,W0) and (V,W ) = (0,W1) represent
the same point and both sections are parametrized by V in the (V,W )-

coordinates. Then R′
6(0) = 1 and R′′

6 (0) =
h′

2(0)(A − 1)

W1
, where the section

{w = W0} has equation W = h2(V ) = W1 + O(V ).
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Hence

R′(0) =
6∏

i=1

R′
i(0) =

a1b1R
′
3(0)

Y0
> 0 (17)

and

R′′(0) = R′(0)

[ −2h′
1(0)

Y 2
1 (1 − AY1)

+ 2
a2

a1
+ a1

R′′
3 (0)

R′
3(0)

+2
a1b2

b1
W0R

′
3(0) + a1b1(A − 1)R′

3(0)h′
2(0)

W0

W1

]
.

(18)

We need calculate the different quantities appearing in (18).

Normal form near P4:
To bring the system to normal form we first need to diagonalize (14) by

means of (x1, y1) = (x,−Bx + y), yielding

ẋ1 = x1 + (1 + AB)x2
1 + Ax1y1

ẏ1 = y2
1 + (1 − AB + 2B)x1y1 − B2(A − 1)x2

1.
(19)

We then divide the system by 1 + (1 + AB)x1 + Ay1. The normal form
coordinates can be taken of the form (X,Y ) = (x,−Bx + y + o(|(x, y)|))
(see Theorem A.3 of the Appendix). This is sufficient to show that a1 = 1
and a2 = 0. For B 6= 0, h′

1(0) has the sign of −B while for B = 0 we have
h′

1(0) = −y0 + o(y0) < 0.

Normal form near P2:
To bring the system to normal form we first divide the system (15) by

1 + v + Bvw, yielding

v̇ = (A − 1)v + vw − (A − 1)v2 + o(|(v, w)|2)
ẇ = −w.

(20)

The normalizing change of coordinates has the form W = w + o(|(v, w)|3)

and

V = v + v2 + vw +
v3

2
+

(
1 +

AB

A − 2

)
v2w +

vw2

2
+ o(|(v, w)|3), (21)

yielding h′
2(0) = 0 and

b2

b1
= 1 +

AB

A − 2
W0 + o(W0). (Remember that

A = 2 corresponds to hyperbolicity ratios of the saddle points being equal
to 1, a case not considered here.)
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Calculation of R′

3
(0) and R′′

3
(0):

The formulae (A.6) and (A.7) of the Appendix yield

R′
3(0) = exp

(∫ Y0

y0

1 + Ay

y2
dy

)

=

(
Y0

y0

)A

exp

(
1

y0
− 1

Y0

) (22)

and

R′′
3 (0)

R′
3(0)

= 2y−A
0 exp

A

y0

∫ Y0

y0

(1 − A)y2 − (1 + AB)y − B

y4
yA exp

(
−1

y

)
dy.

(23)

The non-vanishing of R′′(0) for B(A − 2) 6= 0:
We now come back to formula (18): in the bracket the second and fifth

term vanish. Hence

R′′(0)

R′(0)
= −2

h′
1(0)

Y 2
1 (1 − AY1)

+ a1
R′′

3 (0)

R′
3(0)

+ 2a1
b2

b1
W0R

′
3(0). (24)

Using that

Y A−1
0 e−1/Y0 = yA−1

0 e−1/y0 +

∫ Y0

y0

[(A − 1)yA−2 + yA−3]e−1/ydy (25)

we obtain

yA
0 e−1/y0

R′′(0)

R′(0)
=

(
− 2h′

1(0)

Y 2
1 (1 − AY1)

y0 + 2a1
b2

b1

)
yA−1
0 e−1/y0

+2a1

∫ Y0

y0
[(A − 1)βyA−2 + (β − AB)yA−3 − ByA−4]e−1/ydy

(26)

where β =
b2

b1
− 1. The first term is small for y0 small because of the

flatness of e−1/y0 and Y1 = y0 + o(y0). Moreover the integrand is flat at
y=0 and the integral diverges to sgn(β)∞ as Y0 → +∞. So for small y0

and large Y0

sgn(R′′(0)) = sgn(β) = sgn
B

A − 2
. (27)
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The case B = 0:
In that case the system has a center and the authors made the complete

calculations to verify that, as expected, R′′(0) = 0. Indeed in that case the
first integral

H(x, y) = xy−A exp

(
x + 1

y

)
(28)

allows to explicitly calculate a normalizing change of coordinates

Y =
y

x + 1

X = x(1 + x − Ay)−A

(29)

(which does not glue continuously with the one used in the previous case).
With the notations introduced before this yields

a1 = (1 − Ay0)
A

a2 = A(1 − Ay0)
2A−1

h′
1(0) = −y0(1 − Ay0)

A

(30)

Similarly the linearizing coordinates near P2 are given by

V = v exp(v)

W = w exp

(
w

A − 1

) (31)

yielding b1 = b2 = 1 and h′
2(0) = 0. Moreover using (25) we obtain the

explicit expression

R′′
3 (0)

R′
3(0)

= −2y−A
0 Y A−1

0 exp

(
1

y0
− 1

Y0

)
+

2

y0
. (32)

Altogether this yields R′′(0) = 0.

Calculation of the second derivative of the map S : τ2 → σ3:
The calculations are exactly the same as for R′′(0). Hence we give less

details. The sections τ2 and σ2 are taken parallel to the coordinate axes
in the normalizing coordinates. Let us call (U,Z) the normalizing coordi-
nates around P3. To calculate the second derivative of S we write S as a
composition six maps whose first derivatives and second derivatives will be
calculated as before.
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(1) the map S1 from {V = V0} to the image of {v = v0} in the (V,W )-
coordinates where (V,W ) = (V0, 0) and (v, w) = (v0, 0) represent the same
point. As normalizing coordinates (V,W ) near P2 we can choose

(V,W ) =

(
v + o(|(v, w)|3), w +

1

A − 1
vw +

1

A − 1
w2 +

1

2(A − 1)2
v2w

+

(
1

(A − 1)2
+

AB

(A − 1)(A − 2)

)
vw2 +

1

2(A − 1)2
w3 + o(|(v, w)|3)

)
,

(33)

yielding that S′
1(0) = 1 and S′′

1 (0) = 0;

(2) the map S2 which is the change of coordinate from W to w on {v =
v0}. If S−1

2 (w) = C1w+C2w
2+o(w2) then S2(W ) = c1W +c2W

2+o(W 2),

with c1 = 1/C1 and c2 = −C2/C3
1 . Then c1 = 1 − 1

A − 1
v0 + o(v0) and

c2

c2
1

= −C2

C1
= − 1

A − 1
− AB

A − 2
v0 + o(v0); (34)

(3) the map S3 which is the transition from the coordinate w to the
coordinate z = w/v0 = U0z on {v = v0}. Then S3 is linear S3(w) =
w/v0 = U0w, where U0 = 1/v0. (Note that the section {v = v0} becomes
the section {u = U0} in the (u, z)-coordinates;

(4) the map S4(x) which is the transition from {u = U0} (U0 large) to
{u = u0} (u0 small) in the (u, z)-coordinates;

(5) the change of coordinate S5 from z to Z on {u = u0}. Let S5(z) =
d1z + d2z

2 + o(z2) with d1 > 0;

(6) the map S6 from the image of {u = u0} to {U = U1}, in the (U,Z)-
coordinates, where (u, z) = (u0, 0) and (U,Z) = (U1, 0) represent the same

point. Then S′
6(0) = 1 and S′′

6 (0) =
k′(0)

(A − 1)u2
0(1 − Au0)

, where the section

{u = u0} has equation U = k(Z) = U1 + o(Z).

Normal form near P3:
To bring the system to normal form we first need to diagonalize (16) by

means of (u1, z1) = (u + Bz, z), yielding

u̇1 = (1 − A)u2
1 + (AB − 1 − 2B)u1z1 + B2z2

1

ż1 = −z1 − Au1z1 + (AB − 1)z2
1 .

(35)

We then divide the system by 1 + Au1 − (AB − 1)z1. The normal form
coordinates hence have the form (U,Z) = (u + Bz + o(|(u, z)|), z). This is
sufficient to show that d1 = 1, d2 = 0 and that k′(0) has the sign of B.
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Calculation of S′

4
(0) and S′′

4
(0):

The formulae (A.6) and (A.7) of the Appendix yield

S′
4(0) = exp

(∫ u0

U0

1 + Au

(A − 1)u2
du

)

=

(
u0

U0

) A

A−1

exp

(
1

(A − 1)U0
− 1

(A − 1)u0

) (36)

and

S′′
4 (0)

S′
4(0)

= 2U
− A

A−1

0 exp
1

(A − 1)U0

∫ u0

U0

−u2 + (AB − 1)u + B

(A − 1)2u4
u

A

A−1 exp

(
− 1

(A − 1)u

)
du.

(37)

The non-vanishing of S′′(0) for B 6= 0:

S′(0) =

6∏

i=1

S′
i(0) = c1d1S

′
4(0)U0 > 0 (38)

and

S′′(0)

S′(0)
= c1

(
2
c2

c2
1

+ U0
S′′

4 (0)

S′
4(0)

+ d1U0S
′
4(0)S′′

6 (0)

)
. (39)

We use an equivalent of (25) given by

∫ u0

U0

u + 1

(A − 1)u3
u

A

A − 1 exp

(
− 1

(A − 1)u

)
du

= u

1

A − 1 exp

(
− 1

(A − 1)u

)∣∣∣∣∣∣

u0

U0

.

(40)

As before we work on

u
A

A−1

0 e
− 1

(A−1)u0

c1

S′′(0)

S′(0)
= u

1
A−1

0 e
− 1

(A−1)u0 U0

(
d1k

′(0)

(A − 1)u0(1 − Au0)
+ 2

c2

c2
1

)
.

+2U0

∫ u0

U0

[
γu2 +

(
γ +

B

A − 1

)
u +

B

A − 1

]
u

A

A−1−4e−
1

(A−1)u du,

(41)
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where γ = − 1

A − 1
− c2

c2
1

=
ABv0

A − 2
+o(v0). The first term is small for small

u0 while the second term is large for large U0 because of the divergence of
the integral as U0 → +∞. Hence S′′(0) has the sign of −B(A − 2).

Theorem 3.2. The graphics (H3
4 ) and (H3

5 ) have cyclicity ≤ 2 when
the singular points P1 and P2 have rational hyperbolicity ratios.

Proof. We have shown in Theorem 3.1 that both the second derivatives
of f and g do not vanish when B(A− 2) 6= 0. This is sufficient to conclude
in the case r(0) 6= 1. In the case r(0) = 1, i.e. A = 2 we calculate the first
saddle quantity for system (15). It is equal to 2B 6= 0.

Theorem 3.3. The graphic (H3
6 ) has cyclicity ≤ 2 if r(0) 6= 1 and ≤ 3

if r(0) = 1.

Proof. The proof is more subtle in this case and we need consider the
whole quadratic 5-parameter unfolding (14) where B = 0. This family is
given by

ẋ = x(1 + x + Ay) + δ1

ẏ = xy + y2 + δ2 + δ3x + δ4x
2,

(42)

where A is a variable parameter. In the particular case of r = 1, i.e. an
initial value A0 = 2 we will let A = 2 + δ5. The center conditions for
this family correspond to the existence of three invariant lines (possibly
multiple). They are given by





p1(δ) = δ1 = 0
p2(δ) = δ4 + (A − 1)δ2 = 0
p3(δ) = δ3 + (A − 2)δ2 = 0.

(43)

Moreover the ideal I generated by the three polynomials pi(ε) is radical.
In the particular case A0 = 2 it coincides for δ5 = 0, i.e. r = 1, with the
ideal of the first three saddle quantities at the point P2. (The fact that the
ideal is radical is most probably explained by the fact that the system for
δ = 0 is not located at the intersection of strata of centers.)

The idea is to perform a derivation-division algorithm together with a
Bautin type argument on the displacement map Vδ(x) from σ3 to τ4 defined
in (5). This map has the form

Vδ(x) = M(δ)[D1(m(δ)x) + ε(δ)] − gδ ◦ D−1
2,δ ◦ fδ(x). (44)
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We have to distinguish different cases. In all of them Vδ(x) vanishes
identically under the center conditions.

(1) r(0) /∈ Q. Let s(δ) =
1

r(δ)
. In that case the Dulac maps are simply

of the form y 7→ ys(δ). Since fδ(0) = 0 the displacement map has the
development

Vδ(x) = a00(δ) +
∑

i + js(δ) ≤ k
j > 0

aij(δ)x
i+js(δ) + Ψδ(x), (45)

where Ψδ(x) = o(xk).

The whole argument is to show that we can write (45) as

Vδ(x) =

{
a00(δ)h1(x, δ) + a01(δ)x

s(δ)h2(x, δ) + a11(δ)x
1+s(δ)h3(x, δ) s(0) > 1

a00(δ)h1(x, δ) + a01(δ)x
s(δ)h2(x, δ) + a02(δ)x

2s(δ)h3(x, δ) s(0) < 1,

(46)

with hi(0, 0) 6= 0. This is achieved in several steps. We write the rest
of the proof in the case s(0) > 1, the case s(0) < 1 being similar. In the
sequel ∗ denotes a nonzero function of δ.

It is clear that fδ(x) and gδ(x) are linear under the center conditions. Since
fδ and gδ are smooth their non-affine part can be divided in the ideal I.
Hence:

Wδ(x) = Vδ(x) − a00(δ) − a01x
s(δ)

= p1(δ)k1(x, δ) + p2(δ)k2(x, δ) + p3(δ)k3(x, δ).
(47)

The rest of the proof consists in three steps:

• show that p1(δ) =
∗a00(δ)

M(δ)
: this is done in Lemma 3.4;

• show that p2(δ) = a01(δ)γ(δ) with γ(δ) = O(δ): this is done in Lemma
3.5;

• show that a11(δ) = ξ1p1(δ) + ξ2p2(δ) + ξ3p3(δ), with ξ3 6= 0: this is done
in Lemma 3.6.

The discussion is then divided in three cones covering a neighborhood K
of the origin. We write it in the case s(0) > 1. In the cone K1 = {δ ∈
K|a00(δ) = max(a00(δ), a01(δ), a11(δ))} we can divide (45) by a00 without
introducing small denominators. The resulting function does not vanish in
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K1 if K is sufficiently small. In K2 = {δ ∈ K|a01(δ) = max(a00(δ), a01(δ),
a11(δ))} we consider V ′

λ(x) which does not vanish in K2 if K is sufficiently
small. In K3 = {δ ∈ K|a11(δ) = max(a00(δ), a01(δ), a11(δ))} we consider(

V ′
λ(x)

xs(δ)−1

)′

which does not vanish for x 6= 0 in K3 if K is sufficiently small.

(2) r(0) ∈ Q \ {1}. We perform a completely similar argument. Under
the center conditions the system is Darboux integrable (see for instance
[15]) and the first integral yields a first integral near P2. Hence D1,δ(x1)
in (8) can be written

D1,δ(x1) = x
s(δ)
1 [1 +

3∑

i=1

pi(λ)hi(x1, λ)] (48)

and a similar form for D−1
2,λ. If s(0) > 1 (resp. s(0) < 1) the first term

xp
1ω(x1, δ) in (8) has order greater than the term with coefficient a11(δ) (as

p > 1) (resp. a02)). Hence all terms with factors of the form ω(x, δ) appear
as o(1) in the functions hi(x, δ) of expression (46), which is still valid in
that case. Substituting (48) in (45) yields an expansion in monomials of
the form xi+js(δ)ωl(x, δ) plus a Ck flat rest, where all monomials of higher
order and the rest can be divided in the ideal of the pi(δ). We conclude as
in the first case.

(3) r(0) = 1. The system, localized at P2 by means of (v, w) = (x/y, 1/w)
is given by

v̇ = v(1 + δ5) + vz + δ1z
2 − δ4v

3 − δ3v
2z − δ2vz2

ẇ = −w − vw − δ4v
2w − δ3vw2 − δ2w

3.
(49)

The hyperbolicity ratio is precisely one when δ5 = 0. Under this condition
the three first saddle quantities are given by (each Li is simplified modulo
the Lj , j < i):

L1 = −δ3

L2 = −3(δ2 + δ4) + δ1 − 4δ1δ4

L3 = δ1(1 − 16δ4)(9 − 4δ4).

(50)

Again we perform a derivation-division on the map Vλ(x) given in (45),
together with the Bautin argument. Instead of the form (46) we use a form

Vδ(x) = a0(δ)h1(x, δ) + b(δ)xω(x, δ) + a1(δ)xh2(x, δ)

+a2(δ)x
2ω(x, δ)h3(x, δ).

(51)
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As before p1(δ) =
∗a0

M(δ)
and p2(δ) = γ(δ)a01(δ). Also for the same reason

as before a2(δ) = ξ1p1(δ) + ξ2p2(δ) + ξ3p3(δ) with ξ3 6= 0. The proof is
completely standard and can be done as before in the three cones where
each ai, i = 0, 1, 2, is of maximum absolute value. In the first cone we
conclude as before. In the last cone an additional derivation division is
necessary to kill the term with coefficient b(δ) before we can divide by the
corresponding ai(δ). This yields that the cyclicity is ≤ 3.

Lemma 3.4. p1(δ) =
∗a00(δ)

M(δ)
.

Proof. We need to calculate a00(δ) = M(δ)ε(δ) − c0(δ). Clearly both
the functions ε(δ) and c0(δ) have to be divisible by δ1. Here c0(δ) represents
the translation term in gδ, so −c0(δ) represents the translation term in Rλ.
We first calculate the translation term for the transition map Rλ defined
in the usual coordinates. A scaling is then necessary to transform it in
the normalizing coordinates. We use Proposition A.2 from the Appendix

to show
∂Rλ

∂δ1
(0) > 0, since all factors in (A.10) are positive. A similar

calculation yields
∂ε

∂δ1
> 0.

Lemma 3.5. p2(δ) = a01(δ)γ(δ) with γ(δ) = O(δ).

Proof. Let us consider

a01(δ) = (m(δ))s(δ)M(δ) − (f ′
δ(0))s(δ)g′δ(0)

= (f ′
δ(0))s(δ)g′δ(0)[(m(δ))s(δ)M(δ)((f−1

δ )′(0))s(δ)(g−1
δ )′(0) − 1].

(52)

In Figure 2 let us call Gδ : τ1 → σ2 and Fδ : τ2 → σ1. The part in brackets
in (52) represents the difference N(δ) = (F ′

δ(0))s(δ)G′
δ(0) − 1, where the

sections σ1 and τ2 (resp. τ1 and σ2) are chosen symmetric with respect to
the x-axis.

For δ2 > 0, δ4 < 0 a direct calculation yields

G′
δ(0) = limY0→+∞ exp

(∫ Y0

−Y0

1 + Ay

y2 + δ2
dy

)

= exp

(
π√
δ2

)
.

(53)
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Similarly

F ′
δ(0) = exp

(
−π

√
1

−δ4(A − 1)

)
. (54)

Hence, since s(λ) = A − 1:

N(δ) = expπ

(
1√
δ2

−
√

A − 1

−δ4

)
− 1

= π

(
1√
δ2

−
√

A − 1

−δ4

)
(1 + o(1))

= π

√
−δ4 −

√
(A − 1)δ2√

−δ2δ4

(1 + o(1)).

(55)

It easily follows that p2(δ) = N(δ)γ(δ) with γ(δ) small. As f ′
δ(0), g′δ(0) 6= 0

it follows that p2(δ) = γ(δ)a01(δ), with γ small.

Lemma 3.6. a11(δ) = ξ1p1(δ) + ξ2p2(δ) + ξ3p3(δ), with ξ3 6= 0.

Proof. The proof follows directly from the calculations of Theorem 3.1.
There we calculated the second derivatives of f0 and g0 for δ1 = δ2 = δ4

and got that they were of the form ∗δ3, where ∗ could be chosen bounded
away from 0 as δ3 is small.

4. FINITE CYCLICITY OF (I2
27)

This graphic was discussed in [1] (Theorem 4.1) and appears in Figures 1
and 3. When speaking about an “unbroken connection”, as seems to occur
along the equator in (I2

27) one has to pay attention to what is really meant.
Whenever singularities show up in the unfolding of P3 they have to lie on
the equator and the one closest to P1 will be connected to P1 since the
equator stays invariant. We can say that the connection between P1 and
P3 remains “unbroken”. Whenever the singularities near P3 disappear this
by no means implies that it should be possible to encounter a connection
from P1 to P2 passing near P3 on the contrary. Clearly the graphic (I2

27)
cannot be approched by graphics with two hyperbolic saddles as in Figure
4. Therefore we necessarily need to consider that the connection between
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P1 and P3 can be broken. The more degenerate (and simpler) case of an
unbroken connection has been studied in ([1], Theorem 4.1). The proof for
(I2

27) is even simpler as we will show now. We follow the reasoning made
in [1].

Theorem 4.1. The graphic (I2
27) has cyclicity less than or equal to 2.

Proof. the case r1r2 6= 1 was done in [3] and we only need to consider
the case r1(0)r2(0) = 1. The value of r1(0) will not matter in our proof and
we will give different proofs depending on whether r2(0) 6= 1 or r2(0) = 1.

Using the theory of normal forms, we can define three normalized charts
around each singularity Pi, 1 ≤ i ≤ 3. Near P3 the vector field Xλ has
one of the expressions (3) and the Dulac map is as in the first line of (4).
The Dulac maps near P1 and P2 have one of the forms (2) or (8). When
r2(0) = 1 we will assume that the vector field is in a Ck normal form near
P2 allowing to calculate the Dulac map as in (8). This occurs for λ in some
neighbourhood W and for some finite class of differentiability which is fixed
by the problem. Let σi and τi with 1 ≤ i ≤ 3 be transverse segments to the
vector field Xλ (Figure 3). The essential change with the proof in [1] is to
extend the section σ3 with equation x = −x0 and whose endpoint is chosen
to be on the unstable manifold of P2 to some section σ′

3 ending on the
equator. We choose a coordinate y on σ′

3 so that the equator corresponds
to y = 0 and the unstable manifold of P2 to y = 1 (this is possible modulo
an adequate dilation y 7→ B(λ)y not changing the normal form expression).

For the proof we simply calculate the displacement map. The Dulac maps
Di,λ : σi → τi near the hyperbolic saddles P1 and P2 have the following
expressions:

yi = Di,λ(xi) = x
ri(λ)
i (1 + φi(xi, λ)) (56)

where xi and yi are respectively the parameters on σi and τi. The func-
tions φi(xi, λ) verify the property I∞0 defined in (9). The Dulac maps are
invertible and their inverses di,λ have similar expansions:

xi = di,λ(yi) = y
si(λ)
i (1 + ψi(yi, λ)) (57)

where si(λ) = 1/ri(λ) and the function ψi(yi, λ) also has the property I∞0
defined in (9).

Near the semi-hyperbolic singularity P3, the Dulac map D3,λ : σ3 → τ3

is linear as in (4):

y3 = D3,λ(x3) = m(λ)x3, (58)
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with

lim
λ→0

m(λ) = 0+. (59)

The regular maps Ri,λ : τi → σi+1, 1 ≤ i ≤ 3 (note that σ4 = σ1) are
Ck–diffeomorphisms with respective inverses Si,λ.

A displacement map whose isolated zeros yield the limit cycles close to
Γ is defined as the difference of the two transition maps from σ3 to σ2.

δλ(x3) = R1,λ ◦ D1,λ ◦ R3,λ ◦ D3,λ(1 + x3) − d2,λ ◦ S2,λ(x3)

with x3 small and x3 = 0 corresponding to the unstable manifold of P2.
The following change of coordinates on σ3

x3 = Rλ(x) = c1(λ)x + o(x), c1(λ) 6= 0 (60)

transforms the regular map S2,λ into a genuine translation:

S2,λ(Rλ(x)) = x + b(λ) = y (61)

with b(λ) = S2,λ(0). Let us now call x3 = x. Then

δλ(x) = δλ(Rλ(x)) = b1(λ) + M(λ)(∗(1 + x) + φ(x, λ))

−ys2(λ)(1 + ψ(y, λ)).
(62)

where M(λ) = m(λ)r1(λ), ∗ is a nonzero function of the parameter λ, the
function ψ(y, λ) has the property I∞0 and φ(x, λ) is of class Ck.

(1) r2(0) 6= 1. A derivation of δ with respect to x yields:

δ
′

λ(x) = M(λ)(∗ + φ1(x, λ)) − s2y
s2−1(1 + ψ1(y, λ)) (63)

where the function ψ1(y, λ) has the property I∞0 and φ1(x, λ) is of class
Ck−1.

The equation δ
′

λ(x) = 0 is equivalent to

N(λ)(∗ + φ2(x, λ)) = y(1 + ψ2(y, λ)) = Y, (64)

where N(λ) =

(
M(λ)

s2(λ)

) 1
s2(λ)−1

. Using the results of Mourtada in [10], the

function

Y = y(1 + ψ2(y, λ)). (65)
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is invertible, with inverse:

y = Y (1 + ψ3(Y, λ)), (66)

where ψ3 has property Ik−1
0 . The equation (64) is equivalent to:

y = x + b(λ) = N(λ)(∗ + φ2(x, λ))(1 + ψ3(Y (x, λ), λ)). (67)

If s2(0) > 1, then N(λ) → 0 as λ → 0. And (67) has the form

x + b(λ) − N(λ)(∗ + φ3(x, λ)) = 0 (68)

with φ3 having property Ik−1
0 . The derivative with respect to x is strictly

positive, yielding at most one solution of (68).

If s2(0) < 1, then N(λ) → +∞ for λ → 0. Going back to (64), keeping
in mind that Y may be taken bounded, and dividing by N(λ), we see that
(64) has no solution.

(2) r2(0) = 1. In that case we go back to (62) and we let

s2(λ) = 1 − α1(λ) (69)

with α1(0) = 0. We introduce the compensator ω(x, λ) as in (7). Equation
(62) can be rewritten as

δλ(y) = b1(λ) + M(λ)(∗(1 + x) + φ(x, λ))

−α1(λ)yω(1 + ξ1(y, λ)) − y(1 + ξ2(y, λ)
(70)

where we can write x = y − b(λ), keeping both y and x close to zero.
Knowing that M(λ) → 0 for λ → 0 this equation clearly has at most two
solutions by a classical derivation-division algorithm.

5. FINITE CYCLICITY OF (I2
14A), (I2

15A) AND (I15B)

Theorem 5.1. Graphics (I2
14a) and (I2

15a) have finite cyclicity

Proof. The two graphics have the same configuration of singular points
as in Figure 5. We choose the variable x ∈ τ2 (instead of y2) so that
{x = 0} corresponds to the connection for λ = 0. We choose the normal
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form coordinates near P3 so that the invariant line at infinity corresponds
to {y3 = 0}. Moreover by a λ-dependent scaling in y3 we take care to have
R2,λ(0) ≡ 1, for sufficiently small λ. The displacement mapping from τ2 to
σ2 is given by

V (x, λ) = R1,λ ◦ D1,λ ◦ R3,λ ◦ D3,λ ◦ R2,λ(x) − D−1
2,λ(x) (71)

and its isolated zeros give the limit cycles and graphics. Using adequate
normalizing change of coordinates as in [4] it is possible to assume that
R1,λ is an affine map:

x2 = R1,λ(y1) = b0(λ) + b1(λ)y1,

with b0(0) = 0, b1(0) > 0, and R3,λ a linear map:

x1 = R3,λ(y3) = a(λ)y3 (72)

with a(0) > 0. Moreover we let

x3 = R2,λ(x) = 1 + Sλ(x) (73)

where a good choice of x allows to have S′
λ(0) = 1 and Sλ(0) = 0. We

also have y3 = D3,λ(x3) = m(λ)x3 and x2 = D−1
2,λ(x) = M(λ)x where

m(λ),M(λ) → 0 as λ → 0. Finally

Y1 = D1,λ(x1) = x
r(λ)
1 (1 + φ(x1, λ)) (74)

where φ has the property Ik
0 .

Hence

V (x, λ) = b0(λ) + N(λ)(1 + Sλ(x))r(λ)(1 + O(m(λ))) − M(λ)x, (75)

with N(λ) = b1(λ)[a(λ)m(λ)]r(λ) and where the asymptotic property not
only holds for the function but also for all its derivatives in x up to an a
priori chosen order. Then

V ′(x, λ) = N(λ)r(λ)(1 + Sλ(x))r(λ)−1S′
λ(x)(1 + O(m(λ))) − M(λ). (76)

This function has a finite number of small zeros if we can prove that the
function W (x) = (1 + Sλ(x))r(λ)−1S′

λ(x) has a nonzero derivative at x = 0
for λ = 0. Formally this is the case if we do not have

R(x) = R2,0(x) = 1 + S(x) = (1 + rx)1/r (77)



24 F. DUMORTIER, A. GUZMÁN AND C. ROUSSEAU

where r = r(0). This will be verified if we prove that (R(x))r is not
an affine map, i.e. has a nonvanishing higher derivative. This is done in
Lemma 5.2.

Lemma 5.2. For graphics (I2
14a), (I2

15a) inside quadratic systems the
function (R(x))r is not an affine map and has a nonvanishing higher deriva-
tive.

Proof. The proof is simple and relies on the results of [2], namely
on the choice of adequate normalizing change of coordinates near the two
saddle-nodes. Indeed, using the sectorial normalizing theorem it is possible
to choose normalizing coordinates (xi, yi), i = 2, 3 which are analytic in
the parabolic sectors and then to include these in a normalizing change
of coordinates for the whole family (see results in Appendix). In these
coordinates the map R(x) is analytic. It is always possible to choose the
section on which R(x) is defined with end point on the invariant line which
we suppose to be at x = x0, and the image section having end point on the
equator. To show that (R(x))r is not an affine map and has a nonvanishing
higher derivative it suffices to prove it at one point. We prove it at a point
x near x0. Indeed near x0 the map R(x) is the composition of the regular
transitions considered in Theorem 3.1 (we called them R and S and the r
used here is the s of Theorem 3.1) with the Dulac map for a point with
hyperbolicity ratio r. Since these transitions have a non-vanishing second
derivative for r 6= 1 and since the saddle is non integrable for r = 1, then
(R(x))r is not an affine map in the neighborhood of x = x0. (The r here
is the s in Theorem 5.1.)

Theorem 5.3. The graphic (I2
15b) (Figure 6) has cyclicity ≤ 2.

Proof. We take sections as in Figure 6. We start exactly as in the
proof of Theorem 5.1, the only difference being that the passage near P2

is now center-unstable. We use the same displacement map V (x, λ) from
τ2 to σ2 given in (71) which we write V (x, λ) = H(x, λ) − D−1

2 (x, λ). The
map D−1

2 (x, λ) is a solution of a Pfaff form ω(x, λ) = F (x, λ)dy−ydx, with
F (x, λ) of the form F (x, λ) = x2(1 + A(λ)x) + ε(λ). This allows to use the
method of fewnomials of Khovanskii: solutions of V (x, λ) = 0 are solutions
of the system





H(x, λ) = y

F (x, λ)dy − ydx.
(78)
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The number of solutions of (78) is bounded by one plus the number of
contact points of ω(x, λ) on y = H(x, λ). These are given by





y = b0(λ) + N(λ)(1 + Sλ(x))r(λ)(1 + O(m(λ)))

y = N(λ)r(λ)F (x, λ)(1 + Sλ(x))r(λ)−1S′
λ(x)(1 + O(m(λ)))

(79)

and elimination of y yields

0 = b0(λ) + N(λ)
[
(1 + Sλ)r(λ)(1 + O(m(λ)))

−r(λ)F (x, λ)S′
λ(x)(1 + Sλ(x))r(λ)−1 + O(m(λ))

]
,

(80)

which has at most one small zero since the first derivative does not vanish
for small x and for λ such that N(λ) 6= 0.

APPENDIX

A.1. Derivatives of regular transition maps

Proposition A.1. Let

X = P (x, y)
∂

∂x
+ Q(x, y)

∂

∂y
(A.1)

be a vector field. We consider the transition map R(x) of (A.1) between

two arcs without contact: Σ = {(x, y) = (x, f1(x))} and Σ̃ = {(x, y) =
(x, f2(x))}, in a region where Q(x, y) 6= 0. Let x = x(x0, y0, y) be the
solution with initial condition x(x0, y0, y0) = x0. Then

dR

dx0
(x0) = exp

(
∫ f2(R(x0))

f1(x0)

(
P ′

xQ − PQ′
x

Q2

)∣∣∣∣
x=x(x0,f1(x0),y)

dy

)

1 −
(

P

Q

)
(x0, f1(x0))f

′
1(x0)

1 −
(

P

Q

)
(x0, f2(R(x0)))f ′

2(R(x0))

.

(A.2)

Formulas for the first and second derivatives are given in the particular
case where x0 = 0 and P (0, y) ≡ 0. Let yi = fi(0).

R′(0) = exp

(∫ y2

y1

P ′
x

Q
(0, y)dy

)
. (A.3)
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R′′(0) = R′(0)

[
2

(
f ′
2(0)R′(0)

(
Px

Q

)
(0, y2) − f ′

1(0)

(
Px

Q

)
(0, y1)

)

+
∫ y2

y1

(
P ′′

x

Q
(0, y) − 2

P ′
xQ′

x

Q2
(0, y)

)
exp

(∫ y

y1

P ′
x

Q
(0, z) dz

)
dy

]
.

(A.4)

Proof. We transform (A.1) into the equivalent differential equation

dx

dy
=

P

Q
. (A.5)

The solution is x = x(x0, f1(x0), y) with initial condition x(x0, f1(x0), f1(x0)) =
x0. We have that R(x0) = x(x0, f1(x0), f2(R(x0))). Moreover

∂

∂y

∂x

∂x0
=

∂

∂x0

∂x

∂y
=

∂

∂x0

P (x(x0, f1(x0), y), y)

Q(x(x0, f1(x0), y), y)

=
P ′

xQ − PQ′
x

Q2

∂x

∂x0
,

(A.6)

from which

∂x

∂x0
= exp

(∫ y

f1(x0)

P ′
xQ − PQ′

x

Q2
dy

)
(A.7)

follows. Hence we can rewrite

dR

dx0
(x0) = exp

(
∫ f2(R(x0))

f1(x0)

(
P ′

xQ − PQ′
x

Q2

)∣∣∣∣
x=x(x0,f1(x0),y)

dy

)

1 −
(

P

Q

)
(x0, f1(x0))f

′
1(x0)

1 −
(

P

Q

)
(x0, f2(R(x0)))f ′

2(R(x0))

.

(A.8)

The second derivative of R is most easily calculated from this formula.
However the general formula is very long. In the particular case x0 = 0 we
get (A.3) and (A.4) for R′(0) and R′′(0).

Proposition A.2. Let

Xδ = P (x, y, δ)
∂

∂x
+ Q(x, y, δ)

∂

∂y
(A.1)
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be a vector field depending on a small parameter δ. We consider the
transition map R(x, δ) of (A.1) between two arcs without contact: Σ =

{(x, y) = (x, f1(x))} and Σ̃ = {(x, y) = (x, f2(x))}, in a region where
Q(x, y, δ) 6= 0. Let x = x(x0, y0, y, δ) be the solution with initial condition
x(x0, y0, y0, δ) = x0. Let

F (x0, y, δ) = exp

(∫ y

f1(x0)

(
P ′

xQ − PQ′
x

Q2

)∣∣∣∣
x=x(x0,f1(x0),z,δ)

dz

)
. (A.9)

Then

∂R

∂δ
= F (x0, f2(R(x0, δ)), δ)

[
1 −

(
P

Q

)
(x0, f1(x0), f2(R(x0, δ)), δ).f

′
2(R(x0, δ))

]−1

∫ f2(R(x0,δ))

f1(x0)

(
P ′

δQ − PQ′
δ

Q2

)∣∣∣∣
x=x(x0,f1(x0),y,δ)

F−1(x0, y, δ) dy.

(A.10)

Proof. The proof is very similar to that of the previous proposition.
We start by deriving R(x0, δ) = x(x0, f1(x0), f2(R(x0, δ)), δ) with respect
to δ and get

∂R

∂δ
(x0, δ)

[
1 −

(
P

Q

)
(x0, f1(x0), f2(R(x0, δ)), δ).f

′
2(R(x0, δ))

]

=
∂x

∂δ
(x0, f1(x0), f2(R(x0, δ)), δ).

(A.11)

We let x = x(x0, f1(x0), y, δ) with initial condition x(x0, f1(x0), f1(x0), δ) =
x0 be the solution of (A.5) (which now depends on δ). Then

∂

∂y

(
∂x

∂δ

)
=

∂

∂δ

P (x(x0, f1(x0), y, δ), y, δ)

Q(x(x0, f1(x0), y, δ), y, δ)

=

(
P

Q

)

x

∂x

∂δ
+

(
P

Q

)

δ

.

(A.12)

The result follows by integration and evaluation at y = f2(R(x0, δ)).

A.2. Normalizing coordinates near a saddle-node

We recall the results of [2].
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An analytic planar saddle-node germ v of multiplicity 2 is formally or-
bitally equivalent by means of a transformation (x, y) 7→ (z, w) to a poly-
nomial normal form

v0 = z2(1 + az)−1 ∂

∂z
− w

∂

∂w
; (A.13)

the time orientation may be reversed. An unfolding of a germ v, depending
on the multi-parameter λ is finitely smoothly orbitally equivalent to the
local family

vλ = ε(λ)
∂

∂z
+ z2(1 + a(λ)z)−1 ∂

∂z
− w

∂

∂w
, (A.14)

where ε(0) = 0, [8].
Any complex saddle-node of multiplicity 2 is orbitally analytically equiv-

alent to a germ

v = v0 + z2R(z, w)
∂

∂w
. (A.15)

To state the theorems of [2] we suppose that v has the form (A.15)

Theorem A.3. Consider a real analytic germ of a saddle-node vector
field on (IR2, 0) with one zero and one negative eigenvalue and with mul-
tiplicity 2. Then it is C∞ orbitally equivalent to its normal form (A.13)
by means of a change of coordinate (Z,W ) = (z, w) + o(|(z, w)|). The
equivalence may be taken analytic outside the stable manifold.

Theorem A.4. For any C∞ unfolding of a germ from Theorem A.3
there exists a finitely smooth orbital equivalence with the polynomial nor-
mal form (A.14). For the critical parameter value this equivalence is ana-
lytic outside the stable manifold of the saddle-node germ.
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