
NORMAL FORMS NEAR A SADDLE-NODE AND

APPLICATIONS TO FINITE CYCLICITY OF GRAPHICS

F. Dumortier, Y. Ilyashenko and C. Rousseau

Limburgs Universitair Centrum, Diepenbeek, Belgium
Cornell University, US, Moscow State and Independent

Universities, Steklov Math. Institute, Moscow
DMS and CRM, Université de Montréal, Canada.
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Abstract. In this note we refine the transformation to smooth normal form for an

analytic family of vector fields in the neighborhood of a saddle-node. This refine-

ment is very powerful and allows to prove the finite cyclicity of families of graphics
(“ensembles”) occuring inside analytic families of vector fields. It is used in [RZ1]

to prove the finite cyclicity of graphics through a nilpotent singular point of ellip-

tic type. Several examples are presented: lips, graphics with two subsequent lips,
graphics with a nilpotent point of elliptic type and a saddle-node. We also discuss

the bifurcation diagram of limit cycles for a graphic in the lips.

1. Introduction

In the study of planar vector fields the question of finite cyclicity of graphics is
an important one. Two currents of research meet there.

On one hand the powerful theorem of Ilyashenko-Yakovenko [IY] proves that
elementary polycycles have finite cyclicity inside generic families of smooth vector
fields. The genericity conditions appearing in the theorem are implicit. Special
theorems by many authors give specific genericity conditions on particular graphics
(and not on families of vector fields) yielding finite cyclicity inside smooth families
of vector fields. The graphics may be elementary or not. However it can be very
difficult in practice to check the genericity conditions for a particular graphic.

On the other hand it is conjectured [R1] that graphics occuring among analytic
families depending on a finite number of parameters have finite cyclicity inside the
given family. A variant of this idea is the basis of the program [DRR] to prove
that there exists a uniform bound for the number of limit cycles of a quadratic
system. Particular theorems exist proving the finite cyclicity of special graphics (for
instance homoclinic loops) inside analytic families depending on a finite number of
parameters.
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The present note is a contribution to both directions in the particular context of
analytic vector fields. We focus our attention to graphics which occur in “ensem-
bles”. The idea is to consider the full “ensemble” (family of graphics), including the
bordering graphic(s) which may or may not have higher codimension. We exploit
additional data available or easily computable in the neighborhood of the bordering
graphic(s) and “push” the information by analytic extension to all graphics of the
“ensemble”.

As far as the second direction is concerned the method presented here is very
powerful. In particular it has allowed substantial progress in the proof of the
finiteness part of Hilbert’s 16th problem for quadratic vector fields, namely the
existence of a uniform bound for the number of limit cycles for quadratic systems.
The problem has been reduced to the proof that 121 graphics have finite cyclicity
inside quadratic systems [DRR]. In that spirit the results of Section 2 have allowed
to prove in [DGR] the finite cyclicity of graphics (I2

14a) and (I2
15a) among quadratic

systems (names from [DRR]). In this paper we apply our theorem of finite cyclicity
of a graphic through a nilpotent elliptic point and a saddle-node (Figure 1) to the
graphic (I2

10a) inside quadratic systems (Figure 2).

Figure 1: Graphic with pp-passage through a nilpotent elliptic point and a saddle-node

The results of section 2 are also used in [RZ1] to prove the finite cyclicity of an
hp-graphic (i.e starting from a hyperbolic sector and ending in a parabolic sector)
through a nilpotent elliptic point. They will be essential to prove the finite cyclicity
of 12 more graphics: (F 1

6b), (I2
17b), (I1

5b), (I2
18b), (H3

10), (I1
7b), (I1

8b), (I2
26), (I1

10b),
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(I1
10a)

Figure 2: Graphic (I1
10a) inside quadratic systems

(I2
39), (I1

11a) and (I2
40), mostly treated in [RZ2]. In all cases the basic idea is that,

when considering ensembles, it may happen that, although a genericity condition
on a regular transition map cannot be calculated in general, it can be calculated
on a particular graphic of the family. Then, using analyticity, it is possible to push
the genericity condition to all graphics of the ensemble.

In [IY1] integrable Ck normal forms for unfoldings of saddle-nodes were found.
These normal forms allow the explicit calculation of Dulac maps in the neighbor-
hood of the singular point. In this paper we improve this theorem for analytic
vector fields: it is possible to choose the normalizing coordinates to be analytic for
the critical parameter value everywhere near the saddle-node except for the sta-
ble (unstable) one-dimensional invariant manifold passing through the saddle-node
itself.

The genericity condition that implies finite cyclicity is formulated as the non-
linearity of some maps along the orbits, written in the normalizing charts. The
main trick used in the paper is that the nonlinearity of an analytic map may be
established far away from the domain where it is used and then ”pushed forward”
by analytic extension.

In this way we establish finite cyclicity of graphics that occur in ensembles.
The main ensemble under consideration is called “lips”; it is formed by two saddle
nodes of opposite attractivity with a connection between two hyperbolic sectors and
a continuous family of connections between two parabolic sectors, see Figure 3a.
The name was given in [KS], where the ensemble is met under the number (3.13)
of the “Kotova zoo” of graphics appearing in typical 3-parameter families of planar
vector fields. Without increasing the degeneracy of the vector field one can meet
special graphics on the boundary of the ensemble. Denote the orbit (part of the
graphic) that connects two saddle-nodes through their hyperbolic (resp. parabolic)
sectors as hh- (resp. pp-) connection. If an orbit emerges from one saddle-node
through its parabolic sector and enters another one along the boundary between
its hyperbolic and parabolic sector it is labeled as a bp-connection. Lips with a
pp-connection through a saddle and lips with a bp-connection are shown in Figure
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a b c

Figure 3: Ensembles of graphics of “lips” type

3b, c.

We prove the finite cyclicity of any graphic of the ensemble “lips” in an analytic
family under one of the following conditions:

• the ensemble has a pp-connection through a saddle (Figure 3b) with either
the hyperbolicity ratio r not equal to 1 or with r = 1, but with no analytic
first integral near the saddle;

• the ensemble has a bp-connection (no extra assumption on the correspond-
ing boundary graphic is required.) As a corollary we obtain the finite cyclic-
ity of any graphic in the ensembles “spadesuit” and “malignant frown”,
names from [KS], see Figure 4.

Malignant frown Spadesuit

Figure 4:

Moreover, we prove the finite cyclicity of any graphic in the ensemble combined
by two lips with two hh-connections, (see Figure 5) under a genericity condition. In
analytic vector fields the genericity condition can as before be proved locally and
pushed far away by analytic extension.

Finally in section 5 we discuss the bifurcation diagram for limit cycles appearing
by perturbation of a graphic of the lips when the graphic has codimension n + 1,
i.e. the transition map is nonlinear of order n along the graphic. In that case the
graphic has absolute cyclicity n and the bifurcation diagram of the limit cycles
contains a trivial 1-parameter family of elementary catastrophies of codimension
n − 1.

In view of applying our results in specific situations we tackle the problem of
calculating the regular pp-transition R. We show, in section 6, the existence of
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S1
P1 S2 P2

Figure 5: Graphics with two lips sectors

an integral expression of the derivative dR
dy

(y, λ). The formula is an extension of

the traditional formula of Poincaré to express the derivative of a Poincaré mapping
along a regular piece of orbit. At the end of section 6 the formula is applied to a
specific example.

§2. Unfoldings of analytic germs of planar saddle-node

vector fields and analytic properties of their normalizations.

Unfoldings of germs of planar saddle-node vector fields with singular points of
finite multiplicity may be transformed to a polynomial integrable normal form [IY].
The normalizing transformation may be taken finitely smooth in a neighborhood
of a singular point and critical parameter value in the phase-parameter space; the
smaller the neighborhood, the smoother will be the transformation. It is impossible,
in general, to find an analytic normalizing transformation in some neighborhood,
not even a C∞ one.

Yet some problems of bifurcation theory require analytic properties of the above
normalizing transformation. Below we prove the existence of a normalization for
the above unfolding which is finitely smooth in the phase–parameter space but
which is analytic in the phase space outside the (un)stable manifold at the critical
value of the parameter. This result may be applied to the proof of finite cyclicity
of some planar polycycles of analytic vector fields as it is shown in the subsequent
sections.

2.1. Partially analytic normalization.

A saddle-node is a singular point of a planar vector field at which exactly one
eigenvalue is zero. An analytic planar saddle-node germ v of multiplicity µ + 1
is formally orbitally equivalent by means of a transformation (x, y) 7→ (z, w) to a
polynomial normal form

v0 = zµ+1(1 + azµ)−1 ∂

∂z
− w

∂

∂w
; (2.1)

the time orientation may be reversed. There exists a C∞ orbital equivalence be-
tween v and v0 [I1]. An unfolding of a germ v, depending on the multi-parameter
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ε is finitely smoothly orbitally equivalent to the local family

vε = P (ε, z)
∂

∂z
+ zµ+1(1 + a(ε)zµ)−1 ∂

∂z
− w

∂

∂w
, (2.2)

with P (ε, z) =
∑µ−1

i=0 bi(ε)z
i where bi(0) = 0 [IY1].

To state our normalization theorem we need a preliminary normal form of an
analytic saddle-node.

Proposition 2.1. Any complex saddle-node of multiplicity µ + 1 is orbitally ana-
lytically equivalent to a germ

v = v0 + zµ+1R(z, w)
∂

∂w
. (2.3)

This is the germ we will deal with. Main results of this section are the following.

Theorem 1. Consider a real analytic germ of a saddle-node vector field on (R2, 0)
with one zero and one negative eigenvalue and with even multiplicity. Then it is
C∞ orbitally equivalent to its normal form (2.1). The equivalence may be taken
analytic outside the stable manifold.

Theorem 2. Theorem 1 holds for germs with odd multiplicity.

Theorem 3. For any C∞ unfolding of a germ from Theorems 1,2 there exists a
finitely smooth orbital equivalence with the polynomial normal form (2.2). For the
critical parameter value this equivalence is analytic outside the stable manifold of
the saddle-node germ.

Remark. If the germs of the vector fields in Theorems 1 and 2 (resp. the germ
of the family in Theorem 3) depend in an analytic way on extra parameters, not
changing the nature of the germ (resp. the family), nor the “formal invariant” a(0)
(i.e. a(ε) ≡ a(0)), then the equivalences may be taken analytic in both the variables
and the extra parameters in the regions described in the respective theorems.

Theorem 1 is proved below in 2.2 - 2.6. Theorem 2 is a free byproduct of the
proof of Theorem 1. Theorem 3 is a simple corollary of Theorems 1 and 2, see 2.7,
2.8.

2.2. Sectorial normalization theorem.

The sectorial normalization theorem (proved in [HKM] and presented in [MR],
[I2]) claims that germs v and v0 are analytically equivalent in some sector-like
domains. These domains are described as follows.

Let us divide a small disk |z| < r in 2µ equal sectors with vertex 0; the real axis
contains some division rays. Enumerate them counterclockwise beginning with the
sector number 1 adjacent from above to the positive real semiaxis. For any sector
of this division consider a sector Sj with the same number and bisector, and with
opening angle α ∈ (π

µ
, 2π

µ
). The sectors Sj , j = 1, . . . , 2µ are called good ones.

They form the covering of the punctured disk |z| < r. Let D = {|w| < r} be a disk

in the w axis, and S̃j = Sj × D.
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Theorem 2.2 (see [HKM], [MR], [I2]). Any germ v, see (2.3) in a sector S̃j

(with r small) is analytically equivalent to v0. Moreover, the normalizing map

Hj : S̃j → C2 has the following properties:
1. Hj preserves z:

Hj(z, w) = (z, hj(z, w)),

and brings v to v0;
2. hj has asymptotic Taylor series in z with coefficients which are holomorphic

functions in w:

ĥ =
∞
∑

0

ak(w)zk, a0(w) ≡ w;

ĥ is the same for all hj;
3. Maps Hj with these properties are unique.

The tuple H = (H1, . . . , H2µ) is called the normalizing atlas of the germ v. Its
transition functions generate the Martinet–Ramis modulus of the analytic classifi-
cation of complex saddle-nodes.

Let us call a germ (2.3) real if it is real on the real plane.

2.3 Normalizing atlas and Martinet–Ramis modulus.

We do not need to give the complete construction of the above modulus. We
only need part of this construction; it is described below.

The (multivalued) function

F (z, w) = wfa(z), fa(z) = e
−1

µzµ za

is the first integral of the germ v0. Hence, the function

Fj = hjfa (2.4)

is the first integral of the germ v in S̃j . In the intersection of their domains, one
integral in this list is a holomorphic function of another. We will apply this to two
pairs: Fµ, Fµ+1 and F1, F2µ, thus covering the two real semi-axes in the z-plane.
Denote by S− and S+ the two sectors:

{

S+ = S1 ∩ S2µ ∩ {Re z > 0}
S− = Sµ ∩ Sµ+1 ∩ {Re z < 0}.

Case µ odd. Hence, fa → 0 on S+ as z → 0, fa → ∞ on S− as z → 0.
By the previous remark on the first integrals, there exists a holomorphic function

ψ− such that in S− × D
hµ+1fa = ψ−(hµfa).

Let ψ−(u) = ψ0 + ψ1u + ψ2(u)u2. Then

hµ+1(z, w) = ψ0f
−1
a (z) + ψ1hµ(z, w) + fa(z)ψ2(hµfa)h2

µ. (2.5)

By statement 2 of Theorem 2.2, hµ+1 → w, hµ → w as z → 0. But in S−, fa → ∞
as z → 0. Hence, ψ0 may be arbitrary, ψ1 = 1 and ψ2 ≡ 0. Summarizing, we get

ψ−(w) = w + C (2.6)
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hµ+1(z, w) = hµ(z, w) + Cf−1
a (z). (2.7)

The constant C is one component of the Martinet–Ramis modulus.

A parallel consideration gives the relation between h1 and h2µ, but the result is
different because the function fa on the sector S+ behaves in an opposite way than
on S−. A second difference comes from the fact that fa(z) is multi-valued. Hence
if we want to compare the value of fa(z) on S2µ, call it fa(z), with the value of

fa(z) on S1 we have, on S1 ∩ S2µ, fa(z) = νfa(z) with ν = exp(2πia) 6= 0. Hence
we have:

h2µfa = ψ+(h1fa).

Let ψ+(w) = ψ0 + ψ1w + ψ2(w)w2. Then an analogue to formula (2.5) holds with
hµ+1, hµ replaced by h2µ, h1. As before, h2µ → w, h1 → w as z → 0 in S+. But
now fa → 0, f−1

a → ∞ as z → 0 in S+. Hence, ψ0 = 0, ψ1 = ν(= exp(2πia)), ψ2

may be an arbitrary function. Summarizing, we get

h2µ = f
−1

a ψ+(h1fa) = ν−1f−1
a ψ+(h1fa),

ψ+(0) = 0, ψ+′(0) = ν,
(2.8)

and ψ+ is an arbitrary holomorphic function with the above restriction. Roughly
speaking, the function ψ+ is another component of the Martinet–Ramis modulus.

Case µ even. The origin is a topological saddle and we have the same behaviour
in S± as the behaviour described above on S+.

2.4. Martinet–Ramis modulus in the real case.

Let us call a germ v real if it is real on the real plane.

Proposition 2.3. If the germ v is real, then

hµ(z̄, w̄) = hµ+1(z, w), h1(z̄, w̄) = h2µ(z, w). (2.9)

Proof. By assumption, v is invariant under the involution (z, w) 7→ (z̄, w̄) in the
source and the target. By the uniqueness of the normalizing atlas, see Theorem
2.2, H has the same property:

hµ−k(z̄, w̄) = hµ+k+1(z, w), k = 0, . . . , µ − 1.

This proves the proposition. ¤

Proposition 2.4. For the real germ v, the constant C in (2.6) is purely imaginary,
and Im hµ(x, y) = iC

2 f−1
a (x).

Proof. Let (x, y) ∈ R2. By (2.7) and (2.9)

i Im hµ(x, y) = −i Im hµ+1(x, y) = −C

2
f−1

a (x).

Hence, C is purely imaginary. ¤
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Proposition 2.5. Fix an arbitrary positive x0 ∈ S+ and let g(w) = h1(x0, w). Let
β = g−1(0). Then β and g′(β) are real.

Proof. Let
g1(w) = h2µ(x0, w), c = fa(x0).

Then, by (2.8)
cνg1 = ψ+(cg), ψ+(0) = 0, ψ+′(0) = ν. (2.10)

By (2.9),

g(w̄) = g1(w). (2.11)

By (2.10) and (2.11), g(β) = 0 implies g1(β) = 0 = g1(β̄). As g1 is one-to-one,
β = β̄, hence β is real.

By (2.10)
cνg′1(β) = ψ+′(0)cg′(β),

hence, g′1(β) = g′(β). By (2.11), and reality of β,

g′(β) = g′1(β).

Hence, g′(β) is real. ¤

Remark. The same holds for hyperbolic sectors if µ is odd.

2.5. Automorphisms of the normalized germ.

Proposition 2.6 for parabolic sector. Consider an arbitrary complex number
C− and let

H−(z, w) = (z, h−(z, w)), h−(z, w) = w + C−f−1
a (z). (2.12)

Then H− is an automorphism of the germ v0 in S̃− = S− × D;

(H−(z, w) − (z, w))|S̃− is flat on z = 0. (2.13)

Proof. The map H− preserves the z-coordinate and permutes the level curves of
the first integral F = wfa(z) of the germ v0. Hence, it preserves the germ itself.

Statement (2.13) follows from the analogous property of f−1
a : it tends to zero

together with all derivatives when z → 0 in S−. ¤

Proposition 2.7 for hyperbolic sector. Let ϕ be an arbitrary holomorphic func-
tion with ϕ(0) = 0, ϕ′(0) = 1. Let

H+(z, w) = (z, h+(z, w)), h+(z, w) = f−1
a (z)ϕ(wfa(z)). (2.14)

Then H+ is an automorphism of the germ v0 in S̃+ = S+ × D;

(H+(z, w) − (z, w))|S̃+ is flat on z = 0. (2.15)

Proof. H+ preserves v0 for the same reason as H−.
Statement (2.15) follows from the analogous property of fa in S+. Namely, let

ϕ(w) = w + ϕ2(w)w2. Then

h+(z, w) = w + fa(z)ϕ2(wfa(z))w2.

This implies (2.15). ¤
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2.6. Smooth normalization of a saddle-node germ analytic outside the
stable manifold for even multiplicities.

Here we prove Theorem 1. A real saddle-node (2.3) with even multiplicity has
three sectors: one parabolic and two hyperbolic. The stable invariant manifold
separates them. In the preliminary normal form (2.3) it is x = 0. We will call the
union of two hyperbolic sectors in x > 0 the hyperbolic part (of the neighborhood
of the saddle-node).

The normalizing map H will be constructed separately in the open parabolic
sector (x < 0) and in the hyperbolic part. Both maps will be analytic in their
domains and have flat difference with the identity on x = 0. Hence, after extension
by the identity at x = 0, one becomes a C∞ continuation of the other.

In the parabolic sector let H = H−◦Hµ, where Hµ is the same as in Theorem 2.2,
H− is as in (2.12) with the constant C− well chosen. Namely, let Hµ = (z, hµ), C be

the same as in (2.6). Then let C− = C
2 , where C is the component of the Martinet–

Ramis modulus, the same as in Proposition 2.4. Then H− is an automorphism of
v0 in S− × D by Proposition 2.6. Hence, H conjugates v and v0 in the parabolic
sector and is real there. Namely, by Proposition 2.4,

H(x, y) = (x,Re hµ(x, y))

in the parabolic sector.
Let us now construct the map H in the hyperbolic part. It will be taken in the

form H = H+ ◦ H1, where H1 comes from the Sectorial Normalization theorem,
H+ is an automorphism provided by Proposition 2.7 for a well chosen ϕ. Let
H1(z, w) = (z, h1(z, w)), x0 > 0 be an arbitrary small number and g(y) = h1(x0, y).

Let k(y) = Re g(y) as in Proposition 2.5; k may be holomorphically extended to
the complex domain. Let

ϕ = k ◦ g−1.

Then ϕ(0) = 0 and ϕ′(0) = 1. The map H+ given by (2.14) is an automorphism
of v0 by Proposition 2.7. Hence, H = H+ ◦ H1 brings v to v0. Moreover, H is real
on the segment σ : x = x0. As H conjugates two real vector fields v and v0, it is
real in the saturation of σ by the phase curves of v, hence, in the hyperbolic part
x > 0 of the neighborhood of zero.

Both maps H+ and H− differ from the identity by a map flat on x = 0. The
maps Hµ and H1 have the same asymptotic expansions on x = 0, see statement 2
of Theorem 2.2. Hence, the map H defined above separately in the parabolic sector
x < 0 and the hyperbolic part x > 0 continued by the identity at x = 0 is C∞

smooth. It is real and brings v to v0. Theorem 1 is proved.

Proposition 2.8. When v has an analytic center manifold the constant C in (2.6)
takes the value C = 0.

Proof. If the system has an analytic center manifold w = k(z), then modulo a
change of variable w 7→ w − k(z) in (2.3) R(z, w) factors as R(z, w) = wR1(z, w).

This yields in Theorem 2.2 that ĥ factors through w, i.e. all aj(0) = 0. The curve
y = 0 represents a level curve of the first integral (2.4). As obviously the function
y = 0 is univalued as a function of x there can be no change of determination
yielding that C = 0 in (2.6). ¤



CYCLICITY OF ELEMENTARY GRAPHICS 11

2.7. Saddle-nodes of odd multiplicity.

Here we prove Theorem 2. A real saddle-node with odd multiplicity is topolog-
ically equivalent to a saddle. Consider a germ (2.3). It has two hyperbolic parts
x > 0 and x < 0 and a stable manifold x = 0. The desired conjugacy on (x > 0) is
exactly the same as in the proof of Theorem 1, see 2.6. The conjugacy in x < 0 is
now constructed in the same way as in x > 0. As before let the conjugacy be the
identity on x = 0. The transformation thus constructed is C∞ for the same reason
as in 2.6. Theorem 2 is proved.

2.8. Partially analytic normalization of unfoldings of saddle-nodes.

Here we prove Theorem 3.

Step 1. Let ε be the (multidimensional) parameter of the unfolding. Let us
normalize the saddle-node for ε = 0 according to Theorems 1,2, and extend the
normalizing transformation cylindrically in ε. We will get a family of vector fields
normalized on the plane ε = 0. The normalizing transformation on ε = 0 has the
required properties.

Step 2. Now we can transform the new family to the form

vε = w(x, ε)
∂

∂x
− T (x, ε)y

∂

∂y
,

v0 has the normal form (2.1) (in particular, T (x, 0) ≡ 1), by a finitely smooth map,
identical on ε = 0 [B]. Division by T brings vε to

ṽε = w1(x, ε)
∂

∂x
− y

∂

∂y
, w1(x, 0) = xµ+1(1 − axµ)−1.

Step 3. The normalization procedure from [IY1], see also [IL],§9.2, allows us
to normalize the family w1(x, ε) ∂

∂x
preserving w1(x, 0) by a finitely smooth map

which is identical on ε = 0. The cylindric extension in y of the latter map brings
ṽε to the normal form (2.2).

The composition of maps constructed in Steps 1-3 provides the desired transfor-
mation.

3. Finite cyclicity of graphics occuring in the lips

To prove the finite cyclicity of the different graphics discussed in this section we
bring the family of vector fields to Ck normal form in the neighborhood of the sin-
gular points. We introduce sections transversal to the graphics in the neighborhood
of the singular points. We use the freedom of choice in the normalizing coordinates
to simplify the regular transitions defined on the sections. We introduce generic
conditions on the regular transitions which are always defined (domain and im-
age) in the normalizing coordinates. These generic conditions are always intrinsic
(independent of the normalizing coordinates).

We repeat briefly the finite cyclicity proof for a particular graphic of the lips as
it will be used later in Section 3 and in Sections 5 and 6.

3.1 Finite cyclicity of polycycles inside lips.
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Theorem 3.1 [EM]. Consider a C∞ planar vector field v0 with an ensemble
of graphics of the type “lips”: two saddle-nodes of opposite attractivity with one
hh-connection, and a continuum of pp-connections. Suppose that the regular pp-
transition, written in normalizing coordinates near the saddle-nodes has a nonzero
derivative of order n ≥ 2 at some point a (Figure 6). Then the graphic of the
ensemble passing through a has finite cyclicity not greater than n.

Re

S1

S2P1

P2

O1 O2

Figure 6: Sections for the lips

Proof. Let O1, O2 be the saddle-node singular points, the center manifold of O1

is repelling, that of O2 is attracting. Consider an arbitrary C∞ unfolding vε of
the vector field v0. For any k, there exists a neighborhood of any of the saddle-
nodes O1, O2 in R2 and a neighborhood of 0 in the parameter space such that the
unfolding has the following normal form:

v1
ε = P1(ε, x)

∂

∂x
+ xµ+1(1 + a(ε)xµ)

−1 ∂

∂x
+ y

∂

∂y
near O1,

v2
ε = P2(ε, u)

∂

∂u
+ uν+1(1 + b(ε)uν)

−1 ∂

∂u
− v

∂

∂v
near O2.

Here P1 and P2 are polynomials in x and u respectively, of degree µ − 1 and
ν − 1 respectively with ε-depending coefficients vanishing for ε = 0 [IY1]. Let
Σ1,Π1,Σ2,Π2 be cross-sections near O1, O2 given by x = −α;x = α, |y| ≤ α; u =
−α;u = α, |v| ≤ α, α > 0 small. Let x1 = y |Σ1

, y1 = y |Π1
, x2 = v |Σ2

, y2 = v |Π2
.

Then the maps along the orbits of the vector fields vε have the following form:

{

∆1 : Σ1 → Π1, x1 7→ y1 = ∆1(x1) = M(ε)x1

∆2 : Σ2 → Π2, x2 7→ y2 = ∆2(x2) = m(ε)x2,
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with
m(ε) → 0, M−1(ε) → 0

as ε → 0. The following map is obtained by following the flow

Rε : Π1 → Σ2, y1 7→ x2 = Rε(y1),

Moreover, the normalizing charts (x, y), (u, v) may be chosen so that the hh-transition
is a mere translation ([GR]):

∆3 : Π2 → Σ1, y2 7→ x1 = y2 + δ(ε).

Remark. Let Π1 be parametrized by y1 and a be the y1-coordinate of the intersec-
tion of the graphic with Π1, as in Theorem 3.1. The assumption of the theorem
is:

R(n)
ε (a) 6= 0,

for some n ≥ 2.
It is invariant with respect to the choice of normalizing coordinates [GR]. Indeed,

the transition map from one normalizing chart (x, y) to another (x, z(x, y)) is merely
a shift on Π1 : z(α, y) = y + δ. The same holds for Σ2.

End of the proof. Consider two maps of Π1 to Σ2, corresponding to forward and
backward moving along the orbits of vε:

Rε : Π1 → Σ2, y1 7→ Rε(y1),

∆−1
2 ◦ ∆−1

3 ◦ ∆−1
1 : Π1 → Σ2, y1 7→ m(ε)−1M(ε)−1y1 − m(ε)−1δ(ε).

Zeros of the displacement map

Vε(y1) = Rε(y1) − m(ε)−1M(ε)−1y1 + m(ε)−1δ(ε)

correspond to periodic orbits. Although V0 does not exist V
(n)
ε |ε=0 does exist and

we have V
(n)
ε |ε=0(a) = R

(n)
0 (a) 6= 0. Hence, V

(n)
ε (a) 6= 0 for small ε. By Rolle’s

theorem, Vε has no more than n zeros near a. This proves the theorem. ¤

3.2 Lips with typical boundary graphics inside analytic families.

Theorem 3.2.

(1) If the ensemble formed by lips has a pp-boundary graphic passing through
a hyperbolic saddle inside an analytic vector field then any graphic of the
ensemble has absolute finite cyclicity as soon as the saddle has hyperbolicity
ratio r different from one or has no analytic first integral. (The hyperbolicity
ratio is the absolute value of the quotient of the negative eigenvalue to the
positive one).

(2) If the ensemble formed by lips has a bp-boundary graphic inside an analytic
vector field then any graphic of the ensemble has absolute finite cyclicity.
In particular all graphics inside the malignant frown or the spadesuit have
finite cyclicity.



14 F. DUMORTIER, Y. ILYASHENKO AND C. ROUSSEAU

Proof. We need to prove in each case that the regular pp-transition written in
normalizing coordinates has a nonaffine ∞-jet at each point. This property is
invariant under the choice of the normalizing coordinates. By Theorems 1 and 3
these coordinates may be chosen to be analytic on the cross-sections Π1 and Σ2.
Hence, in these coordinates, R0 is analytic. To check that all its ∞-jets are nonaffine
it is sufficient to prove that the map is nonaffine globally.

(1) To do that in case (1), let us consider the map R0 near the intersection of
Π1 with the boundary graphic Γ. Making a shift, we can consider the points
Γ ∩ Π1 and Γ ∩ Σ2 to have zero y1 and x2 coordinates. Then, near 0,

R0(y1) =

{

yr
1(A + O(y1)), r 6= 1,

y1(A +
∑i−1

j=1 cjy
j
1 + Byi

1 ln y1 + O(yi
1)) for some i ≥ 1; r = 1,

with AB 6= 0. This map is not affine near zero. Hence, it is nonaffine
everywhere, by analyticity.

(2) In the case of a bp-boundary graphic the unstable manifold γ of one saddle-
node, say O1, enters the other saddle-node O2 as part of a center manifold.
Without loss of generality, after a coordinate shift, if necessary, we may
assume that R0(0) = 0. Let Σ2 ∩ γ = a, D = [0, a]. Then all the positive
semi-orbits that begin near O1 in the domain being a square K : x1 ∈
[0, α], y1 ∈ [0, α], α is small, in the normalizing chart, intersect D. The map
K → D along the orbits is analytic. Suppose that Π1 ⊃ {x1 = α, y1 ∈
[0, α]}, and the map R0 : Π1 → D is affine. As R0(0) = 0 it is linear; let
R0(y1) = βy1. For any n > 2, let Πn = {x1 = α

n
, y1 ∈ [0, α]}. The map

Rn : Πn → D along the orbits of the ensemble is well defined and analytic.

The map Πn → Π1 may be easily calculated, because y1e
1

µx
µ
1 x−a

1 is a first
integral near O1. This map is a multiplication by

Cn = e
nµ−1

µαµ na, Cn → ∞

as n → ∞. Then the map Πn → D along the orbits is a multiplication by
Cnβ. The length of the image is Cnαβ. It tends to infinity with n, but the
image belongs to the segment D, a contradiction.

¤

3.3 Two subsequent lips.

Theorem 3.3. A graphic of a C∞ vector field with four saddle-nodes of even
multiplicity, alternately attracting and repelling, has finite cyclicity if the two regular
pp-transitions satisfy the following generic conditions:

i) both are nonaffine at some finite order;
ii) at some finite jet level one map is not right–left affine equivalent through

orientation preserving affine maps to the inverse of the other.

An explicit bound for the cyclicity is given by the minimal order N of the jet of the
two pp-transitions on which we can check the genericity condition.

If the two regular pp-transitions are analytic, then the theorem follows under the
hypothesis that the transitions are not affine and one map is not right–left affine
equivalent through orientation preserving affine maps to the inverse of the other.
Indeed these conditions can be verified on a finite jet.
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Proof. Denote the cross-sections in the parabolic sectors of the saddle-nodes as Σ1,
Π1, Σ2, Π2, see Figure 5.

Let fε : Σ1 → Π1, gε : Π2 → Σ2 be the pp-transitions corresponding to the
value ε of the parameter (gε is the transition backwards). For those values of
the parameter for which all the saddle-nodes vanish, the maps along the orbits of
perturbed fields a : Π2 → Σ1, b : Σ2 → Π1 are affine in the normalizing coordinates
chosen above.

The displacement map has the form Vε : Π2 → R, Vε(x) = fε ◦ a − b ◦ gε.
Let f = f0, g = g0. Theorem 3.3 follows now from the next Lemma. ¤

Main Lemma 3.4. Let functions f, g be CK diffeomorphisms on a segment, which
are, at some finite jet level of order < K, nonaffine and not right–left affine equiv-
alent through orientation preserving affine maps. Then for any two points x0, y0

there exists N = N(f, g, x0, y0) < K, U, V small neighborhoods of x0, y0 and small
CN neighborhoods of f and g such that the function

h̃a,b = f̃ ◦ a − b ◦ g̃

has no more than N zeros in U ∩ a−1V, where a, b are arbitrary orientation pre-
serving affine maps.

Proof. Let x0 = y0 = 0, f (m)(0) = am, g(m)(0) = bm. Let a = αx+α0, b = βx+β0,

ha,b = f ◦ a − b ◦ g. Then h
(m)
a,b (0) = αmam − βbm.

Let α ≥ 1. Elsewhere we replace ha,b = 0 by an equivalent equation

b−1 ◦ f − g ◦ a−1 = 0

and use the symmetry of f and g in the assumptions of the theorem.
Take k ≥ 2 such that ak 6= 0. There exist at most a unique (α, β) such that

h′
a,b(0) = h

(k)
a,b(0) = 0. Hence, as f and g are not right-left affine equivalent, there

exists n 6= k such that for all a and b

h′
a,b(0) = h

(k)
a,b(0) = 0 =⇒ h

(n)
a,b (0) 6= 0. (3.1)

Similar values k1 and n1 are obtained when we consider the case α ≤ 1 and we
deal with the function ha,b = b−1 ◦ f − g ◦ a−1. We will prove that N(f, g, 0, 0)
above may be chosen equal to max(n, k, n1, k1).

We will choose U and V so small that for any a and b and for any f̃ , g̃ CN -close

to f, g one of the following three inequalities holds on V ∩a−1(U) : h̃′
a,b 6= 0, h̃

(k)
a,b 6=

0, h̃
(n)
a,b 6= 0.

That one of these inequalities holds depends on the relations between α, β and
the derivatives of f and g at 0. Let ak > 0 (we can obtain that by replacing, if
necessary, f and g by −f and −g respectively).

Case 1: bk < 0. In this case h̃
(k)
a,b > 0 on V ∩ a−1U for small U and V and f̃ , g̃

CN -close enough to f, g; this assumption will not be repeated later on. Indeed,

h̃
(k)
a,b(x) = αkck − βdk > 0,
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where ck is close to ak > 0, dk is close to bk < 0, α > 0, β > 0.

Case 2: bk = 0. In this case either

h̃′
a,b 6= 0 or h̃

(k)
a,b 6= 0 on V ∩ a−1(U). (3.2)

Let A1 = {(α, β) ∈ R2
+ | αc1−βd1 = 0} where c1, d1 range over small neigborhoods

of a1, b1. For (α, β) /∈ A1, the first inequality in (3.2) holds.

For (α, β) ∈ A1, the set h̃
(k)
a,b(x) = 0 is given by

Ak = {(α, β) ∈ R2
+|αkck − βdk = 0},

where ck ranges in a small neighborhood of ak = f (k)(0), and |dk| < δ (dk ranges
near bk = 0). Then for (α, β) /∈ Ak,

h̃
(k)
a,b 6= 0 on V ∩ a−1(U).

Moreover,
{α ≥ 1} ∩ A1 ∩ Ak = ∅

for δ small enough. This proves (3.2). Hence, h̃a,b has no more than k zeros in
V ∩ a−1(U).

Case 3: bk > 0. In addition to A1, Ak, consider a set

An = {(α, β) ∈ R2
+|αncn − βdn = 0},

where cn, dn range near an, bn. The choice of n, see (3.1), implies that for c1, ck, cn,
d1, dk, dn, close enough to a1, ak, an, b1, bk, bn respectively

A1 ∩ Ak ∩ An = ∅.

Hence, either (3.2) holds, or h̃
(n)
a,b 6= 0. This proves the Main Lemma 3.4, hence,

Theorem 3.3. ¤

The situation of Theorem 3.3 defines an ensemble of graphics with four semi-
hyperbolic points indexed by an open subset of R2. We now give conditions so
that any graphic of the ensemble occuring inside an analytic vector field has finite
cyclicity.

Corollary 3.5. A graphic of an analytic vector field with four saddle-nodes of
even multiplicity alternately attracting and repelling has finite cyclicity if the two
ensembles of lips are bounded simultaneous above (resp.below) by two pp-connections
(one for each ensemble of lips), each through a hyperbolic saddle and if the two
hyperbolic saddles belonging to the two boundary pp-transitions have hyperbolicity
ratios r1 and r2 satisfying r1, r2 6= 1 and r1r2 6= 1 (Figure 7).

Proof. The two pp-transitions are nonaffine: this is the same argument as in The-
orem 3.2. We need now to show that one is not right-left affine equivalent to the
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Figure 7:

inverse of the other. For that purpose we use the same sections and notations as in
Theorem 3.3 and Main Lemma 3.4.

The sections Σi and Πi can be taken analytic and so as to intersect the pp-
boundaries passing through the hyperbolic saddles. Let I and J be the domains of
definition of f0 and g0: these domains are open intervals. The intersection points
X0 and Y0 of the upper pp-boundaries with the sections Σi are respectively the
supremum of I and J . The maps f0, g0 cannot be extended as diffeomorphisms
above these points. Indeed, f0(X) = (X − X0)

r1(C +o(1)), r1 6= 1, C > 0. Hence,
f ′
0(X0) = 0 for r1 > 1 and f ′

0(X0) = ∞ for r1 < 1. The same argument works for
g0.

Let us suppose that we have a relation of the form

f0 ◦ a − b ◦ g0 = 0, (3.3)

where a and b are affine maps, the equality standing in the neighborhood of points
y0 = a−1(x0). The relation can also be written

f0 = b ◦ g0 ◦ a−1, g0 = b−1 ◦ f0 ◦ a. (3.4)

This defines analytic extensions of f0 on a(J) and of g0 on a−1(I). Let a(Y0) ∈ I.
Then the first relation in (3.4) leads to a contradiction: f0 is diffeomorphic at
a(Y0), and b ◦ g0 ◦ a−1 is not. If a−1(X0) ∈ J, the second relation in (3.4) provides
a contradiction. If none of the case holds, then a(Y0) = X0. Then (3.3) yields:

(Y − Y0)
r1(C1 + o(1)) = (X − X0)

1
r2 (C2 + o(1))

which implies r1r2 = 1, a contradiction. ¤

Corollary 3.6. A graphic of a C∞ family of vector fields with an arbitrary number
of saddle-nodes, all with central transition, has finite cyclicity as long as there is
no more than two pp connections and:

(1) the genericity assumption of Theorem 3.1 is satisfied in the case of one
pp-connection;
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(2) the genericity assumption of Theorem 3.3 is satisfied in the case of two
pp-connections.

Proof. When there are no pp-connection the saddle-nodes are all of the same at-
tractivity and the graphic is known to have cyclicity one as the derivative of the
Poincaré map is far from 1. In the two other cases the proof is exactly the same as
the corresponding proof in Theorems 3.1 and 3.3. ¤

4. Graphic with a saddle-node and an elliptic nilpotent point

4.1 Finite cyclicity of such a graphic.

In the next paragraph we are concerned with the finite cyclicity of a graphic
through a nilpotent point of multiplicity 3 and of elliptic type inside a C∞ family
of vector fields vε|{ε∈Λ}. In the neighborhood of such a point the vector field v0 is
C∞ equivalent to a vector field with 4-jet:

ẋ = y

ẏ = −x3 + bxy

where b > 2
√

2.
A weighted blow-up (x, y) = (rx, r2y) allows to study the topological type of the

singularity (Figure 8). On the blown-up circle we have two saddles and two nodes.

Before blow-up After blow-up

Figure 8: Nilpotent elliptic point and its blow-up

We prefer to transform the singularity via the quasi-homogeneous change of
coordinate (X, Y ) = (x

c
, 1

c
(y − cx2)) to a system

Ẋ = Y + c2X2

Ẏ = XY,

where 2c2 − cb + 1 = 0. Choosing c = b−
√

b2−8
4 (this amounts to choose the bring

the two nodes, called P1 and P2, on the blown-up circle to the horizontal axis),
letting c2 = a and renaming (X, Y ) by (x, y) we study the singularity with a 4-jet
of the form

ẋ = y + ax2

ẏ = xy
(4.1)
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Before blow-up After blow-up

P1 P2

Figure 9: Nilpotent point of (4.1) and its blow-up

with a ∈ (0, 1
2 ). The same weighted blow-up (x, y) = (rx, r2y) is used to draw it

in Figure 9. The advantage of this model is that the y-axis (corresponding to the
direction of approach of the singular point for pp-transitions) is invariant.

The graphic we will study consists of a connection between the two nodes (for
this reason we say that the graphic has a pp-passage through the elliptic point) and
an additional saddle-node Q3 on the connection which we can of course suppose to
be attracting (Figure 10).

The genericity condition concerns the passage (regular transition) from P2 to
the saddle-node Q3: we consider sections Σ and Π transversal to this transition
map. These sections are taken parallel to one coordinate axis in the normalizing
coordinates near P2 and Q3.

P1

P2

P

S

P2

P

S

P1

Q3Q3

Q3

Figure 10: Graphic with pp-passage through a nilpotent elliptic point and a saddle-node

(P2 is considered in the chart x = 1. Hence the coordinates near P2 are r and y. As
r = 0 is invariant a normalizing change of coordinates can be taken as a function
of the form ỹ = y + O(r) + o(y), which, as P2 is a node, can be taken analytic if
v0 is analytic.) The regular transition is a map R : Σ → Π. Assuming that the
connection occurs for y = 0 the genericity condition allowing to prove the finite
cyclicity is that there exists n ≥ 2 such that R(n)(0) 6= 0.

Remark. The condition is intrinsic. We need to show that the condition is invariant
under changes of coordinates preserving the normal form near P2 and near Q3. Near
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Q3 the result follows from [GR]. Near P2 we use that P2 is a node with normal form
(for ε = 0)

ṙ = r

˙̃y = σỹ + Arn

where A = 0 as soon as σ /∈ N.
Because of the special form of the system we only allow normalizing changes

of coordinates keeping r fixed. If σ /∈ N then there is no nonlinear change of
normalizing coordinates. Indeed a sufficiently smooth change of coordinates must
preserve the analytic invariant manifold. Hence it has the form ỹ 7→ ỹ1 = ỹ(C +
O(|(r, ỹ)|)) and must send the first integral H(r, ỹ) = r−σ ỹ to φ(H). From σ /∈ N

necessarily φ(H) = CH, i.e. ỹ1 = Cỹ. If σ ∈ N and A = 0 we can allow the change
of coordinate to have the form ỹ 7→ ỹ1 = Cỹ + o(|(r, ỹ)|). When A = 0, with the
same H as before, we get φ(H) = CH + D. On a section r = r0 the first integral
H (resp. φ(H)) is an affine map of the normalizing coordinate ỹ (resp. ỹ1). As φ
is affine the result follows. We are left with the case σ ∈ N and A 6= 0 in which

case the integral has the form H(r, ỹ) = ỹ−Arσ ln r
rσ . The only allowed change of

coordinate preserving the normal form is ỹ 7→ ỹ1 = ỹ + o(|(r, ỹ)|) and send H to
φ(H) = H + D (which implies that ỹ1 = ỹ + Brσ). We conclude as before since H
and φ(H) are still affine maps of ỹ and ỹ1 on r = r0.

If n is minimal with this property then we say that the map R is nonaffine of
order n at y = 0.

Theorem 4.1. A graphic with central transition through a saddle-node and with
pp-passage through a nilpotent elliptic point of multiplicity 3 has finite cyclicity ≤ n
as soon as the transition map from the elliptic point to the parabolic sector of the
saddle-node (in normalizing coordinates, see the previous remark) is nonaffine of
some finite order n (Figure 10).

Proof. We use the method of the blow-up of the family [DRS] and the notations
introduced in [RZ1] and we suppose that the saddle-node is attracting. In the
neighborhood of the nilpotent elliptic point we can use the following normal form
for the family ([RZ1]):

ẋ = y + a(ε)x2 + µ2

ẏ = µ1 + µ3y + x4h1(x, ε) + y(x + η2x
2 + x3h2(x, ε)) + y2Q(x, y, ε),

(4.2)

where a(0) ∈ (0, 1
2 ) and η2 ∈ R. The parameters are ε = (µ1, µ2, µ3, µ), h1(x, ε) =

η2a + O(ε) + O(x). Moreover the functions h1(x, ε), h2(x, ε) and Q(x, y, ε) are C∞

and Q(x, y, ε) is of arbitrary high order in (x, y, ε).
We must discuss the number of limit cycles in a Hausdorff neighborhood of the

graphic for values of the parameters in a small neighborhood of the origin. Only
the parameters µi, i = 1, 2, 3, will be essential to the results.

We make the change of parameters (µ1, µ2, µ3) = (ν3µ1, ν
2µ2, νµ3) and consider

a neighborhood of the origin in the space (µ1, µ2, µ3) given by (µ1, µ2, µ3) ∈ S2 and
ν ∈ (0, ν0).

We will prove that for all µ∗ = (µ1, µ2, µ3) ∈ S2 and for any µ∗ there exist
neighborhoods of µ∗ and µ∗, there exist ν0 > 0 and δ > 0 such that for µ and µ
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respectively in the neighborhoods of µ∗ and µ∗ and for ν < ν0 the family vε has at
most n limit cycles at a Hausdorff distance distance less than δ from our graphic.
We conclude using compacity of S2.

We identify (4.2) to a µ family of 3-dimensional systems by adding the additional
equation ν̇ = 0. We take two sections Σ1,2 = {x = ∓x0} in the neighborhood of
the nilpotent point and consider the two transitions S : Σ2 → Σ1 and T : Σ1 → Σ2

(Figure 11).

S1

S2

Figure 11: The sections Σ1 and Σ2 close to the blown-up sphere

The first transition S is quite standard, except for the fact that Σi are two
dimensionsal sections parametrized by (ν, ŷi), i = 1, 2, where ŷi are normalized
coordinates coinciding for ν = 0 with ỹi defined before near Pi (details below).
The transition T is not standard as it describes the passage near a non elementary
singular point. To study it we use the blow-up of the family introduced by Roussarie
and applied in [DRS] and [RZ1].

In the neighborhood of the origin we apply the weighted blow-up (x, y, ν) =
(rx, r2y, rρ) where r ≥ 0 and (x, y, ρ) ∈ S2, to the system (4.2) to which we have
added the equation ν = 0. This blows up the origin to a sphere (corresponding
to r = 0) which is invariant under the flow. Moreover from ν̇ = 0 we get that
the function rρ is invariant under the flow. The singular locus rρ = 0 is formed
by the plane ρ = 0 parametrized by (x, y) ∈ S1 and r (r = 0 corresponds to the
weighted blow-up of the singularity of (4.2) as ε = 0) together with the sphere
r = 0, (x, y, ρ) ∈ S2. Because of the geometry the flow has to be studied in charts.

The idea of the method is to study the flow on the singular locus for the different
values of the µi. To study the flow on the sphere r = 0 we work in charts. The
chart ρ = 1 is called the family rescaling while the charts x = ∓1 (or y = ±1) allow
to study the neighborhood of the circle r = ρ = 0 (which corresponds to the usual
weighted blow-up of the singularity for ε = 0).

The chart ρ = 1 provides phase portraits on the sphere for the different values
of µi. In the charts x = ∓1 we study the neighborhood of the four singular points
Pi, i = 1, . . . 4. These are the points at infinity in the chart ρ = 1 (infinity being
studied in weighted coordinates). Glueing that with the global trajectories outside
the neighborhood of the singular point yields limit periodic sets in 3-dimensional
space.
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In the chart ρ = 1 the system has the form

ẋ = y + ax2 + µ2

ẏ = xy + µ1 + µ3y + O(r).
(4.3)

The method consists in identifying all limit periodic sets which we will encounter in
the singular set rρ = 0 and in studying the finite cyclicity of each of them. In our
case we find the three limit periodic sets appearing in Figure 12 (see also Figure
13 for a 3-dimensional picture). They have to be studied in a three dimensional
space, the disk in the middle being the upper half-sphere r = 0, ρ ≥ 0. The use of
the invariant foliation ν = rρ = const allows in practice to reduce the study to 2
dimensions.

Epp 1

Re

S3
P3

P1
S1 Ue

S4

S2
P4

P2

Epp 3

S1 S2

Epp 2

S1 S2

Figure 12: The limit periodic sets Epp1, Epp2 and Epp3.
The small disk represents the upper half-sphere seen from above

The points P1 and P2 considered previously now become singular points of a 3-
dimensional vector field. Looking at them in the respective charts x = ±1, natural
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S2

P2

D2S1

S4 P4

S3

P3

P1

D1

Figure 13: The limit periodic set Epp2 and its sections in 3-dimensional space

coordinates in their neighborhood are given by (r, ρ, yi). The eigenvalues are given
by ∓a(ε),±a(ε),∓(1 − 2a(ε)). Hence the normal form depends whether a(0) is
rational or irrational. We will treat in detail the simpler case a(0) /∈ Q which
contains all the essential ideas. One ingredient is the orbital normal form near P1

and P2. When a(0) /∈ Q the only resonance is between the first two eigenvalues.
Because of the invariant foliation the Ck orbital normal form is given by

ṙ = ∓r

ρ̇ = ±ρ

˙̂yi = ∓σŷi + ŷif
±
ε (rρ)

(4.4)

where σ = 1−2a(ε)
a(ε) and f±

ε (rρ) = f±
ε (ν) =

∑k
i=1 a±

i (ε)νi.

Let us come back to the sections Σ1,2 = {x = ∓x0} defined previously. In the
respective charts x = ±1 they correspond to sections with respective equations
r = x0, where r0 = ρ0. Coordinates on the sections are ν (related to ρ through
ν = r0ρ) and the variable ŷi defined in (4.4). Then ŷi = yi + o(yi)+O(r)+O(ρ) =
1
r2
0

(yi + o(yi)) depends in a Ck way of yi and the parameters.

Using the blow-up of the family we can now calculate the transition map T :
Σ1 → Σ2. Indeed we decompose it into a composition of three transition maps:
two transition maps (Dulac maps) in the neighborhood of P1 and P2 and a regular
transition map T along the blown-up sphere: T = D−1

2 ◦T ◦D1, where Di : Σi → Πi.
At this point it is important to consider all phase portraits of (4.3). As soon as

µ1 6= 0 there is no passage from P1 to P2 on the sphere r = 0. Hence the only limit
periodic sets listed above correspond to µ1 = 0, i.e. to the existence of an invariant
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line on which we have either no singular point (µ2 > 0) or a saddle-node (µ2 = 0,
µ3 = ±1). The Dulac map corresponding to the passage near P1 (resp. near P2

with reverse time) will be the transition map for system (4.4) with i = 1 (resp.
i = 2) from the section Σi = {r = r0} to a section Πi = {ρ = ρ0}, parametrized by
(ν, ŷi) = (ρ0r, ŷi). The Dulac maps Di : Σi → Πi are calculated from (4.4) as

Di(ν, ŷi) =

(

ν,

(

ν

ν0

)σ

ŷi

(

1 +
(

e−f±
ε (ν) ln ν

ν0 − 1
))

)

=

(

ν,

(

ν

ν0

)σ

ŷi (1 + Ni(ν, ln ν, ε))

)

where Ni(ν, ln ν, ε) = −a±
1 (ε)ν ln ν

ν0
+ O(ν2(ln ν)2) and ν0 = r0ρ0.

The third component in the transition T is the transition map T : Π1 → Π2.
The map is regular if µ2 > 0, in which case, because of the invariant foliation, it

has the form (ν, z) 7→ (ν, T (ν, z)) where T ](ν, z) = A(ν)z + O(z2) with A(0) 6= 0.
When µ2 = 0 it is the composition of two regular transition maps and a linear map
corresponding to the passage near a saddle-node through central transition. The

global form of T is the same as in the regular case but the coefficient A(ν) can be
either very small or very large when µ2 varies.

We also have a Dulac map near the saddle-node Q3. Near Q3 the Ck normal
form is taken as the product of the usual normal form (depending on ν) with the
equation ν̇ = 0. Hence the Dulac map has the form D3(ν, u) = (ν, m3(ε)u), where
m3(ε) → 0 as ε → 0.

Finite cyclicity of the limit periodic set Epp1. We consider the return
map defined on section Σ1 in coordinates (ν, ŷ1). The first coordinate is the map
(ν, ŷ1) 7→ ν while the second has a first derivative in ŷ1 smaller than 1. This suffices
to prove that Epp1 has cyclicity at most one.

Finite cyclicity of the limit periodic set Epp3. Here there is an additional
attracting saddle-node Q4 on the line y = 0 on the blown-up sphere. The Dulac
map near Q4 is similar to that of P3 with a coefficient m4(ε) such that m4(ε) → 0
as ε → 0. As for Epp1 the cyclicity is at most 1.

Finite cyclicity of the limit periodic set Epp2. In this case we introduce
sections Σi and Πi, i = 3, 4 near the two saddle-nodes so that the second component
of the central transitions are of the form y3 7→ m3(ε)y3 and y4 7→ M4(ε)y4 where

lim
ε→0

m3(ε) = 0, lim
ε→0

M4(ε) = +∞.

We can choose the normalizing coordinates near Q3 and Q4 so that the two transi-
tion maps from Π1 to Σ4 and from Π3 to Σ1 are mere translations. We are left with
two Ck-transitions Rε : Σ2 → Σ3 and Uε : Π2 → Π4. We consider the displacement
map from Σ2 to Σ1. We only need to consider the second component which can be
written as (we denote ŷ2 simply by y):

Vε(y) = m3(ε)Rε(y)+δ1−
(

(

ν

ν0

)−σ

(M4(ε))
−1Uε

((

ν

ν0

)σ

y(1 + N2(ν))

)

+ δ2

)

(1+N1(ν))−1.
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The first derivative is given by

V ′
ε (y) = m3(ε)R

′
ε(y)−M4(ε)

−1U ′
ε

((

ν

ν0

)σ

y(1 + N2(ν))

)

(1+N1(ν))−1(1+N2(ν)).

We consider the equivalent function

Wε(y) =
R′

ε(y)

U ′
ε

((

ν
ν0

)σ

y(1 + N2(ν))
) − (m3(ε)M4(ε))

−1(1 + N1(ν))−1(1 + N2(ν)).

Then W
(n−1)
ε (y) 6= 0 for sufficiently small (y, ε).

The case a(0) ∈ Q is longer to write. However the Dulac maps near P1 and P2

have been studied in detail in [RZ1] (in particular the fact that they behave well
under derivation). The theorems of [RZ1] ensure that all steps of the proof just
done can be reproduced nearly verbatim in the new context. ¤

4.2 Application to quadratic vector fields.

Corollary 4.2. The graphic (I2
10a) (Figure 2) of quadratic systems has finite cyclic-

ity.

Proof. Originally in [DRR] this graphic was noticed to occur in the family

ẋ = λx − µy + a20x
2 + a11xy + a02y

2

ẏ = µx + λy + b20x
2 + b11xy + b02y

2

with (λ, µ) ∈ S1 and (a20, . . . , b02) ∈ S5. Using a rotation we can suppose that the
hyperbolic singular point at infinity is located along the x-axis, yielding b20 = 0. By
a linear transformation we can assume that the nilpotent singular point is located
along the y-axis, yielding a02 = 0. The point is nilpotent if and only a11 = b02 = 0.
Using that the origin is a focus, that the nilpotent point is of elliptic type with the
position of the separatrices as in Figure 2 and additional scaling we can finally see
that the graphic occurs in a quadratic system of the form:

ẋ = δx − y + Ax2

ẏ = x + γy + xy

where A ∈ ( 1
2 , 1).

The additional condition (δ− γA)2 − 4A = 0 guarantees the existence of a point
of multiplicity at least two, so is satisfied when a graphic (I2

10a) occurs but this is
not needed in the proof. It is easily checked that the family of graphics through the
saddle node ends in a graphic with a hyperbolic saddle with hyperbolicity ratio less
than 1. We must show that the map R0 of Theorem 3.3 is nonaffine on any graphic
of the family. As in Theorem 3.2 this will be proved by an analytic extension
principle using the fact that the hyperbolicity ratio is different from 1. Indeed R0

is nonaffine near the limiting graphic which passes through the hyperbolic saddle.
We can choose sections in the normalizing coordinates near the saddle-nodes which
are analytic. Moreover the point P2 of the blown-up sphere (Figures 9 and 10) with
eigenvalues (1,−1, σ) is a node when restricted to the invariant plane ρ = 0. Hence
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the normalizing change of coordinates near P2 can be taken as the composition of an
analytic map: y 7→ ỹ, bringing the node to normal form in the plane ρ = 0 together
with an additional change of coordinates depending on ρ and equal to the identity
on the plane ρ = 0. The map R0 is defined between analytic sections parametrized
by analytic coordinates. We conclude that the transition map is nonaffine near the
limiting graphic, hence nonaffine everywhere. ¤

5. Elementary catastrophies of limit cycles

occuring in perturbations of the lips

5.1 Bifurcation diagram near a single graphic.

In this section we will concentrate on the simplest situation in which the “lips”
occur, namely the configuration represented in Figure 3a, and already considered,
with respect to the finite cyclicity problem, in Theorem 3.1. We will continue using
some notions introduced in that theorem. Aiming at describing interesting and
stable patterns of limit cycles we will impose a number of genericity conditions, to
be specified in the text. All our local results – localized near one of the limit periodic
sets in the ensemble – do however also apply to the more complicated situations
represented in the Figures 3 and 4. We will deal with local C∞ ε-families of vector
fields with ε ∈ Rp.

We locate the semi-hyperbolic point with repelling (resp. attractive) parabolic
sector at p1 (resp. p2); we should in fact write p1(ε) and p2(ε) but will not do it
for sake of simplicity in notation. For k > 0 sufficiently large we use the respective
Ck normal forms







ẋ1 = µ1(ε) +
r−1
∑

j=1

bj(ε)x
j
1 + xr+1

1 (1 + a1(ε)x
r
1)

−1

ẏ1 = y1

(5.1)

and






ẋ2 = −µ2(ε) −
s−1
∑

j=1

bj(ε)x
j
2 − xs+1

2 (1 + a1(ε)x
s
2)

−1

ẏ2 = −y2

(5.2)

with r, s ≥ 1 and odd. We suppose the chosen graphic to be represented by y1 = 0.
In these local coordinates we can now define the “rotational” parameter δ in the
regular hh-transition. Let us recall from the proof of Theorem 3.1 that we can
reduce the regular hh-transition to an affine map with constant term δ(ε).

Like in the proof of Theorem 3.1 we can also consider the regular pp-transition
R(y1, ε) with respect to the normal form (5.1) and (5.2). Let us introduce

ai(ε) =
1

i!

∂iR

∂yi
1

(0, ε)

for 2 ≤ i ≤ n, with k À n ≥ 2. As generic conditions we require that

an(0) 6= 0 (5.3)

and that the mapping

ε 7→ (δ, µ1, µ2, b1, . . . , br−1, b1, . . . , bs−1, a2, . . . , an−1)(ε) (5.4)

is a submersion at ε = 0.
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Theorem 5.1. Let Γ be a graphic with two semi-hyperbolic points of even multi-
plicity (Figure 3a), occuring in a C∞ ε-family of planar vector fields. Suppose that
the regular pp-transition (defined on sections parallel to the y-axes in the Ck nor-
malizing coordinates (5.1) and (5.2)) is of order n at y1 = 0, ε = 0 like expressed in
(5.3), and that ε is a generic parameter as defined in (5.4). Then, keeping µ1 > 0
and µ2 > 0, in any Hausdorff neighborhood W of Γ and in any neighborhood V
of ε = 0, the bifurcation diagram of the limit cycles contains a trivial 1-parameter
family of elementary catastrophies of codimension n − 1.

Remarks.

(1) In this theorem we have not described the full bifurcation diagram, and this
was on purpose. By Theorem 3.1 we already know the cyclicity to be at
most n. In Theorem 5.1 we do not only show the cyclicity to be exactly
n, but we also show that all possible stable bifurcations involving at most
n limit cycles will occur. We do not intend to study the matching and the
interference of these bifurcations of the limit cycles with the bifurcations of
the singularities in the unfolding of the semi-hyperbolic points p1 and p2.

Moreover, besides the bifurcations of limit cycles that are “interior” to the
chosen y1-neighborhood of 0, there are also the bifurcations corresponding
to a limit cycle escaping from the chosen neighborhood of the graphic, a
problem which we will consider in paragraph 5.2.

(2) The functions b1(ε), . . . , br−1(ε), b1(ε), . . . , bs−1(ε) are not present in con-
dition (5.4) in case the semi-hyperbolic points p1 and p2 both are of codi-
mension 1, i.e. r = s = 1.

(3) A complete description of the bifurcations of the polycycle ”lips” in generic
3-parameter families was obtained in [KS].

Proof of theorem 5.1. As a consequence of the genericity conditions (5.4) we can,
for ε ∼ 0, change the parameter ε ∈ Rp to a new parameter

ε = (ε′, ν)

with
ε′ = (δ, µ1, µ2, b1, . . . , br−1, b1, . . . , bs−1, a2, . . . , an−1)

and ν ∈ Rp−q for q = r + s + n − 1. Let us from now on take

b1 = . . . = br−1 = b1 = . . . = bs−1 = 0, ν = 0, (5.5)

and denote the remaining parameters by

λ = (δ, µ1, µ2, a2, . . . , an−1).

Let us write y instead of y1 (the y-coordinate is chosen in a way that y = 0 represents
the graphic under consideration for λ = 0).

Like in the proof of Theorem 3.1 we can consider the regular pp-transition R(y, ε)
and the related displacement function V (y, ε). We can suppose that R is of class
Ck, with k finite but as large as we want. Let us restrict to the condition (5.5) and
denote R(y, ε) and V (y, ε) by respectively R(y, λ) and V (y, λ).
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Under all the conditions that we suppose, we can write

V (y, λ) = δm−1(λ)+(α(λ)−m−1(λ)M−1(λ))y+a2y
2+. . .+an−1y

n−1+an(λ)yn+Ψ(y, λ)
(5.6)

for some α(λ) > 0 and with Ψ of class Ck, Ψ = O(yn+1), an(0) 6= 0 and k À n.
Let us recall that

m(λ) = exp



−
X

∫

−X

dx1

µ1 + x1h(x1, λ)





and

M(λ) = exp







X
∫

−X

dx2

µ2 + x2h(x2, λ)






,

for some well chosen X > 0, X > 0 and where h(x1, λ) = xr
1(1 + a1(λ)xr

1)
−1, resp.

h(x2, λ) = xs
2(1 + a1(λ)xs

2)
−1.

As such

∂m

∂µ1
(λ) =





X
∫

−X

(1 + O(x1))dx1

(µ1 + x1h(x1, λ))2



 · m(λ), (5.7)

which is strictly positive for µ1 > 0 and X sufficiently small. Similarly we can prove
that M(λ) → ∞ for µ2 → 0, and that ∂M

∂µ2
(λ) < 0 for µ2 > 0 and X sufficiently

small.
Let us now work along a curve defined by δ = 0, a2 = . . . = an−1 = 0 and

α(λ) = m−1(λ)M−1(λ). We consider this curve for µ2 > 0, where, because of (5.7)
and a related property on ∂M

∂µ2
, we can suppose that it is regular and that it tends

to the origin in parameter space for µ2 → 0.
We will now study the bifurcation of limit cycles near y = 0 along this curve in

parameter space. For that purpose we change expression (5.6) into

V (y, λ, η) = η1 + η2y + a2y
2 + . . . + an−1y

n−1 + an(λ)yn + Ψ(y, λ), (5.8)

meaning that besides the parameters λ we introduce independent parameters η =
(η1, η2) that we will also keep close to zero. Expression V is Ck in (y, λ, η) and as
such we can apply to it the preparation theorem in finite smoothness ([Ba], [L]):

V (y, λ, η) = F (y, λ, η)[yn + Bn−1(λ, η)yn−1 + . . . + B0(λ, η)] (5.9)

for some Ck′

functions Bi, 0 ≤ i ≤ n − 1, vanishing at the origin and F with
F (0, 0, 0) 6= 0. In fact if we want here some k′ sufficiently larger than n we might
need to adapt the previously chosen k. Let us continue denoting k′ by k. Along
the chosen curve the application

(δ, µ1) 7→ (η1, η2)

is a local diffeomorphism near (0, 0), for each fixed µ2 > 0 sufficiently small, and as
such the same holds concerning

(δ, µ1, a2, . . . , an−1) 7→ (B0(λ, η), . . . , Bn−1(λ, η))

near (0, . . . , 0).
For each fixed value µ2 > 0, sufficiently small, we will hence encounter a stable

elementary catastrophy of codimension n − 1 on the zeros of V (y, λ). ¤
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5.2 Bifurcation diagram near an ensemble of graphics.

We continue studying the situation considered in the preceeding paragraph 5.1,
but instead of merely looking at y ∼ 0 we will keep y ∈ [Y1, Y2] for some choice
Y1 < 0 < Y2. In this paragraph we aim at fully describing the bifurcation diagram of
the limit cycles, as long as these do not interfere with the appearance of singularities.
We completely describe it in the particular case r = s = 1: it is Ck diffeomorphic
to the trivial product of a line segment with the bifurcation set of the zeros of
the Complete Tchebychev system (1, y, . . . yn) on [0, 1]. The same proof provides
the description of the bifurcation diagram in the general case where one of r, s
is greater than 1 as long as we suppose that the parameter ε ∈ Rp is such that
b1(ε), . . . , br−1(ε), b̄1(ε), . . . , b̄s−1(ε) in (5.1) and (5.2) remain zero. Besides this we
want to work as generically as possible. As such we keep condition (5.3), but change
(5.4) into the requirement that

ε 7→ (δ, µ1, µ2, a2, . . . , an−1)(ε) (5.10)

is not only a submersion, but in fact a local diffeomorphism at ε = 0; we hence
restrict to p = n + 1. We can now state the following result:

Theorem 5.2. Let Γ be a graphic like in Theorem 5.1 occuring in an ε-family
with ε ∈ Rn+1. Suppose that the regular pp-transition is of order n at y = 0,
for ε = 0, as expressed by (5.3), and let k ∈ N. Let ε be a generic parameter as
defined by (5.10), and let all bi(ε) and bj(ε) in (5.1) and (5.2) be identically zero.
If |Y1|, |Y2| are sufficiently small then the bifurcation set of the limit cycles given
by y ∈ [Y1, Y2], µ1, µ2 > 0 and ε small is Ck diffeomorphic to the trivial product
of a line segment with the bifurcation set of the zeros of the Complete Tchebychev
System (1, y, . . . , yn) on [0, 1].

Proof. We follow the reasoning developed in the proof of Theorem 5.1 and adapt it
slightly. Looking at expression (5.9) we can observe that for (ε, η) ∼ 0 we could in-
troduce (µ1, µ2, δ, B1, . . . , Bn−1, η1, η2) as independent parameters instead of (ε, η).
Let us say that it holds for |ηi| ≤ E with i = 1, 2. The bifurcations expressed by
(5.9) are then independent of (µ1, µ2, δ). We recall that in fact η1 = δm−1(λ)
and η2 = α(λ) − m−1(λ)M−1(λ). For fixed µ2 the map δ 7→ η1 has everywhere a
nonzero derivative, while the same is true for µ1 7→ η2, if we fix also (δ, λ) and stay
inside the region where (5.9) holds. Indeed, by (5.7) and the boundedness of ∂α

∂µ1
(ε)

and η2 the result easily follows. Outside this region, either |η1| = |δm−1(λ)| ≥ E
or |η2| = |α(λ) − m−1(λ)M−1(λ)| ≥ E. Considering expression (5.8) directly it is
clear that, for sufficiently small y, V (y, ε) will have no zeros for |η1| ≥ |η2|, while
there will be at most one zero for |η2| ≥ |η1|. In that region the limit cycle has to

stay hyperbolic if it exists and since ∂η1

∂δ
= m−1(λ) > 0 we see that disappearance

of such a limit cycle occurs in the most generic way possible. These observations
permit to finish the proof. ¤

6. Integral expression of the

derivative of the regular pp-transition

6.1 General formula.

As we have seen in section 3, in the presence of “lips” the regular pp-transition
plays an important role in the study of the cyclicity. We have seen in section 5 that it
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also plays an essential role in studying the bifurcations of the limit cycles. However
it might be quite involved, if not to say technically impossible to control directly
– based on the proposed construction – the necessary conditions. Therefore in this
paragraph we are going to relate the regular pp-transition R, or more precisely its
derivative R′, to some integral, whose essential characteristics are often easier to
deal with. Our reduction is based on Poincaré’s formula (see e.g. [ALGM] or [Rc])
for the derivative of a transition map (Poincaré map) near a regular orbit.

Let us consider a C∞-family of vector fields Xλ, with λ ∈ Rq, having for each λ
a pp-connection between singularities p1(λ) and p2(λ). Like in section 2 and 3 we
suppose that – by Ck orbital equivalence (with k > 0 sufficiently large) – we can
write Xλ near p1(λ) and p2(λ) as the respective normal forms:

{

ẋ1 = xr+1
1 (1 + a1(λ)xr

1)
−1

ẏ1 = y1

(6.1)

and
{

ẋ2 = −xs+1
2 (1 + a1(λ)xs

2)
−1

ẏ2 = −y2

(6.2)

with r, s ≥ 1 and odd.

Theorem 6.1. Let Xλ be a C∞ λ-family of planar vector fields having semi-
hyperbolic points p1(λ) and p2(λ) of even multiplicity with respective Ck normal
forms (6.1) and (6.2); k > 0 is supposed to be sufficiently large. Suppose that there
is a pp-connection between p1(λ) and p2(λ) and consider the regular pp-transition
map y2 = R(y1, λ) with respect to the sections {x1 = x′

1} and {x2 = x′
2}, for some

x′
1 > 0 and x′

2 > 0; we suppose R to be defined for all λ ∈ L and y1 ∈ [Y1, Y2]; let
Y1 < y0

1 < Y2 for some y0
1. If γλ

y1
(resp. γλ

y0
1

) denotes the Xλ-orbit through the point

represented by (x′
1, y1) (resp. (x′

1, y
0
1)) in (6.1) and R′ represents the derivative of

R with respect to y1, then

R′(y1, λ) = R′(y0
1 , λ) exp





∞
∫

−∞

(divXλ(γλ
y1

(t)) − divXλ(γλ
y0
1

(t)))dt



 . (6.3)

Remarks 6.2.

(1) The symbol
∞
∫

−∞
means that we need to integrate over the total orbit γλ

y1

(resp. γλ
y0
1

) in between p1(λ) and p2(λ).

(2) Because of the presence of R′(y0
1 , λ) the formule (6.3) does not really pro-

vide an expression for R′(y1, λ) but only for its variation for changing y1.
However this will not make it less useful. In fact one can always adapt the
normalizing coordinates, (cfr. e.g. section 3) in a way that R′(y0

1 , λ) = 1 at
a specifically chosen point y0

1 .
(3) The integral expression (6.3) is expressed in terms of the parameter y1.

In practice however it might be preferable to express R′ in some other
parameter Y , easier to link to the original coordinate system in which the
family Xλ is given. Of course, if we only deal with bifurcations close to
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a specific 1-parameter family of orbits γλ
y0
1

, it will be straightforward to

pass from the essential properties in the parameter Y to those in y1. More
specifically, let us take y0

1 = 0 and consider a new parameter Y = y1(c(λ)+
O(y1)) with c(λ) 6= 0. In order to use (6.3) we need to calculate

A(y1, λ) = exp





∞
∫

−∞

(divXλ(γλ
y1

(t)) − divXλ(γλ
0 (t)))dt



 . (6.4)

Suppose that we are able to calculate

A(Y, λ) = exp





∞
∫

−∞

(divXλ(γλ
Y (t)) − divXλ(γλ

0 (t)))dt



 ,

in which we parametrize the set of orbits by the new parameter Y , then we
get

A(y1, λ) = A(Y (y1), λ) = A(y1(c(λ) + O(y1)), λ).

As such, if ∂n−1A
∂Y n−1 (0, 0) 6= 0, and ∂iA

∂Y i (0, 0) = 0 for i = 1, . . . , n− 2, then the

same holds concerning the derivatives ∂jA

∂y
j
1

(0, 0) for j = 1, . . . , n − 1.

In view of applying theorem 3.1 this is an important observation. Similar
observations can be made if we change A by the derivatives ∂A

∂λl
for λ =

(λ1, . . . , λq) and l = 1, . . . , q; taking into account that also Y (y1) depends
on λ.

For a specific application we refer to paragraph 6.2. In that example we
will simply write A(Y, λ) instead of A(Y, λ).

Proof of theorem 6.1. Merely for a unified presentation let us apply an extra time
reversal to (6.2) in order to change it into:

{

ẋ2 = xs+1
2 (1 + a1(λ)xs

2)
−1

ẏ2 = y2,

In the normal form coordinates we work on the sides x1 > 0 and x2 > 0. Let ϕ1

and ϕ2 denote the inverses of the transformations bringing the family in normal form
(cfr. Figure 14); they are both λ-dependent but we do not express this explicitly.
We have chosen sections Σ1 = {x1 = x′

1} and Σ2 = {x2 = x′
2}, for some strictly

positive x′
1 and x′

2, and consider the transition map R(y1, λ) with respect to the y1-
coordinate on Σ1. We restrict to the interval [Y1, Y2] of y1-values, Y1 < Y2, without
specifying the range of image values and we also consider y0

1 with Y1 < y0
1 < Y2; we

keep λ ∈ L.

From Poincaré’s formula [Rc] we get

R′(y1, λ) =
A1(y1)

A2(y1)
exp









∫

Tx′
1

x′
2

divX(γy1
(t))dt









(6.5)
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Figure 14: Regular pp-transition

with
A1(y1) = (det Dϕ1(x

′
1, y1))((x

′
1)

r+1(1 + a1(λ)(x′
1)

r)−1) (6.6)

A2(y1) = (det Dϕ2(x
′
2, y2(y1)))((x

′
2)

s+1(1 + a1(λ)(x′
2)

s)−1), (6.7)

y2(y1) = R(y1, λ), γy1
(t) is the Xλ-orbit related to (x′

1, y1) and Tx′
1
,x′

2
denotes the

time to travel along the orbit γy1
from ϕ1(Σ1) to ϕ2(Σ2); let us also remark that

in the expressions (6.5), (6.6), (6.7), and for the sake of simplicity in notation, we
have not explicitly expressed the λ-dependence of a number of functions.

Let us now also consider a second pair of sections Σ′
1 = {x1 = x′′

1} and Σ′
2 =

{x2 = x′′
2} with 0 < x′′

1 < x′
1 and 0 < x′′

2 < x′
2. In the normal form coordinates the

passage from Σ1 to Σ′
1 (resp. Σ2 to Σ′

2) has the expression y1 → mx′
1
,x′′

1
y2 (resp.

y2 → Mx′
2
x′′
2
y2). We also get:

R′(y1, λ) =
mx′

1
x′′
1
A′

1(y1)

Mx′
2
x′′
2
A′

2(y1)
exp









∫

Tx′′
1

x′′
2

divX(γy1
(t))dt









, (6.8)

with
A′

1(y1) = (det Dϕ1(x
′′
1 , mx′

1
x′′
1
y1))((x

′′
1)r+1(1 + a1(λ)(x′′

1)r)−1

A′
2(y1) = (det Dϕ2(x

′′
2 , Mx′

2
x′′
2
y2(y1)))((x

′′
2)s+1(1 + a1(λ)(x′′

2)s)−1

and Tx′′
1

x′′
2

denotes the time to travel along the orbit γy1
from ϕ1(Σ

′
1) to ϕ2(Σ

′
2).

Let us now look to what happens when we fix x′
1 and x′

2 but let x′′
1 and x′′

2 tend
to zero. Using the fact that

lim
(x′′

1
,x′′

2
)→(0,0)

A′
1(y1)

A′
2(y1)

· A′
2(y

0
1)

A′
1(y

0
1)

= 1
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we can obtain from (6.8) the required integral expression (6.3), in which we have
written Xλ, γλ

y1
and γλ

y0
1

in order to stress the dependence on λ, and where the

symbol
∞
∫

−∞
means that we need to integrate over the total orbit γy1

in between

p1(λ) and p2(λ). ¤

Remark on analytic families. In working with analytic families we can apply the
results of section 2, namely the fact that in using Ck normalizing coordinates we
can use “analytic sections” in order to define the regular transition map near the
pp-connection. Also the dependence on λ remains analytic as long as the “formal
invariants” are kept constant. As such if the formal invariants remain unchanged,
then the application R(y1, λ) as well as the expression A(y1, λ) in (6.4) will be
analytic.

This could be interesting in view of proceeding similarly to what has been done
in the study of analytic unfoldings of a Hamiltonian regular cycle (homoclinic loop
see e.g. [R2]); a decomposition of R(y1, λ)−R′(0, λ)y1 in its ideal of coefficients at
λ = 0, might permit to obtain a finite cyclicity result under some mild conditions.
We will not work this out.

6.2 Application to a specific example.

In order to get the flavour of how the preceding paragraphs can be applied we
will consider a specific example

Proposition 6.3.

(1) Any graphic of “lip” type in the following system

ẏ = y cos θ + yn

θ̇ = sin2 θ
(6.9)

on the cylinder (θ, y) ∈ S1 × R has finite cyclicity inside any C∞ family of
vector fields. The graphic y = 0 has cyclicity ≤ n.

(2) Inside the particular family

{

ẏ = y cos θ + y2Q(y, λ) + ρ

θ̇ = 4(sin2 θ
2 + ε1)(cos2 θ

2 + ε2)
(6.10)

with

Q(y, λ) =
n−2
∑

i=1

λiy
i−1 + yn−2

and λ = (λ1, . . . , λn−2) ∈ Rn−2 the cyclicity of the graphic y = 0 is ex-
actly n and the bifurcation diagram contains a trivial 1-parameter family of
elementary catastrophies of codimension n − 1 as in Theorem 5.1.

Proof. Let us discuss briefly the proof of (1), parts of which will be done in the proof
of (2). Indeed, in the proof of (2) we will need to calculate the regular pp-transition
map R(y1, ε1, ε2, ρ, λ1, . . . , λn−2). Let us call R0(y1) = R(y1, 0, 0, 0, 0, . . . , 0). The
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calculation will yield in particular R
(n)
0 (0) 6= 0. Hence the cyclicity of the graphic

y = 0 is ≤ n in any C∞ perturbation of (6.9) by Theorem 3.1.
Moreover as discussed in Section 2 and since (6.9) is analytic it is possible to

define R0 : Σ → Π on analytic sections parametrized by analytic coordinates. Hence

for any y∗
1 in Σ there exists n(y∗

1) ∈ N such that R
n(y∗

1 )
0 (y∗

1) 6= 0, yielding that the
graphic of “lip” type through y∗

1 has cyclicity ≤ n(y∗
1). This finishes the proof of

(1) modulo R
(n)
0 (0) 6= 0.

For the proof of (2) we will only study (6.10) for y ∼ 0, and
(ε1, ε2, ρ, λ1, . . . , λn−2) ∼ (0, . . . , 0).

If we put ρ = ε1 = ε2 = 0 we have the λ-family

Xλ :

{

ẏ = y cos θ + y2Q(y, λ)

θ̇ = sin2 θ.
(6.11)

The unique singularities of Xλ, for y small, are at p1 = (0, 0) and p2 = (π, 0).
Both are saddle-nodes of codimension 1; their “formal invariants” are both zero,
and hence independent of ε so that, in accordance with the last remark in section
6.1, we expect an analytic regular pp-transition, both in y and λ, if we choose
an analytic parameter analytically depending on λ. The local phase portrait near
{y = 0} is represented in Figure 15.

y

q
0

2pp

Figure 15: Phase portrait of (6.11)

To give interesting information on the bifurcation diagram of the limit cycles of
(6.10) near {y = 0} and (ε1, ε2, δ, λ) small, we can try to apply Theorem 5.1. Since
both semi-hyperbolic points have codimension 1 there will be no need to check the
genericity conditions on the bi and bj in (5.4).

It is easy to check that the presence of (ε1, ε2, ρ) permits to show the genericity
conditions on (δ, µ1, µ2) in (5.4). The necessary properties near p1 and p2 follow
from standard normal form calculations; in fact (µ1, µ2) = (0, 0) iff (ε1, ε2) = (0, 0).
In considering the regular hh-transition with respect to the Ck normal forms near p1

and p2, it will not be difficult to show that ∂δ
∂ρ

6= 0 in the region under consideration.

There hence remains to study the regular pp-transition R(y1, ε1, ε2, ρ, λ1, . . . , λn−2),
where we can restrict to (ε1, ε2, ρ) = (0, 0, 0); let us denote the restriction by
R(y1, λ). On R(y1, λ) we can apply the integral expression (6.3), introduced in
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theorem 6.1. In fact, as announced in the third part of Remarks 6.2, we will not
directly calculate A(y1, λ), as defined in (6.4), but change y1 by a new parameter
Y . As new parameter describing the orbits in the lips we use the y-coordinate Y
at which the orbit cuts {θ = π

2 }. As reference orbit (choice of γy0
1
) in the formula

(6.4) we choose {Y = 0}, inducing

A(Y, λ) = exp

(

n−2
∑

i=1

(i + 1)λiIi(Y, λ) + nIn−1(Y, λ)

)

with

Ik(Y, λ) =

π
∫

0

(y(Y, θ, λ))k

sin2 θ
dθ

and where θ ∈]0, π[→ y(Y, θ, λ) describes the orbit with y(Y, π
2 , λ) = Y .

If we write

Ck =

π
∫

0

( ∂y
∂Y

(0, θ, 0))k

sin2 θ
dθ > 0

then clearly ∂jIk

∂Y j (0, λ) = 0 for j < k and ∂kIk

∂Y k (0, λ) = (k!)Ck + O(λ), inducing that

Ik(Y, λ) = (Ck + O(λ))Y k + O(Y k+1).

As such

A(Y, λ) = 1 +

n−2
∑

i=1

(i + 1)Fi(λ)Y i + n(Cn−1 + O(λ))Y n−1 + O(Y n)

with F1(λ) = C1λ1 + O(|λ|2) and Fi(λ) = Ciλi + O(λ1, . . . λi−1) + O(|λ|2), for
2 ≤ i ≤ n− 2; (λ1, . . . , λn−2) 7→ (F1(λ), . . . , Fn−2(λ)) is a local difffeomorphism at
λ = 0.

Knowing that Y = c(λ)y1 + O(y2
1) for some c(λ) > 0, we get :

A(y1, λ) = 1 +

n−2
∑

i=1

(i + 1)
[

(c(λ))iCiλi + O(λ1, . . . , λi−1) + O(|λ|2)
]

yi
1

+ n((c(λ))n−1Cn−1 + O(λ))yn−1
1 + O(yn

1 ).

(6.12)

If we take y1 in a way that R′(0, λ) = 1 – choice which is always permitted –
then in expression (6.12) we can write R′(y1, λ) instead of A(y1, λ); let us write it
as

R′(y1, λ) = 1 +
n−2
∑

i=1

(i + 1)Gi(λ)yi
1 + nGn−1(λ)yn−1

1 + O(yn
1 ) (6.13)

for the appropriate choice of Gi(λ), i = 1, . . . , n − 1. In particular Gn−1(λ) 6= 0.

By integrating (6.13) we get:

R(y1, λ) − R(0, λ) = y1 +
n−2
∑

i=1

Gi(λ)yi+1
1 + Gn−1(λ)yn

1 + O(yn+1
1 ),
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which, for y1 ∼ 0 and λ ∼ 0, clearly satisfies the requirements needed in Theorem

5.1. This also implies R
(n)
0 (0) 6= 0 as required in the proof of (1). It guarantees that

the bifurcation diagram of the limit cycles of small amplitude (y1 ∼ 0) of (6.10), for
(ε1, ε2, ρ, λ) ∼ (0, 0, 0, 0) and with ε1 > 0 and ε2 > 0, contains a trivial 1-parameter
family of elementary catastrophies of codimension n − 1.

In combination with theorem 3.1 we also find that the local cyclicity of the
graphic inside the family (6.10) is exactly n. ¤
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