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Abstract. In this paper we study a generalized Gause model with prey
harvesting and a generalized Holling response function of type III: p(x) =

mx2

ax2+bx+1
. The goal of our study is to give the bifurcation diagram of the

model. For this we need to study saddle-node bifurcations, Hopf bifurcation
of codimension 1 and 2, heteroclinic bifurcation, and nilpotent saddle bifur-
cation of codimension 2 and 3. The nilpotent saddle of codimension 3 is the
organizing center for the bifurcation diagram. The Hopf bifurcation is studied
by means of a generalized Liénard system, and for b = 0 we discuss the poten-
tial integrability of the system. The nilpotent point of multiplicity 3 occurs
with an invariant line and can have a codimension up to 4. But because it
occurs with an invariant line, the effective highest codimension is 3. We de-
velop normal forms (in which the invariant line is preserved) for studying of
the nilpotent saddle bifurcation. For b = 0, the reversibility of the nilpotent
saddle is discussed. We study the type of the heteroclinic loop and its cyclicity.
The phase portraits of the bifurcations diagram (partially conjectured via the
results obtained) allow us to give a biological interpretation of the behavior of
the two species.

Keywords. generalized Gause model with prey harvesting, generalized Holling
response function of type III, saddle-node bifurcation, Hopf bifurcation, hete-
roclinic bifurcation, nilpotent saddle bifurcation.

1. Introduction

The first predator-prey model has been suggested independently by A. Lotka(1925)
[28] and V. Volterra(1926) [34]. Since that time, the models are refined so as to
better reflect the specific characteristics of the different populations. The proposed
models usually depend on parameters and are studied through bifurcation theory.
The evolution of a population x submitted to regular harvesting is modeled by (see
[3])

ẋ = F (x) − S(x, h),

where F (x) describes the dynamics of the population without harvesting, and
S(x, h) is the harvesting rate; the parameter h is called the intensity of harvesting.
There exists two standard harvesting strategies ([3], [4]): the first one consists in
harvesting a constant number of individuals per unit of time, modeled by a constant
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rate, S(x, h) = h; in the second strategy, the number of individuals harvested per
unit of time is proportional to the population, S(x, h) = hx. More sophisticated
strategies, as periodic harvesting, etc., are also studied. In this paper we choose
the first strategy.
The study of the dynamics of a harvested population is a topic studied in mathe-
matical bioeconomics ([4], [15], [36]), inside a larger chapter dealing with optimal
management of renewable resources (see Clark [8]). The exploitation of biological
resources and the harvesting of interacting species is applied in fisheries, forestry
and fauna management ([4], [15], [36]). According to Clark [8], the management of
renewable resources is based on the notion of maximum sustainable yield (MSY) of
harvesting; the MSY is the maximum harvesting compatible with survival. Hence,
if the harvesting of a population exceeds its MSY (i.e. the population is over-
exploited [36]), then this population will become extinct.
Qualitatively, the study of a predator-prey model with harvesting of preys is more
involved than that of a mere predator-prey model. From the point of view of renew-
able resources, we must determine the MSY for the harvesting (when harvesting is
allowed) of each population and give conditions assuring the preservation of species
([4], [15] and [36]).
The system that we consider is called in the literature generalized Gause model with
harvesting of prey ([23], [19], [21], [35], [2]). It has the form

(1.1)

{

ẋ = g(x) − yp(x) − h1,

ẏ = y[−d + cp(x)],

where

• x represents the population of preys;
• y represents the population of predators;
• d is the natural mortality rate of predators,
• the function g(x) = rx(1 − x

k
) models the behavior of preys in absence of

predators: r is the growth rate of preys when x is small, while k is the
capacity of the environment to support the preys;

• the constant h1 is the rate of harvesting of preys.

The function

(1.2) p(x) =
mx2

ax2 + bx + 1

(where m and a are positive constant, and b is an arbitrary constant), called in the
literature generalized Holling response function of type III [3], is one of the poten-
tial response functions of predators to preys, modeling the consumption of preys
by predators. It reflects very small predation when the number of preys is small
(p

′

(0) = 0), and a group advantage for the preys when the number of preys is high
(p(x) tends to m

a
when x tends to infinity). There exists several types of generalized

Holling response function of type III, depending whether the group advantage is
weak or strong (Figure 1.1): if b is negative, the group advantage is stronger than
when b is positive. We also note that, when b is negative, this function increases
to a maximum and then decreases, approaching m

a
as x approaches infinity. Thus,

when b is negative, p(x) models the situation where the prey can better defend or
disguise themselves when their population become large enough: this phenomenon
is called group defense ([38], [37], [35], [21]). In this paper we limit ourselves to
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the case b ≥ 0. Recently, in the same spirit, but without harvesting of populations,
Broer-Naudot-Roussarie-Saleh (see [5]) and Coutu-Lamontagne-Rousseau (see [29])
respectively studied a predator-prey system with Holling response function of type
IV (p(x) = mx

ax2+bx+1) and a predator-prey system with generalized Holling response

function of type III (with b > 0, b = 0, or b < 0). Note that, for the Holling response
function of type IV, the response of predators goes to zero when the population of
preys is very large, thus modeling a very large group advantage for the preys.

From the biological point of view, it is interesting to determine how the har-
vesting of preys affects the sub-system with no harvesting (1.1)|h1=0, when p(x) is
given in (1.2).

x

m
a

p(x)

(a) for b ≥ 0

− 2
b

x

m
a

p
(

− 2
b

)

p(x)

(b) for b < 0

Figure 1.1. Generalized Holling function of type III.

Hence, we study the following system:

(1.3)











ẋ = rx(1 − x
k
) − mx2y

ax2+bx+1 − h1,

ẏ = y(−d + cmx2

ax2+bx+1 ),

x ≥ 0, y ≥ 0,

where the eight parameters: r, k, m, a, c, d, h1 are strictly positive and b ≥ 0.
Through the following linear transformation and time scaling

(X, Y, T ) =

(

1

k
x,

1

ck
y, cmk2t

)

,

we can reduce the number of parameters to five: The simplified system that we
consider is the following

(1.4)











ẋ = ρx(1 − x) − yp(x) − λ,

ẏ = y(−δ + p(x)),

x ≥ 0, y ≥ 0, where

p(x) =
x2

αx2 + βx + 1
(1.5)



4 REMY MAGLOIRE ETOUA
†
AND CHRISTIANE ROUSSEAU

‡

and the parameters are

(1.6) (ρ, α, β, δ, λ) =

(

r

cmk2
, ak2, bk,

d

cmk2
,

h1

cmk3

)

.

The bifurcation diagram will reveal surprising biological consequences and high-
light that one must be very careful with a constant rate harvesting strategy. Even
with a very small harvesting, this strategy leads systematically to the extinction of
both species when the mortality rate of predators is small. Even with parameter
values compatible with the survival of both species, the region of initial conditions
leading to survival is not necessarily very large. Another surprising conclusion: if
we start harvesting when the number of preys is high, this automatically leads to
extinction, even with small harvesting. On the contrary, if the number of preys is
small we can have survival for the same initial number of predators. Hence, our
study highlights the need to study new harvesting strategies or models with simul-
taneous harvesting of predators and preys, so as to identify the strategies preventing
the extinction of species.

The paper is organized as follows. Section 2 contains a summary of results. In
Section 3 we show that all trajectories remaining in the first quadrant are attracted
in a finite region of the plane. In Section 4 we study the number of singular points,
their type and the saddle-node bifurcations. The Hopf bifurcation of codimension
1 and 2 is studied in Section 5. In Section 6, we discuss the bifurcation of nilpo-
tent saddle of codimension 2 and 3 (this nilpotent saddle of codimension 3 is the
organizing center of our bifurcation diagram). Finally, in Section 7, we give the
global bifurcation diagram (the small conjectural part of it is clearly identified). In
Section 8, we deduce the biological interpretation of potential behaviors depending
on the parameter values and of the initial conditions.

Remark 1.1. (i) When λ is small, the system (1.4) is a perturbation of the sub-
system (1.4)|λ=0. The bifurcation diagram of the sub-system (1.4)|λ=0 (determined
in [29]) is necessary to understand the bifurcation diagram of the system (1.4) when
λ is small (see Figure 2.2).
(ii) The parameter λ1 := λ

ρ
is important since all equations giving the locus of

bifurcation surfaces are homogeneous in λ and ρ.
(iii) Our computations were done with MAPLE.

2. Summary of the results

The x-axis of the system (1.3) is invariant. The system has 2 singular points,
C and D, on the positive x-axis for ρ > 4λ and none for ρ < 4λ, the two points
merging in a saddle-node for ρ = 4λ. In the first quadrant, there is at most one sin-
gular point E which is always of anti-saddle type, (i.e., a node, focus, weak focus or
center). The singular point E disappears from the first quadrant by a saddle-node
bifurcation while merging, with either C, or D. The point E can undergo a Hopf
bifurcation of order at most two. When the order is two, the second Lyapunov
coefficient is positive (the weak focus is repelling). Thus, when the system has two
limit cycles, the attracting cycle is surrounded by a repelling cycle.

Theorem A. If ρ = 4λ and δ = 1
α+2β+4 , the three singular points C, D and

E merge in B = (1
2 , 0). This point is a nilpotent saddle. If α = β2+8 β+24

β+6 with
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β > 0, this nilpotent saddle is of codimension 4. However, since the horizontal axis
is invariant, the codimension of one less. This point is the organizing center of the
bifurcation diagram.

We succeeded in highlighting the three principal parameters of the system, that
is to say λ, α and δ. This allows to give the bifurcation diagram in the (α, δ)-plane
for various values of λ.

Theorem B. The bifurcation diagram with phase portraits of the model (1.4)
is, according to the values of the parameter λ > 0, presented to the Figures 2.2,
2.3, 2.4, 2.5, 2.6, 2.7 and 2.8 by using the notations of Table 2.1. It is the simplest
bifurcation diagram compatible with all the constraints of the system. The Hopf and
saddle-nodes bifurcations curves are exact. Are conjectured:

(1) the exact position of the heteroclinic loop bifurcation curve, but this curve
cuts any line δ = constant exactly once;

(2) the uniqueness of the locus of the bifurcations of codimension 2 (namely
H2, C and HL2) and, consequently, the triangle C − H2 − HL2 which, for
β > 0, moves towards the line δ = 0 when λ decreases and, for β = 0, is
reduced to the point C = (α, δ) defined by α = ρ

λ
and δ = λ

2ρ
.

Ha: attracting Hopf bifurcation
Hr: repelling Hopf bifurcation
H2: Hopf bifurcation of codimension two
HLa: attracting heteroclinic loop bifurcation
HLr: repelling heteroclinic loop bifurcation
HL2: heteroclinic loop bifurcation of codimension two
DC: double limit cycle
C: intersection of (H) and (HL)
B+: nilpotent saddle bifurcation with positive X2Y coefficient
B−: nilpotent saddle bifurcation with negative X2Y coefficient
SNai

: internal attracting saddle-node
SNri

: internal repelling saddle-node
SNae

: external attracting saddle-node
SNre

: external repelling saddle-node
Table 2.1. Description of the bifurcation curves of Figure 6.3.

When β = 0, we conjecture that the system has a center as soon as the order
of the bifurcation is greater or equal to two, the bifurcation diagram being that of
Figure 2.8.

3. Behaviour of trajectories at infinity

In this section we show that all trajectories of (1.4) remaining in the first quad-
rant are attracted to a finite region of the plane.

Theorem 3.1. For all α, β, δ, ρ, λ defined in (1.4), there exists a rectangle R =
[0, 1]× [0, l], where l = l(α, β, δ, ρ, λ), with the following property: For any trajectory
γ with initial condition in the first quadrant,
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α

δ

0

II0

III0

I0
(H0)

(SN0)

(a) Bifurcation diagram for λ = 0

I0 (SN0)

(b)

II0
(H0)

(c)

III0

(d)

Figure 2.1. Bifurcation diagram and phase portraits for λ = 0
([29] or [17]).

α

δ

C

H2
HL2

HLr

Hr
Ha

HLa

DC

I
II

III

IV

V

V I

(H)

(HL)

(SNa)

(SNr)

V II

Figure 2.2. Bifurcation diagram when β > 0 and λ is small.

: (i) either γ escapes from the first quadrant by crossing the positive y-axis;
: (ii) or γ has its ω-limit set inside R.
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α

δ

C

H2

HL2

HLr

Hr

Ha
HLa

DC

I

II

III

IV

V

V I

(H)

(HL)

(SNa)

(SNr)

V II

Figure 2.3. Bifurcation diagram when β > 0 and λ is neither
small, nor close to ρ

4 .

α

δ

CH2

HL2

HLr

Hr

Ha

HLa

DC

I

II

III

IV

V

V I

(H)

(HL)

(SNa)

(SNr)

V II

Figure 2.4. Bifurcation diagram when β > 0 and λ is close to ρ
4 .

Only, case (ii) can happen when λ = 0 since the axes are invariant.

Proof. We treat the case λ > 0, since the case λ = 0 is easy. Indeed, all trajectories
of (1.4) passing through the y-axis must leave the first quadrant. For x > 1, one

has that ẋ < 0 and dy
dx

is bounded for large y; then all the trajectories enter the

region “x ≤ 1 ”. If δ > 1
α
, then ẏ < −η for some positive η and, for any l > 0,
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(a) I

.

(b) II

.

(c) III (d) IV

.

(e) V

.

(f) VI

.

(g) VII

.

(h) H2

.

(i) C

.

(j) HL2

.

(k) DC

.

(l) (C, HLr)

.

(m) (C, HL2)

.

(n) HLa

.

(o) Hr

.

(p) (C, H2)

.

(q) Ha − (C, H2) (r) (SNr) (s) (SNa)

Figure 2.5. Phase portraits of the bifurcation diagrams in Fig-
ure 2.2, Figure 2.3 and Figure 2.4.

α

δ

(SNr)

(SN)

(SNa)

(a) (SNa) (b) (SN) (c) (SNr)

Figure 2.6. Bifurcation diagram and phase portraits when λ = ρ
4 .

all trajectories enter the region “y ≤ l ” or leave the first quadrant. If δ ≤ 1
α
, let

xp(α, β, δ) the solution of p(x) = δ. Then, ẏ < 0 if, and only if x ∈ [0, xp(α, β, δ)].
Let ǫ ∈]0, xp(α, β, δ)[ smaller than the x-coordinate of the leftmost singular point
on the x-axis. Then ẋ, ẏ < 0 in the strip “x ∈ [0, ǫ] ” and all trajectories escape
through the y-axis. Moreover, in the region “x ∈ [0, 1] ”, we have that ẋ < 0 if, and



GENERALIZED GAUSE MODEL WITH PREY HARVESTING 9

α

δ

δ = 1
α

δ ≥ 1
α

Figure 2.7. Bifurcation diagram and phase portraits when λ > ρ
4 .

only if y > ρx(1−x)−λ

p(x) . Let

N := max
x∈[ǫ,1]

ρx(1 − x) − λ

p(x)
.

The slope of the field is given by

(3.1)
dy

dx
=

δ − p(x)

p(x) − ρx(1−x)−λ

y

.

However, one has that

(3.2) lim
y→+∞

dy

dx
=

δ − p(x)

p(x)
is bounded on [ǫ, 1].

Thus, there exists at least a trajectory (x(t), y(t)), t ∈ [0, T ] such that x(0) = 1,
x(T ) = ǫ and, for all t, y(t) ≥ N . Let (x1(t), y1(t)), t ∈ [0, T1] be the lowest
trajectory verifying this property and let

l := max
t∈[0,T1]

y1(t).

By (3.2), it comes that the trajectories cannot go at infinity in the half-strip “x ∈
[ǫ, 1], y > N ” and must thus enter the strip “x ∈ [0, ǫ] ” (where ẋ, ẏ < 0). Hence, it
will exit the first quadrant through the y-axis. So, the only trajectories that may
have their ω limit set in the first quadrant enter R through either the right side or
the top side. �

4. Bifurcations and type of the singular points

4.1. Number of singular points.

Theorem 4.1. Let

(4.1) x01 =
1

2
−
√

ρ(ρ − 4λ)

2ρ
, x02 =

1

2
+

√

ρ(ρ − 4λ)

2ρ
.

The number of singular points of the system (1.4), according to the values of the
parameters, is given to Table 4.1.
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α

δ

C

HLr

Hr

Ha

HLa
I

II

III

IV

V

(H)

(HL)

(SNa)

(SNr)

V II

(a) I

.

(b) II

.

(c) III (d) IV

.

(e) V

.

(f) VII

.

(g) C

.

(h) HLr

.

(i) HLa

.

(j) Hr

.

(k) Ha (l) (SNr) (m) (SNa)

Figure 2.8. Bifurcation diagram and phase portraits when β = 0
and λ ∈]0, ρ

4 [.

Proof. The singular points of (1.4) have coordinates (x0, y0), where x0, y0 are solu-
tions of the system with unknown (x, y)

(4.2)

{

ρx(1 − x) − yp(x) − λ = 0,

y(−δ + p(x)) = 0,

such that x0 ≥ 0, y0 ≥ 0.
By the second equation of (4.2), one has y = 0 or p(x) = δ. Then:

(1) For y = 0, the first equation of (4.2) gives:

(4.3) ρx2 − ρx + λ = 0
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Region Singular points
ρ < 4λ none
ρ = 4λ (1

2 , 0): double point if δ 6= 1
α+2β+4 and,

triple point if δ = 1
α+2β+4

ρ > 4λ and x0 ∈]x01, x02[ (x01, 0), (x02, 0) and (x0, y0) where

p(x0) = δ and y0 = ρx0(1−x0)−λ

δ

ρ > 4λ and x0 = x01 (x01, 0) double point and (x02, 0)
ρ > 4λ and x0 = x02 (x01, 0) and (x02, 0) double point

ρ > 4λ and x0 ∈]0, x01[∪]x02, +∞[ (x01, 0) and (x02, 0)
Table 4.1. Number of singular points of the system (1.4)

whose discriminant is ∆1 := ρ(ρ − 4λ). It follows that:
• When ρ < 4λ, there is no singular point on y = 0.
• When ρ = 4λ, then (1

2 , 0) is a double singular point.
• When ρ > 4λ, then (4.3) has two solutions x01 and x02 given in (4.1) and
corresponding to singular points (x01, 0) and (x02, 0).

(2) For p(x) = δ, one looks for x0 ≥ 0 such that p(x0) = δ and

(4.4) y0 =
1

δ
[ρx0(1 − x0) − λ].

However, p(x) = δ if and only if

(4.5) f(x) = (αδ − 1)x2 + βδx + δ = 0.

Hence:
a) If αδ − 1 = 0, then the only real solution of (4.5) is x01 = −1

β
< 0.

b) If αδ − 1 6= 0, then the discriminant of (4.5) is

∆2 := (βδ)2 − 4δ(αδ − 1) :

b-1) If αδ − 1 > 0 and ∆2 > 0 (resp. ∆2 < 0) then (4.5) has two solutions

whose product is δ
αδ−1 > 0 and whose sum is − βδ

αδ−1 < 0 (resp. (4.5) does

not have any solution): therefore, there is no admissible singular point when
αδ − 1 > 0.
b-2) If αδ − 1 < 0, then ∆2 > 0. Thus, the product of the solutions of
(4.5) is negative and the positive solution is

(4.6) x0 =
βδ +

√

δ[δ(β2 − 4α) + 4]

−2(αδ − 1)
.

Therefore, one obtains at most one singular point (x0, y0) where x0, defined
by p(x0) = δ, verifies (4.6). We also need y0 > 0. Since y0 is defined by
(4.4), its sign is exactly that of −ρx2

0 + ρx0 − λ whose discriminant is
∆1 := ρ(ρ − 4λ). Consequently:
• If ρ < 4λ, then there are no singular points in the first quadrant because
any solution (x0, y0) with x0 defined in (4.6) satisfies y0 < 0.
• If ρ = 4λ and x0 is defined in (4.6), we have y0 = −ρ(x0 − 1

2 )2 ≤ 0.
In particular, by (4.4), (4.1) and (4.5), one has the singular point (x0 =
1
2 , y0 = 0) if, and only if δ = 1

α+2β+4 .

• If ρ > 4λ, then, by (4.4), y0 ≥ 0 ⇔ x0 ∈ [x01, x02] ⊂]0; +∞[, where x01

and x02 are defined in (4.1).



12 REMY MAGLOIRE ETOUA
†
AND CHRISTIANE ROUSSEAU

‡

�

Remark 4.2 (Interesting cases of b-2)). b-2-1) If ρ = 4λ and δ = 1
α+2β+4 then

αδ − 1 < 0, and the singular point (1
2 , 0) becomes triple because x0 = 1

2 is a double
solution of (4.3) and a simple solution of (4.5).
b-2-2) If ρ > 4λ and x0 = x01 or x0 = x02 such that p(x0) = δ, then the singular
point (x0, 0) is double, because x0 is solution of (4.3) and (4.5). The equations
x0 = x01 or x0 = x02 represent two surfaces in the product of x-space by the
parameter space: we will determine their equation in the parameter space when we
study the saddle-node bifurcations.

4.2. Type of singular points. The Jacobian matrix of (1.4) in (x, y) is given by

(4.7) Jac(x,y) =

(

ρ − 2ρx − xy(βx+2)
(αx2+βx+1)2 −p(x)

xy(βx+2)
(αx2+βx+1)2 −δ + p(x)

)

.

By Table 4.1, we need to study it in two cases: ρ = 4λ and ρ > 4λ. In this section
we limit ourselves to the case ρ > 4λ and leave the case ρ = 4λ for the Sections 4.3
and 6.

Theorem 4.3. For ρ > 4λ, the type of the singular points C = (x01, 0), D =
(x02, 0) and E = (x0, y0) is, according to values of the parameters, given in Ta-
ble 4.2.

Region Singular points Type
δ < p(1

2 − η) C, D, E C is a repelling node
D and E are hyperbolic saddle

E is nonadmissible
δ = p(1

2 − η) C, D C is a repelling saddle-node (studied below)
D is hyperbolic saddle

p(1
2 − η) < δ < p(1

2 ) C, D, E C and D are hyperbolic saddles
E is a anti-saddle

p(1
2 ) ≤ δ < p(1

2 + η) C, D, E C and D are hyperbolic saddles
E is an attracting (focus/node)

δ = p(1
2 + η) C, D C is hyperbolic saddle

D is an attracting saddle-node (studied below)
δ > p(1

2 + η) C, D, E D is an attracting node
C and E are hyperbolic saddles

E is nonadmissible
Table 4.2. Types of the singular points when ρ > 4λ

Proof. (1) Type of the singular points C = (x01, 0) and D = (x02, 0)
We have that x01 := 1

2 − η, x02 := 1
2 + η, where

(4.8) η :=

√

ρ(ρ − 4λ)

2ρ
.
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Moreover, x01x02 = λ
ρ

and x01 + x02 = 1. By (4.7), we have respectively

(4.9)

Jac(C) =

(

2ρη −p(1
2 − η)

0 −δ + p(1
2 − η)

)

and Jac(D) =

(

−2ρη −p(1
2 + η)

0 −δ + p(1
2 + η)

)

.

Moreover, p(1
2 ± η) > 0 and p

′

(x) = βx2+2x
(αx2+βx+1)2 > 0 for all x > 0; i.e. p is

strictly increasing on ]0, +∞[. Since 0 < 1
2 − η < 1

2 + η, we have

(4.10) p

(

1

2
− η

)

< p

(

1

2
+ η

)

.

The type of the points C and D is thus that of Table 4.2.
(2) Type of the singular point E = (x0, y0)

The Jacobian matrix, (4.7), evaluated at E is

Jac(x0,y0) =

(

ρ(1 − 2x0) − y0p
′

(x0) −δ

y0p
′

(x0) 0

)

whose trace and determinant are respectively

Tr(Jac(x0,y0)) = ρ(1 − 2x0) − y0p
′(x0),

Det(Jac(x0,y0)) = δy0p
′

(x0) > 0.

Moreover, x01 < 1
2 < x02. Hence,

i) If x0 ∈ [12 , x02[, corresponding to the region of parameter space p(1
2 ) ≤

δ < p(1
2 +η), then 1−2x0 < 0 and y0p

′

(x0) > 0; thus, Tr(Jac(x0,y0)) < 0,
and E is thus an attracting (node/focus).
ii) If x0 ∈]x01,

1
2 [, corresponding to the region of parameter space p(1

2 −
η) < δ < p(1

2 ), then ρ(1 − 2x0) > 0 and y0p
′

(x0) > 0. Therefore,

Tr(Jac(x0,y0)) := ρ(1 − 2x0) − y0p
′

(x0) may vanish. Consequently, since

Det(Jac(x0,y0)) := δy0p
′

(x0) > 0, E = (x0, y0) can undergo a Hopf bifur-
cation.
iii) The trace of the saddle-node when x0 = x01 (resp. x0 = x02) is positive
(resp. negative), yielding that the saddle-node is repelling (resp. attract-
ing).
iv) In order to better understand the bifurcation diagram, it is interesting
(though y0 < 0) to see that:
If x0 < x01 or x02 < x0, corresponding to the region of parameter space
δ < p(1

2 − η) or δ > p(1
2 + η), then: y0 < 0 and Det(Jac(x0,y0)) :=

δy0p
′

(x0) < 0. Therefore, E = (x0, y0) is a hyperbolic saddle there.
�

4.3. Saddle-node Bifurcations.

Theorem 4.4. The double point B = (1
2 , 0) is a saddle-node when ρ = 4λ and

δ 6= 1
α+2β+4 . It is attracting if δ > 1

α+2β+4 and repelling if δ < 1
α+2β+4 .

Proof. Indeed, the translation (x1, y1) = (x− 1
2 , y) brings the singularity B = (1

2 , 0),
to the origin. In the neighborhood of x1 = 0 and since ρ = 4λ, the system (1.4)
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becomes
(4.11)






ẋ1 =
(

8 (α β+6 α−8)y1

(α+2 β+4)3
− ρ
)

x1
2 − 4 (β+4)y1x1

(α+2 β+4)2
− y1

α+2 β+4 + O(|(x1, y1)|4),
ẏ1 = −8 (α β+6 α−8)y1x1

2

(α+2 β+4)3
+ 4 (β+4)y1x1

(α+2 β+4)2
− (−1+δ α+2 δ β+4 δ)y1

α+2 β+4 + O(|(x1, y1)|4).

The Jacobian matrix MB of (4.11) is diagonalizable with eigenvalues λ1 = 0
and λ2 = −δ + 1

α+2β+4 6= 0, and respective eigenvectors v1 = (1, 0) and v2 =

( 1
δ(α+2β+4)−1 , 1). By the transformation

(

X
Y

)

=
(

1 −
1

δ(α+2β+4)−1

0 1

)

(

x1

y1

)

, the system

becomes:
(4.12)






Ẋ = −2 (ρ α+8 δ+4 ρ+2 ρ β+2 δ β)XY

(−1+δ α+2 δ β+4 δ)(α+2 β+4) − ρ X2 − (ρ α+4 δ β+4 ρ+2 ρ β+16 δ)Y 2

(α+2 β+4)(−1+δ α+2 δ β+4 δ)2
+ O(|(X, Y )|3),

Ẏ = − (−1+δ α+2 δ β+4 δ)Y
α+2 β+4 + 4 (β+4)XY

(α+2 β+4)2
+ 4 (β+4)Y 2

(α+2 β+4)2(−1+δ α+2 δ β+4 δ)
+ O(|(X, Y )|3).

It is not necessary to calculate the center manifold. The theorem of Chochi-
taïchvili [1] yields directly that the system (4.12) is topologically equivalent to the
system:

(4.13)

{

Ẋ = −ρX2 + O(|X |4),
Ẏ = ( 1

α+2β+4 − δ)Y.

Consequently, since the coefficient of X2 is −ρ 6= 0, then the point B = (1
2 , 0) is a

saddle-node. It is attracting (resp. repelling) if δ > 1
α+2β+4 (resp. δ < 1

α+2β+4). �

Theorem 4.5. Let η :=

√
ρ(ρ−4λ)

2ρ
. When ρ > 4λ, the singular point C := (1

2−η, 0)

(resp. D := (1
2 + η, 0)) is a repelling (resp. attracting) saddle-node on the surface

(SNr) (resp. (SNa)) of equation δ = p(1
2 − η) (resp. δ = p(1

2 + η)).
If λ ∈]0, ρ

4 [, then the union, (SNg), of the two bifurcation surfaces (SNr) and
(SNa), is defined by the equation:

(SNg) :
(

λ2α2 + ρ
(

−2 α + β2 + β α
)

λ + ρ2 (1 + β + α)
)

δ2

+
(

−2 λ2α − ρ (−2 + β)λ − ρ2
)

δ + λ2 = 0.(4.14)

(4.14) is a polynomial equation of degree 2 in δ, with polynomial coefficients in
α, β, ρ and λ. At the limit, when λ = 0, (SNr) merge with δ = 0.

Proof. Indeed, for a := 1
2±η, the two double points are both of the form M = (a, 0),

where ρa2 − ρa + λ = 0 and p(a) = δ. The Jacobian matrix is given in (4.9). It
has eigenvalues λ1 = ±2ρη and 0. Moreover, λ1 > 0 for C and λ1 < 0 for D. A
calculation allows to verify that M = (a, 0) is exactly of multiplicity 2. If λ ∈]0, ρ

4 [,
then (SNr) and (SNa) correspond to the loci where a singular point of the first
open quadrant coallesces with a singular point located on the x-axis, i.e. when
the resultant of f(x) := (αδ − 1)x2 + βδx + δ (which gives the x-coordinate of the
singular points in the first quadrant) and g(x) := ρx2 − ρx + λ (which gives the
x-coordinate of the singular points on the x-axis) vanishes. The resultant R of f

and g is given in (4.14). The discriminant of R is given by ρ (ρ − 4 λ) (λβ + ρ)2 > 0;
from which the result follows.

�
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5. Hopf bifurcation

To study the Hopf bifurcation of our system, we transform it to a generalized
Liénard system, with the weak focus at the origin, because the calculation of the
Lyapunov coefficients of such a system can be done very easily. The transforma-
tion to the generalized Liénard system will be global, but it will not preserve the
coordinate axes. Because of the global character of the transformation, the gener-
alized Liénard system has several singular points, but we will only study the Hopf
bifurcation at the origin.

5.1. Calculation of the Lyapunov coefficients of a generalized Liénard
system. Let us consider a generalized Liénard system,

(5.1)

{

ẋ = −y,

ẏ = g(x) + yf(x), where

(5.2) g(x) :=

+∞
∑

i=2

ai xi, f(x) :=

+∞
∑

j=1

bj xj .

One knows by [33] that, for (5.1), there exists a power series

(5.3) F :=
1

2
(x2 + y2) +

∞
∑

p=3

Fp(x, y) where Fp(x, y) =

p
∑

i=0

ai,p−ix
iyp−i

such that

(5.4) Ḟ =

∞
∑

k=1

Lk(x2 + y2)k+1.

The Lk are called “Lyapunov coefficients” or “Hopf bifurcation coefficients” of (5.1).
They are found by solving (5.4) iteratively, degree per degree:

Theorem 5.1. The first two Lyapunov coefficients of a generalized Liénard system,
(5.1) , the second coefficient simplified under the condition that the first coefficient
is zero, are:

L1 =
1

8
(b2 − a2b1),(5.5)

L2 =
1

16
(
5

3
a2b1a3 −

5

3
a2b3 + b4 − a4b1).(5.6)

If we rather suppose that

(5.7) g(x) :=
+∞
∑

i=1

Ai xi, f(x) :=
+∞
∑

j=1

Bj xj ,

with A1 > 0, then the formulas take the useful form

L1 =
1

8A
3
2
1

(B2A1 − A2B1),(5.8)

L2 =
1

16A
5
2
1

(
5

3
A2A3B1 −

5

3
A1A2B3 + B4A

2
1 − A1A4B1).(5.9)
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Remark 5.2. We also calculated L3, L4 and L5 to validate our conjecture that
E = (x0, y0) is a center when β = 0. The formulas can be found in the thesis [17].

5.2. Existence and order of the Hopf bifurcation.

Theorem 5.3. When β > 0, the order of the Hopf bifurcation at E = (x0, y0) is
less than or equal to two ([11],[27]). The Hopf bifurcation occurs when x0 ∈]x01,

1
2 [).

When the order of the bifurcation is 2, the coefficient L2 is strictly positive and the
global dynamics of the model is given at the (h) of the Figure 2.5.

Proof. Let us recall that

ρ > 4λ, 0 <
1

2
−
√

ρ(ρ − 4λ)

2ρ
< x0 <

1

2
, p(x0) = δ <

1

δ
, y0 =

ρx0(1 − x0) − λ

δ
,

(5.10)

Det(Jac(x0,y0)) = δy0p
′(x0) > 0.

Then:
• We divide (1.4) by p(x) > 0, and bring back E to the origin by the translation
(x1, y1) = (x − x0, y − y0). The system then has the form

{

ẋ1 = h1(x1) − y1,

ẏ1 = h2(x1) + y1h3(x1).
(5.11)

The generalized Liénard system is simply obtained by letting (X, Y ) = (x1, y1 −
h1(x1):

{

Ẋ = −Y,

Ẏ = h2(X) + h1(X)h3(X) + Y (h3(X) + h′

1(X)).
(5.12)

Note that h3(0) + h′

1(0) = 0 is equivalent to the fact that the system has a Hopf
bifurcation at the origin (and to the vanishing of the trace of the jacobian matrix
at the origin). The Hopf bifurcation occurs when

(5.13) λ =
ρ(2αx3

0 + βx2
0 − αx2

0 + 1)x0

βx0 + 2
.

(This is well defined because, for all α > 0, β ≥ 0, ρ > 0 : 0 < 1
2 −

√
ρ(ρ−4λ)

2ρ
<

x0 < 1
2 ⇒ 2αx3

0 + βx2
0 − αx2

0 + 1 > 0) . We also have Det(Jac(x1 = 0,y1 = 0)) =

ρ(1 − 2x0)(αx2
0 + βx0 + 1)x2

0 > 0 since 0 < x0 < 1
2 .

However the expression of the transformed system of the form (5.1) under con-
dition (5.7) is simpler if we postpone the replacement of λ by its value (5.13). We
get

(5.14) A1 = −ρ(2x0 − 1)

δ

A2 =
1

x6
0

[

−αρx6
0 + α2δρx6

0 − βλx3
0 + 2αβδλx3

0 − β2δρx3
0 − 2αδρx3

0 + 2βδρx3
0 + ρx3

0

+3β2δλx2
0 + 6αδλx2

0 − 3λx2
0 − 6βδρx2

0 + 3δρx2
0 + 12βδλx0 − 6δρx0 + 10δλ

]

(5.15)
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A3 = − 1

x7
0

[

−βλx3
0 + 2αβδλx3

0 − β2δρx3
0 − 2αδρx3

0 + 2βδρx3
0 + ρx3

0 + 4β2δλx2
0

+8αδλx2
0 − 4λx2

0 − 8βδρx2
0 + 4δρx2

0 + 20βδλx0 − 10δρx0 + 20δλ
]

(5.16)

A4 =
1

x8
0

[

−βλx3
0 + 2αβδλx3

0 − β2δρx3
0 − 2αδρx3

0 + 2βδρx3
0 + ρx3

0 + 5β2δλx2
0 + 10αδλx2

0

−5λx2
0 − 10βδρx2

0 + 5δρx2
0 + 30βδλx0 − 15δρx0 + 35δλ

]

(5.17)

A5 = − 1

x9
0

[

−βλx3
0 + 2αβδλx3

0 − β2δρx3
0 − 2αδρx3

0 + 2βδρx3
0 + ρx3

0 + 6β2δλx2
0 + 12αδλx2

0

−6λx2
0 − 12βδρx2

0 + 6δρx2
0 + 42βδλx0 − 21δρx0 + 56δλ

]

(5.18)

(5.19) B1 = −2αρx4
0 − βδx2

0 − 2δx0 + 2βλx0 − 2ρx0 + 6λ

x4
0

(5.20) B2 = −βδx2
0 + 3δx0 − 3βλx0 + 3ρx0 − 12λ

x5
0

(5.21) B3 =
βδx2

0 + 4δx0 − 4βλx0 + 4ρx0 − 20λ

x6
0

(5.22) B4 = −βδx2
0 + 5δx0 − 5βλx0 + 5ρx0 − 30λ

x7
0

By the formulas of the Lyapunov coefficients obtained in Theorem 5.1, (5.13)
and using that δ = p(x0), we have that the sign of L1 is also that of:

L1(x0) :=ρ2x0
2 (1 − 2 x0)

(

α x0
2 + β x0 + 1

)2
[
(

β3 + 2 α β − α β2
)

x0
4

+
(

6 β2 − 6 αβ
)

x0
3 + (6 β − 6 α)x0

2 + 4 β x0 + 6](5.23)

which vanishes for

α =
β3x0

4 + 6 β2x0
3 + 6 β x0

2 + 4 β x0 + 6

x0
2 (−2 β x0

2 + 6 β x0 + 6 + β2x0
2)

(5.24)

(well defined because, for all β > 0: 0 < x0 < 1
2 ⇒ −2 β x0

2 + 6 β x0 + 6 + β2x0
2 =

βx0(1 − 2x0) + 5βx0 + 6 + β2x2
0 > 0).

It is noticed that L1(x0) can also be written (using (5.13)) like

l1(λ, x0) := −2 β2ρ x0
5 − 6 ρ β x0

4 +
(

λβ2 − 2 β λ − ρ β − 6 ρ
)

x0
2 + 6 λβ x0 + 6 λ.

(5.25)
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Therefore, for α given in (5.24), one has that the sign of L2 is also that of

L2(x0) =
2 (−2 x0 + 1)x2

0β ρ2
(

β x0
2 + β x0 + 3

)3
(β x0 + 2)

7

(−2 β x0
2 + 6 β x0 + 6 + β2x0

2)
4

[

3 + (4 β + 18)x0 + 4 β x0
2 + 18 β x0

3 + 11 β2x0
4 + β3x0

5
]

(5.26)

which is strictly positive for all β > 0; from which the result follows. (Note that L2

vanishes for β = 0.) �

5.3. Case β = 0. Recall that the results on the saddle-node bifurcations and Hopf
bifurcation of order 1 are the same for the cases β > 0 and β = 0. For the other
bifurcations, the cases β > 0 and β = 0 do not function similarly and we are led to
the following conjecture.

Conjecture 5.4. If β = 0 and L1 = 0, then the singular point E = (x0, y0) is a
center (i.e. there exists a neighborhood U of E such that all orbits inside U \ {E}
are periodic). The annulus of periodic solutions ends in a heteroclinic loop through
the two saddle points on the x-axis.

Rationale. It is well known since Poincaré that a singular point with two imaginary
eigenvalues is of center type if and only if all its Lyapunov coefficients vanish. (An
explicit reference is for instance Corollary 11 of [9]). The reference [17] contains
an explicit calculation of L3, L4, L5. They all have the form

Li = (−1)i+1Ci

(

α x0
2 − 1

)

ρ
1
2 x0

2i+1 (1 − 2 x0)
i− 1

2 (α x0
2 + 1)

2i− 1
2

Qi(x0, α, ρ)(5.27)

where Ci ∈ N
∗ and the Qi(x0, α, ρ) are polynomials with integer coefficients. Then,

for β = 0 and L1 = 0 the (5.24) yields α = 1
x2
0

and hence, L2 = L3 = L4 = L5 = 0.

6. Nilpotent saddle bifurcation

6.1. Normal form at the nilpotent point.

Theorem 6.1. If ρ = 4λ and δ = 1
α+2β+4 , then there exists a nilpotent saddle

bifurcation in the neighborhood of the singular point B = (1
2 , 0): the system localized

at the singular point of multiplicity 3 is, for k > 5, Ck-equivalent with the system

(6.1)

{

Ẋ = Y + aX2,

Ẏ = Y
(

X + α2X
2 + α3X

3 + α4X
4 + O(|X |5)

)

,

where

α2 = −α β + 6 α − β2 − 8 β − 24

2 (β + 4)
2 .

For α2 6= 0, the point is of codimension 3.
For all β ≥ 0, α2 vanishes in

(6.2) α = αβ :=
β2 + 8 β + 24

β + 6
> 0.

If α = αβ and β > 0, then for i = 3, 4, the coefficients of X iY in the normal form
(6.1) become α̃i, where:

α̃3 = −3
(

β2 + 12 β + 48
)

4 (β + 6)
2 < 0 and α̃4 =

3β
(

β2 + 18 β + 96
)

8 (β + 6)
3 > 0.
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Remark 6.2. If β = 0 and α2 = 0, then α4 = α6 = 0. We thus conjecture that:

Conjecture 6.3. If β = 0 and α2 = 0, then the normal form (6.1) is invariant
under the change X 7→ −X, t 7→ −t, i.e. the system is reversible and thus of infinite
codimension.

Remark 6.4. (1) In the case α2 = 0 and α̃4 6= 0, we conjecture that the
codimension is 4 because the coefficient α̃3 does not seem to play any role
in the structure of the bifurcation diagram. Indeed, it does not play any role
for the local bifurcations, and it remains to check that this is also the case
for the global bifurcations.

(2) In our system, the constraint given by the fact that the line of equation
Y = 0 is invariant decreases the effective codimension by one.

Proof of Theorem 6.1. It will be done in several steps:

(1) Localization of the initial system: We bring back the singularity B = (1
2 , 0) to

the origin by the translation (x1, y1) = (x− 1
2 , y), we use the fact that δ = 1

α+2β+4

and ρ = 4λ, and we multiply the system by 1

p(x1+
1
2 )

> 0.

Let K := 4(β+4)
α+2 β+4 . Then, by the transformation (x2, y2) = (Kx1,−Ky1) the

preceding system becomes:
(6.3)






ẋ2 = (α+2 β+4)4ρ (β+8)x2
5

16(β+4)4
− (α+2 β+4)3ρ (β+6)x2

4

8(β+4)3
− a x2

3 + a x2
2 + y2 + O(|x2|6),

ẏ2 = y2

[

− (α+2 β+4)3(β+10)x2
4

8(β+4)4
+ (α+2 β+4)2(β+8)x2

3

4(β+4)3
− (α+2 β+4)(β+6)x2

2

2(β+4)2
+ x2 + O(|x2|5)

]

,

where

(6.4) a := −ρ (α + 2 β + 4)2

4(β + 4)
< 0,

whose Jacobian matrix, evaluated in the origin, is J := ( 0 1
0 0 ).

(2) Normalizing change of variables and scaling of time: There exists a change of
variables preserving the invariant line y2 = 0 and a scaling of time bringing the
system (6.3) to

(6.5)

{

Ẋ = Y + aX2,

Ẏ = Y
(

X + O(|X |2)
)

.

Indeed, the system (6.3) is of the form
{

ẋ2 := y2 + ax2
2h(x2),

ẏ2 := y2g(x2), where

(6.6) h(x2) = 1 − x2 + O(|x2|2) and g(x2) = x2 + O(|x2|2).
Now let us consider the following changes of variables and scaling of time

(6.7) X = x2

√

h(x2) = x2(1 + O(|x2|)) := H(x2), t = k(X)T

where

k(X) :=
(

H−1
)

′

(X) = 1 + O(|x2|).
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One has
dX

dT
=

dX

dx2

dx2

dt

dt

dT

=H
′

(x2)
[

y2 + ax2
2h(x2)

]

k(X)

=
[

(

H−1
)

′

(X)
]−1

(Y + aX2)
(

H−1
)

′

(X)

=Y + aX2 and(6.8)

dY

dT
=

dY

dy2

dy2

dt

dt

dT

=Y

(

H−1(X) +

6
∑

i=2

α0i

(

H−1(X)
)i

+ ...)

)

(

H−1
)

′

(X) = Y G(X)(6.9)

where G(X) = X + o(X) is calculated easily. This is exactly (6.1).
The details of the calculations and simplifications of the αi were omitted. �

Topological type of the singular point B = (1
2 , 0). Since a < 0, then the

topological type of B is that of a nilpotent saddle (Figure 6.1). This is easily seen
by a weighted blow-up (see also [39]).

(a) complete blow-up (b) Topological type of the singular
point B = ( 1

2
, 0)

Figure 6.1. Nilpotent saddle

6.2. Normal form for the family unfolding the nilpotent saddle. Let

ν1 := ρ − 4λ, ν2 := δ − 1

α + 2β + 4
and ν := (ν1, ν2).(6.10)

We study the system (1.4) when the parameter ν := (ν1, ν2) is in a neighborhood
of (0, 0) and (x, y) is in a neighborhood of (1

2 , 0).

Proposition 6.5. If (x, y, ν1, ν2) is in a neighborhood of (1
2 , 0, 0, 0), then the system

(1.4) is topologically orbitally equivalent to

(6.11)

{

Ẋ = Y + q(X)r(X),

Ẏ = Y f(X), where
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(6.12)











q(X) := aX
2

+ µ0(ν),

r(X) := 1 + O(|ν|)
(

1 + O(|X |)
)

,

f(X) := O(|ν|) + (1 + O(|ν|)) X +
∑4

i=2(αi + O(|ν|))X i
+ O(|X |5),

the αi being defined in (6.1).

Proof. In order to reduce the text and avoid repetitions, we rather explain the
method and, when it is useful, we present certain expressions. Indeed:
• The translation (x1, y1) = (x − 1

2 , y) is applied, and the system is divided by

p
(

x1 + 1
2

)

. Then one obtains a system in which the coefficient of the x1y1-term in
ẏ1 is given by

(6.13) Kν2 =
4(β + 4)

α + 2 β + 4
[1 + ν2(α + 2 β + 4)].

• The transformation (x2, y2) = (Kν2x1,−Kν2y1) is applied, where Kν2 is given in
(6.13): one obtains

(6.14)

{

ẋ2 = f2(x2, ν1, ν2) + y2,

ẏ2 = y2g2(x2, ν1, ν2), where

f2(0, 0, 0) = 0,
∂f2

∂x2
(0, 0, 0) = 0 and

∂2f2

∂x2
2

(0, 0, 0) = a < 0.

Then, by the Weierstrass preparation theorem [10], there exists an analytical func-
tion u in a neighborhood of (0, 0, 0) ∈ R×R2 and two analytical functions ǫ0(ν1, ν2)
and ǫ1(ν1, ν2) in a neighborhood of (0, 0) ∈ R2 such that u(0, 0, 0) = a < 0,
ǫ0(0, 0) = 0, ǫ1(0, 0) = 0 and

f2(x2, ν1, ν2) =
[

ǫ0(ν1, ν2) + ǫ1(ν1, ν2)x2 + x2
2

]

u(x2, ν1, ν2).

Thus

(6.15) ẋ2 = y2 +

[

(

x2 +
ǫ1(ν)

2

)2

− ǫ1(ν)2 − 4ǫ0(ν)

4

]

u(x2, ν1, ν2),

where u(x2, 0, 0) = ah(x2) and h(x2) is defined in (6.6).

• The result follows by applying the translation (X, Y ) = (x2+ ǫ1(ν)
2 , y2) and letting

µ0(ν1, ν2) := −a[ǫ1(ν1,ν2)
2
−4ǫ0(ν1,ν2)]
4 . �

Theorem 6.6. (1) If α2 6= 0, then the system (1.4) is topologically orbitally
equivalent to

(6.16)

{

Ẋ = Y + a(ν)X2 + µ2,

Ẏ = Y
(

µ3 + X + ǫ2X
2 + O(X3)

)

+ Y 2Q1(X, ν),

where a(ν) < 0, ǫ2 = ∓1, Q1(X, 0) = 0.
(2) If α2 = 0 and β > 0, then the system (1.4) is topologically orbitally equiv-

alent to

(6.17)

{

Ẋ = Y + a(ν)X2 + µ2,

Ẏ = Y
[

µ3 + X + µ4X
2 + α̂3X

3 + X4 + O(X5)
]

+ Y 2Q2(X, ν),

where a(ν) < 0, α̂3 := (α̃3 + O(|ν|)) (α̃4 + O(|ν|))−
2
3 , Q2(X, 0) = 0.
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Proof. One starts by applying to the full system (depending on the parameters) the
transformations which bring the system evaluated at ν = 0 to the form (6.1). One
then applies Proposition 6.5 to it. One now takes the following changes of variable
and scaling of time

X = X, Y = Y r(X), t =
t

r(X)
.(6.18)

Then

Ẏ :=
dY

dt
= Y

[

f(X)

r(X)
− r

′

(X)q(X)

r(X)

]

+ Y 2

[

−r
′

(X)

r(X)

]

,(6.19)

where f(X), r(X) and q(X) are defined in (6.12). Thus
(6.20)














Ẋ = Y + q(X),

Ẏ = Y
[

(α + 2 β + 4)ν2 − ǫ1(ν)
2 + o(|ν|) + (1 + O(|ν|))X + (α2 + O(|ν|))X2

+O(|ν|)X3 + (α4 + O(|ν|))X4 + O(|X |5)
]

+ Y 2Q1(X, ν),

where Q1(X, 0) = 0 since one started from a system which had already this form for
ν = 0, and since the transformation is the identity for ν = 0. Let K1 := 1+ O(|ν|).
Two cases are essential:
• If α2 6= 0, then a transformation (X̃, Ỹ ) = (K1X, K1Y ) transforms to the case
α2 = ±1 by renaming a and µ0(ν).
• If α2 = 0 and β > 0, then α2 + O(|ν|) (the coefficient of Y X2 in (6.20)) becomes
O(|ν|) (independent of the first two). Since α4 > 0 by Theorem 6.1, a transforma-

tion (X̃1, Ỹ1) = ((α4)
1
3 X, (α4)

2
3 Y ) allows to bring to the case α4 = 1. �

6.3. Bifurcation diagram of the families (6.16) and (6.17). As expected in
this kind of problems, the bifurcation diagram of the family (6.16) will be the same
(topologically) as that of the standard family

(6.21)

{

Ẋ = Y + a(ν)X2 + µ2,

Ẏ = Y
(

µ3 + X + ǫ2X
2
)

.

Similarly, we expect that the bifurcation diagram of the family (6.17) will be the
same as that of the standard family

(6.22)

{

Ẋ = Y + a(ν)X2 + µ2,

Ẏ = Y
(

µ3 + X + µ4X
2 + α̃3X

3 + X4
)

,

where ǫ2 = ±1, a(ν) < 0 for ν := (ν1, ν2) sufficiently small and µi := µi(ν).

This will be discussed in detail in [18] and much details can be found in [17].
For the sake of completeness, we give a summary of the proof here: to help with
interpretation, one use the same letters C, D and E as for the corresponding singular
points of (1.4). But it should be noticed that the region y > 0 of (1.4) corresponds
here to Y < 0.

Theorem 6.7. The bifurcation diagram of the system (6.16) appears in Figure 6.2.
The figure presents the case ǫ2 = +1 and the case ǫ2 = −1 is obtained by the
transformation (X, Y, µ2, µ3, t) 7−→ (−X, Y, µ2,−µ3,−t).
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Figure 6.2. Bifurcation diagram and phase portraits of the sys-
tem (6.21) for ǫ2 = +1.

Proof. The system has two singular points C and D on the X-axis when µ2 is pos-
itive and a saddle-node bifurcation for µ2 = 0. By the implicit functions theorem,
there is another singular point E = (x0, y0) which is one anti-saddle (resp. saddle)
when it is located below (resp. above) Y = 0. At the time when E crosses the
X-axis in C (resp. D), one has a attracting (resp. repelling) saddle-node bifurca-
tion. In the region where E is an anti-saddle, there is a Hopf bifurcation of order 1,
whose first Lyapunov coefficient has the sign of ǫ2. The limit cycle created around
E must disappear before E crosses the X-axis. This can occur only in a heteroclinic
loop bifurcation. The hyperbolicity ratio of a saddle point is the absolute value of
the quotient of its negative eigenvalue by its positive eigenvalue. Let rC (resp. rD)
be the hyperbolicity ratio of C (resp. D). By calculating the product rCrD at the
time of heteroclinic loop, one checks that rCrD > 1 (resp. rCrD < 1), i.e. this
loop is repelling (resp. attracting) for ǫ2 > 0 (resp. ǫ2 < 0). Since the system is
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rotational in µ3 for µ2 is fixed, this yields that the locus of the heteroclinic loop is
of the form µ3 = g(µ2) for µ2 > 0. �

Theorem 6.8. The bifurcation diagram of the system (6.17) has the structure of
a cone. Its intersection with a sphere Sǫ minus a point is presented in Figure 6.3
(see also Table 2.1), where Sǫ = {(µ2, µ3, µ4) ∈ R3 such that µ2

2 +µ2
3 +µ2

4 = ǫ2}
with ǫ > 0 sufficiently small. The following bifurcations are exact: saddle-node
bifurcations, Hopf bifurcations of order 1 and 2, and the qualitative position of the
heteroclinic loop bifurcation. Are conjectured:

• the conic structure;
• the uniqueness of the points corresponding to a heteroclinic loop of order 2;
• the exact order of the heteroclinic bifurcation when it is higher than 1;
• the uniqueness of the point of intersection of the Hopf bifurcation curve with

the heteroclinic loop bifurcation curve;
• the fact that there are at most two limit cycles.

In the particular case where α̂3 = O(ν) and the term in XY 2 has a coefficient O(ν),
these conjectures are proved.

Proof. The study of the singular points is similar to the preceding case. In the
case of the Hopf bifurcation of order 2, it is easy to verify that the term in X3Y of
coefficient α̂3 does not play an essential role and cannot destroy the tendency given
by the term in X4Y . For µ2, µ3 fixed (resp. µ2, µ4 fixed), the system is rotational
in µ4 (resp. µ3). This shows that the surface of heteroclinic loop bifurcation cuts
each line corresponding to µ2, µ3 constant (resp. µ2, µ4 constant) at most once. We
thus obtain the qualitative position of the surface. It is clear that the heteroclinic
bifurcation is repelling (resp. attracting) in the neighborhood of µ2 = µ3 = 0,
µ4 > 0 (resp. µ4 < 0) and that the quantity rCrD − 1 must thus vanish between
the two. One way of making a complete study of the heteroclinic bifurcation when
the codimension is higher than 2 is to make a blow-up which brings back the system
to a perturbation of a Hamiltonian system. But, the method can only be applied
under the condition α̂3 = O(ν), and the hypothesis that the term in XY 2 has a
coefficient O(ν). On the other hand, in this last case, we can prove all the details
([18]). �

We continue to work to fill the holes in the proof of the Theorem 6.8. A better
normal form for a system with an invariant line would allow to make our argument
completely rigorous.

7. Bifurcation diagram

7.1. Presentation of the section. Recall that the system (1.4) has 5 real param-
eters: ρ, α, δ, λ are strictly positive, β ≥ 0; and we use the parameter η defined in
(4.8).
The (preceding) study show that the bifurcations of (1.4) occur only under the
following basic conditions:

(7.1) ρ ≥ 4λ or δ <
1

α
.

We choose to present the bifurcation diagram in the space (α, δ, λ) for
the different values of (β, ρ). Most of the time, we will give the slices of
the bifurcation diagram in the (α, δ)-plane for different λ ≥ 0.



GENERALIZED GAUSE MODEL WITH PREY HARVESTING 25

I

II

III IV

V

V II

V III

V I

B−

SNre

µ3

SNri

B+

SNae

SNai

µ2 = 0
Ha

C
HL2

DC

H2

Hr

HLa

HLr

µ4

µ2 > 0

(a) I

.

(b) II

.

(c) III

.

(d) IV (e) V (f) VI

.

(g) VII

.

(h) VIII

.

(i) H2

.

(j) C

.

(k) HL2

.

(l) DC

.

(m) HLr −(C, HL2)

(n) B+ (o) B−

.

(p) (C, HL2)

.

(q) HLa

.

(r) Hr

.

(s) (H2, C)

.

(t)
Ha − (C, H2)

(u) SNri (v) SNai (w) SNre (x) SNae

Figure 6.3. Trace of the bifurcation diagram of (6.22) on Sǫ

minus a point, and phase portraits (see also Table 2.1).

Let us start with the small remark.

Remark 7.1. The line of equation y = 0 remains invariant under the flow of the
system (1.4), whereas the y-axis is no more invariant as soon as λ 6= 0.

7.2. Position of the saddle-node bifurcations.
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Theorem 7.2. (1) In the (α, δ)-plane, let

(SN) : δ =p

(

1

2

)

=
1

α + 2β + 4
:(7.2)

(SNr), (SN) and (SNa) are branches of hyperboles represented on Fig-
ure 7.1(a).
More precisely:

(2) If λ = ρ
4 then:

• the union of (SNr) and (SNa) merges exactly with (SN), which corre-
sponds to a triple singular point on the x-axis (i.e B = (1

2 , 0), nilpotent
saddle);
• there exists a repelling saddle-node, (SNr), (resp. attracting saddle-node,
(SNa)) if δ < 1

α+2β+4 (resp. if δ > 1
α+2β+4): see Figure 7.1(b).

(3) (SNa) is below (SN) which, in turn, is below (SNr).
(4) The line δ = 0 is a horizontal asymptote of (SNr), (SNa) and with (SN).

(5) The line α = 0 intersects (SNr), (SNa) and (SN) respectively at the

points (0, fr(0)), (0, fa(0)) and (0, fn(0)) where fr(0) :=
( 1
2−η)2

β( 1
2−η)+1

, fa(0) :=

( 1
2 +η)2

β( 1
2+η)+1

and fn(0) = 1
2(β+2) .

α

δ

(SNr)

(SNa)
(SN)

(a) for ρ > 4λ

α

δ

(SNr)

(SN)

(SNa)

(b) for ρ = 4λ

Figure 7.1. Sections, parallel to the plan (α, δ), of the saddle-
node bifurcation surfaces (SNr), (SNa) and (SN).

Proof. Indeed:

(1) It is known that (SNr) is given by δ = p(1
2 −η) and (SNa) by δ = p(1

2 +η).

The figure 7.1(a) thus derives from the study of the functions p
(

1
2 − η

)

,

p
(

1
2

)

and p
(

1
2 + η

)

which all are of the form c1

αc2+c3
where ci > 0.

(2) If λ = ρ
4 , then η = 0 and g(x) := ρx2 − ρx + λ has a double root; thus:

• (SNr) and (SNa) merge exactly along the curve (SN) which corresponds
to the triple singular point B = (1

2 , 0) of nilpotent saddle type;
• from Section 4.3, the two singular points on the x-axis merge in a repelling
saddle-node, (SNr), (resp. attracting, (SNa)) if δ < 1

α+2β+4 (resp. if

δ > 1
α+2β+4 ).

(3) It comes from 1
2 − η ≤ 1

2 ≤ 1
2 + η, since p is increasing.

(4) It comes from the shape of the curves p
(

1
2 ± η

)

and p
(

1
2

)

.

�



GENERALIZED GAUSE MODEL WITH PREY HARVESTING 27

7.3. Hopf bifurcation. Recall that here, one has (5.10) for η defined in (4.8).

Theorem 7.3. The sections of the surface (H) of Hopf bifurcation by planes parallel
with the (α, δ)-plane in the first quadrant are represented in Figure 7.2.

α

δ

(a) λ is small.

α

δ

(b) λ is neither small,
nor close to ρ

4
.

α

δ

(c) λ is close to ρ
4
.

Figure 7.2. Sections, parallel to the (α, δ)-plane in the first
quadrant, of the Hopf bifurcation (H).

Proposition 7.4. For all λ ∈]0, ρ
4 [, the Hopf bifurcation surface (in (α, δ, λ)-space)

(i) strictly lies between (SNr) : δ = p(1
2 − η) and (SN) : δ = p(1

2 );
(ii) is included in the surface of equation

(7.3) P (α, δ, λ) := A(α, λ)δ4 + B(α, λ)δ3 + C(α, λ)δ2 + D(α, λ)δ + E(α, λ) = 0,

where
(7.4)

A(α, λ) = α
(

−β2 + 4 α
) (

λ2α2 + ρ (ρ − 2λ + βλ) α + ρλβ2 + ρ2 (1 + β)
)

,
B(α, λ) = −α2

(

16 α − 3 β2
)

λ2 − ρ
(

2 α β2 − 16 α2 + β4 − α β3 + 8 α2β
)

λ
−ρ2

(

β3 + β2 − α β2 + 8 α2
)

,
C(α, λ) = 3 α

(

−β2 + 8 α
)

λ2 + 4 ρ
(

−β2 − 2 α + β α
)

λ + ρ2 (−2 β + 5 α) ,
D(α, λ) =

(

β2 − 16 α
)

λ2 − ρ2 and E(α, λ) = 4 λ2.

Proof. Let λ ∈]0, ρ
4 [ :

(i) It follows from (5.10) and the fact that p is strictly increasing in ]0, +∞[.
(ii) The determinant of the Jacobian matrix of (1.4) in (x0, y0) being strictly pos-
itive, a Hopf bifurcation occurs when the trace is zero, i.e. when the resultant of
f(x) := (αδ − 1)x2 + βδx + δ and

u(x) := −2 ρ αx4 + ρ (α − β)x3 + (−ρ + λβ) x + 2 λ(7.5)

vanishes. �

Remark 7.5. For all ρ ≥ 4λ, the factor

A0(α, λ) := λ2α2 + ρ (ρ − 2λ + βλ) α + ρλβ2 + ρ2 (1 + β)

of A(α, λ) is strictly positive.

We will study in detail the curve P (α, δ, λ) = 0 in the (α, δ)-plane for fixed values
of λ and we will determine which branch corresponds to a Hopf bifurcation.

Remark 7.6. For α large, the coefficients of P (α, δ, λ) are of alternate sign. Hence,
by the criterion of Descartes, there are zero, or 2, or 4 branches at infinity in the
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first quadrant. Below, we will prove that there are exactly 2 branches at infinity as
soon as λ > 0.

In order to help with the analysis of P (α, δ, λ), we recall some classical results
on the number of roots of a polynomial of degree 4.

Theorem 7.7 (Part of Theorem 5.3.2 of [17], see also [25]). Let P (x) = a4x
4 +

a3x
3 + a2x

2 + a1x + a0 where a4 6= 0, P (x) ∈ R[x], and ∆, its discriminant.
Let P1(X) = a4

(

X4 + pX2 + qX + r
)

the image of P (x) by the translation X =
x + a3

4a4
, whose discriminant is noted by ∆1. Then ∆ = ∆1.

When q 6= 0, one has

∆ =
a6
4

27

[

4
(

p2 + 12r
)3 −

(

8p3 + 27q2 − 6p(p2 + 12r)
)2
]

=
a6
4

27

[

−729 q4 + 108 p
(

−p2 + 36 r
)

q2 + 432r
(

p2 − 4 r
)2
]

.(7.6)

(i) If ∆ < 0, then P (x) has two real simple roots and two complex simple roots.
(ii) If ∆ = 0, then:
• for p2 + 12r = 0, P (x) has a real triple root and a real simple root;
• for p2 + 12r 6= 0 and (p2 − 4r ≤ 0 or p ≥ 0), P (x) has a real double root and two
complex simple roots;
• for p2 + 12r 6= 0 and p2 − 4r > 0 and p < 0, P (x) has a real double root and two
real simple roots.
(iii) If ∆ > 0, then:
• for p2 − 4r ≤ 0 or p ≥ 0, P (x) has four complex simple roots;
• for p2 − 4r > 0 and p < 0, P (x) has four real simple roots.

Theorem 7.8. The restriction of the curve P (α, δ, λ) = 0 to the first quadrant in
(α, δ)-plane is represented in Figure 7.3. More precisely:

(i) The line α = β2

4 (resp. δ = 0) is a vertical (resp. horizontal) asymptote.
(ii) For λ small, the curve P (α, δ, λ) = 0 admits a single point of turning-back
(coming from infinity when λ = 0), with coordinates (αr = α(λ), δr = δ(λ)) and
such that αr → +∞, δr → 0+ when λ → 0.
(iii) The restriction of the curve P (α, δ, λ) = 0 to the first quadrant in (α, δ)-plane
always admits a point of self-intersection.

Proof. (i) Considering P (α, δ, λ) as a polynomial in δ,
(

4 α − β2
)

is a factor of

A(α, λ), the coefficient of δ4. Considering P (α, δ, λ) as a polynomial in α, δ4 is a
factor of the coefficient of α4; the result follows.

(ii) Let λ be small. Let τ := 1
α
, P (α, δ, λ) := P1(τ, δ, λ) and ∂P

∂δ
(α, δ, λ) :=

P2(τ, δ, λ). Let Dλ(τ) be the resultant of P1(τ, δ, λ) and P2(τ, δ, λ) in δ. Then,

Dλ(τ) = τ2
[(

−24 + 3 β2τ
)

λ2 +
(

4 ρ τ2β2 + (−4 ρ β + 8 ρ) τ
)

λ + 2 ρ2τ2β − 5 ρ2τ
]

[(

−128 + τ2β4 + 16 β2τ
)

λ4 +
(

64 ρ τ2β2 − 64 ρ (β − 2) τ
)

λ3

+
(

−2 β ρ2 (−16 + β) τ2 − 48 ρ2τ
)

λ2 + τ2ρ4
]

:= τ2D1(τ, λ)D2(τ, λ).

One has that

D1(0, 0) = 0 and
∂D1

∂τ
(0, 0) = −5ρ2.(7.7)

Therefore, by the implicit function theorem, for λ small, there exists only one solu-
tion τ = τ(λ) in the neighborhood of 0 (and thus only one α(λ) := αr → +∞) such



GENERALIZED GAUSE MODEL WITH PREY HARVESTING 29

α

δ

(a) λ = 0.

α

δ α = β2

4

P (α, δ, λ) = 0
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Figure 7.3. Branches of the curve P (α, δ, λ) = 0 in the first
quadrant of (α, δ)-plane.

that D1(τ(λ), λ) = 0. However, by the Newton diagram [10] of D1(τ, λ), it is seen
that the dominant terms of D1(τ, λ) are −24λ2 and −5 ρ2τ ; then D1(τ, λ) is ap-
proximated, for (λ, τ) small, by −24λ2−5 ρ2τ . Similarly, D2(τ, λ) is approximated,
for (λ, τ) small, by τ2ρ4−48 ρ2τλ2−128λ4. For the approximation of D1(τ, λ), the
corresponding root in τ is strictly negative: it is excluded! For the approximation
of D2(τ, λ), there are two roots in τ of opposite sign: there thus exists only one
strictly positive root in τ . Consequently, there exists δr = δ(λ), a common root
of P1(τ, δ) and P2(τ, δ). Lastly, it is clear that δr → 0+ since the line of equation
δ = 0 is, for λ small (resp. λ = 0) a horizontal asymptote of all the branches (resp.
a component) of the curve P (α, δ, λ) = 0.
(iii) Indeed, the discriminant of P (α, δ, λ) in δ is of the form
∆(α, β, λ) := 4ρ2∆1(α, β, λ)[∆2(α, β, λ)]2, where:

∆2(α, β, λ) = − 2 ρ2λα2 + ρ
(

18 β2λ2 + β3λ2 + 2 ρ2 + 16 ρ β λ − ρ2β
)

α

+ β2
(

ρ + ρ β + λβ2
) (

β2λ2 − 2 ρ λ + ρ2 + 2 ρ β λ
)

(7.8)

and ∆1(α, β, λ) is a polynomial of degree 4 in α.
However, since ρ ≥ 4λ, then ∆2(α, β, λ) (which is a polynomial of degree 2 in
α) admits two roots of opposite sign. Thus, there exists only one positive root
α := α∗ > 0 such that ∆2(α

∗, β, λ) = 0 (and hence ∆(α∗, β, λ) = 0). Consequently,
the equation curve P (α, δ, λ) = 0 admits a point of self-intersection. This point,
(either double or triple), is in the first quadrant in (α, δ)-plane: indeed, it is located
there for λ = ρ

4 and for λ = 0, and it does not cross the axes; therefore, by
continuity, it remains there. Otherwise, one would have more than one intersection
point with the δ-axis; this is not the case according to Proposition 7.9 below. Or,
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if it passes at infinity, there would be only one infinite branch in the direction α;
this is not the case according to Proposition 7.13 below. However, as will be seen
in Proposition 7.17 below, the highest branch of the curve P (α, δ, λ) = 0 in the first
quadrant in (α, δ)-plane is nonadmissible for the Hopf bifurcation. Thus this point
of intersection between a relevant branch and a nonrelevant branch of the equation
curve P (α, δ, λ) = 0 is not relevant for our bifurcation diagram. �

There are five special cases where the study of the equation P (α, δ, λ) = 0 is
easier:

α = 0, α =
β2

4
, δ =

1

α + 2β + 4
, λ = 0, λ =

ρ

4
.

We will study each of the five cases. Indeed, let us note

P(α,λ)(δ) := P (α, δ, λ) = 0(7.9)

the equation with unknown δ.

Proposition 7.9. If α = 0 and ρ > 4λ, then the equation (7.9) admits only one
positive solution, δ1 ∈]0, 1

2(β+2) [.

Proof. One has P(0,λ)(0) = 4 λ2 > 0 and P(0,λ)

(

1
2(β+2)

)

< 0; thus, there exists

δ1 ∈]0, 1
2(β+2) [ such as P (0, δ1, λ) = 0.

Let us show the uniqueness of δ1. P(0,λ)(δ) is a polynomial of degree 3 in δ,
P(0,λ)(0) > 0 and limδ→+∞ P(0,λ)(δ) = −∞. Then, P(0,λ)(δ) has an odd num-
ber of positive roots, that is to say 1 or 3. However, if there were 3 positive roots,
then the coefficients of P(0,λ)(δ) must have alternate signs; but this is not the case

because the coefficients of δ3 and δ2 are both negative. Thus P(0,λ)(δ) has exactly
one positive root. �

Remark 7.10. When α = β2

4 and ρ > 4λ, the number of solutions of the equation
(7.9) is not relevant to obtain Figure 7.3. Nevertheless, this case is studied in detail
in [17].

Proposition 7.11. (1) For λ 6= ρ
4 (SN) : δ = 1

α+2β+4 intersects the curve of

equation P (α, δ, λ) = 0 in a single point of coordinates
(7.10)

(α0, δ0) =

(

(β + 2)
(

λβ2 + (ρ + 4λ) (β + 1)
)

ρ
,

ρ

(β + 2) (λβ2 + (ρ + 4λ)β + 3 ρ + 4 λ)

)

.

(2) For λ = ρ
4 , (SN) : δ = 1

α+2β+4 is a branch of the curve P (α, δ, λ) = 0.

Proof. By substituting δ = 1
α+2β+4 in P (α, δ, λ), we get

Pλ(α) :=
2

(α + 2β + 4)4
(β + 4)

2
(ρ − 4 λ)

(

αρ − (β + 2)
(

λβ2 + (ρ + 4λ) (β + 1)
))

.

(7.11)

Hence, Pλ(α) = 0 if, and only if ρ = 4λ or α = α0 :=
(β+2)(λ β2+(ρ+4λ)(β+1))

ρ
; in

substituting α = α0 in (SN), one gets δ = δ0 := ρ
(β+2)(λ β2+(ρ+4λ)β+3 ρ+4 λ) . �

Remark 7.12. When λ = 0, the curve P (α, δ, λ) = 0 is represented in Fig-
ure 7.3(a). More precisely, (see Proposition 1.5.2 of chapter 1 of [17]), the afore-
mentioned curve has:
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• four branches at infinity in the direction α: one is δ = 0 and the 3 others are
given by the roots of a polynomial of degree 3 in δ. Indeed, for large α, it is easily
seen that the discriminant of P (α, δ, 0) with respect to δ is strictly positive and that
the second condition of Theorem 7.7, case (iii), is satisfied.
• only two branches at infinity in the direction δ since, for large δ, it is clear that
the discriminant of P (α, δ, 0) with respect to α is strictly negative and we conclude
by case (i) of Theorem 7.7.

Proposition 7.13. When λ > 0, the curve P (α, δ, λ) = 0 has two branches at
infinity in each of the directions α and δ.

Proof. Indeed:
• for large α , the discriminant of P (α, δ, λ) in δ has the sign of

(7.12) 4ρ2(−27ρ2λ2α4)
(

−2ρ2λα2
)2

,

which is negative.
• for large δ, the discriminant of P (α, δ, λ) in α has the sign of

− δ16ρ2
[

β2ρ(−ρ + 4λ)(β2λ + 4ρ + 2βρ)2δ4
]

[

β(β2λ + ρ + βρ)(λβ + ρ)(β2λ + 4ρ + 2βρ)δ2
]2

,(7.13)

which is negative. One concludes by (i) of Theorem 7.7. �

Proposition 7.14. When λ = ρ
4 , the curve P (α, δ, λ) = 0 is represented in Fig-

ure 7.3(f); more precisely:

(1) (i) P (α, δ, λ) = 0 if, and only if (SN) : δ = 1
α+2β+4 or

Q(α,β)(δ) :=α (α + 2 β + 4)
(

−4 α + β2
)

δ3 +
(

2 β3 + 12 α2 + 4 β2 − 2 α β2
)

δ2

+
(

β2 + 8 β − 12 α
)

δ + 4 = 0.(7.14)

(ii) (SN) intersects the curve of equation (7.14) at the point with coordi-

nates (α0(β), δ0(β)) =

(

(β+2)(β2+8β+8)
4 , 4

(β+2)(β2+8β+16)

)

.

(2) Q(α,β)(δ) = 0 does not intersect α = β2

4 in the first quadrant.

(3) If α 6= β2

4 , then the equation (7.14):

(i) admits only one positive solution if α > β2

4 ;

(ii) does not admit any positive solution if α < β2

4 .

Proof. (1) (i) Indeed,

Pλ(α, δ)|ρ=4λ := − λ2 (δ(α + 2β + 4) − 1) [α (α + 2β + 4)
(

−4 α + β2
)

δ3

+
(

12α2 + (4 − 2α)β2 + 2β3
)

δ2 +
(

β2 + 8β − 12α
)

δ + 4],(7.15)

from which the result follows.
(ii) is an immediate consequence of Proposition 7.11.

(2) When α = β2

4 , Q(α,β)(δ) becomes

Qβ(δ) :=

(

4 β2 + 2 β3 +
1

4
β4

)

δ2 +
(

8 β − 2 β2
)

δ + 4,(7.16)

whose discriminant in δ is −64 β3 < 0. Then, Qβ(δ) > 0.
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(3) Let α 6= β2

4 , the discriminant of Q(α,β)(δ) in δ is

D(β, α) := −4
(

432 α2 − 72 αβ2 + 16 β3 + 4α β3 − β4
) (

2 β2 + β3 + 8 α
)2

,(7.17)

whose sign is that of

dβ(α) := − (432 α2 − 72 αβ2 + 16 β3 + 4αβ3 − β4).(7.18)

(i) If α > β2

4 , then the coefficients α (α + 2 β + 4)
(

−4 α + β2
)

and 4 of
Q(α,β)(δ) are of opposite sign. Since Q(α,β)(δ) is of degree 3 in δ, then

(7.14) has 1 or 3 positive solutions. However, for α > β2

4 one has that

432 α2 > 108αβ2 and 4α β3 > β5; from which

432 α2 − 72 α β2 + 16 β3 + 4α β3 − β4 >108αβ2 − 72 αβ2 + 16 β3 + β5 − β4

=36αβ2 + 16 β3 + β5 − β4

>8β4 + 16 β3 + β5 > 0.(7.19)

Thus, D(β, α) < 0. Therefore, (7.14) has only one real solution which is
positive.

(ii) If α < β2

4 , then the coefficients α (α + 2 β + 4)
(

−4 α + β2
)

and 4 of
Q(α,β)(δ) have the same sign. Therefore, (7.14) has 0 or 2 positive solutions.

However, the discriminant of dβ(α) in α is 16 β3 (β − 12)
3
. Then,

• for β < 12, (7.14) has only one real solution which is negative;
• for β > 12, then dβ(α) admits two distinct roots α1 < α2:
- if (α < α1 or α > α2), then (7.14) has only one negative real solution;
- if α ∈ [α1, α2], then (7.14) has three negative real solutions. Indeed, roots
of Q(α,β)(δ) cannot disappear, nor pass at infinity (see (7.14)); then, by
continuity, they will never change sign!

�

Proposition 7.15. The curve P (α, δ, λ) = 0 in (α, δ)-plane admits, for λ = λ⋆,
a contact point of order 2, (α⋆, δ⋆), with the vertical direction, where λ⋆ ∈]0, ρ

4 [,

α := α⋆ > 0 and δ = δ⋆ ∈]0, 1
α+2β+4 [ are such as

(7.20)



















P (α, δ⋆, λ⋆) = 0,

P
′

δ(α, δ⋆, λ⋆) = 0,

P
′′

δ (α, δ⋆, λ⋆) = 0,

P
′′′

δ (α, δ⋆, λ⋆) 6= 0.

Proof. Indeed:
- for λ small, there are two points where the tangent to the curve P (α, δ, λ) = 0 is
vertical in the first quadrant in (α, δ)-plane;
- for λ close to ρ

4 , there is no point with vertical tangent with the equation curve
P (α, δ, λ) = 0.
However, these two points cannot leave the first quadrant (otherwise, there would
be 2 or 3 points of intersection with the δ-axis; this is not the case according to
Proposition 7.9!) nor go at infinity (otherwise, one would have 4 branches at infinity
in the direction α; this is not the case according to Proposition 7.13!): hence, by
continuity, they merge! �

This ends the proof of Theorem 7.8.



GENERALIZED GAUSE MODEL WITH PREY HARVESTING 33

Remark 7.16. Let us return to Figure 7.3. Intuitively:

(1) When λ is small, case (b) of Figure 7.3 appears:
- from the perturbation of two curves when λ = 0: δ = 0 (nonadmissible)
and the Hopf bifurcation curve;
- from the existence of a point of turning-back coming from infinity (see
(iii) of Theorem 7.8).

(2) Figure 7.3 (c) is the necessary passage to go from (b) to (d).
(3) When λ tends to ρ

4 , the lower branch of the curve P (α, δ, λ) = 0 tends to
(SN) in the first quadrant of (α, δ)-plane.

Proposition 7.17. (1) The branch of P (α, δ, λ) = 0 which intersects (SN) is
not related to a singular point located in the first quadrant.

(2) The branch of P (α, δ, λ) = 0 which intersects the lines of equations α = β2

4
and α = 0 is admissible for the Hopf bifurcation.

Proof. Indeed:

(1) P (α, δ, λ) = 0 intersects (SN) in (α0, δ0), defined by (7.10). If one evaluates
f(x) = (αδ − 1)x2 + βδx + δ in (α0, δ0), one obtains

(7.21) F (x) :=
ρ (1 − 2 x) ((β + 2)x + 1)

(β + 2) (λβ2 + (ρ + 4λ)β + 3 ρ + 4 λ)

with roots in x given by x = 1
2 and x = − 1

β+2 . But, from the expression of

the trace (see in (7.5)), one has that

(7.22) u

(

1

2

)

=
1

8 (β + 4) (4 λ − ρ)
< 0 and u

(

− 1

β + 2

)

= 0,

i.e. the trace vanishes only at the singular point whose x-coordinate is nega-
tive; this singular point is thus not first quadrant. Therefore, by continuity,
the branch of solution of P (α, δ, λ) = 0 which intersects (SN) is not related
to a singular point of the first quadrant (because, since the x-coordinate of
the singular point can pass neither by 0, nor at infinity, then it will never
change sign!).

(2) Indeed, by substituting α = β2

4 in P (α, δ, λ), f(x) (characterizing the x-
coordinate of the singular point) and u(x) (characterizing the trace in this
singular point), one obtains respectively:

P(β,λ)(δ) := − 1

16
β2
(

λβ2 + 4 ρ + 2 β ρ
)2

δ3

+
1

4
β
[

3 λ2β3 + 4 λρ β2 + ρ (5 ρ − 24 λ)β − 8 ρ2
]

δ2

+
(

−3 β2λ2 − ρ2
)

δ + 4 λ2,(7.23)

(7.24) f1(δ, x) :=
1

4
(xβ + 2)

2
δ − x2 and

(7.25) u1(x) := −1

2
ρ β2x4 + ρ

(

1

4
β2 − β

)

x3 + (−ρ + λβ) x + 2 λ.
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However Pβ(δ, λ) and f1(δ, x) admit a common root in δ if, and only if their
resultant in δ, R0(x), vanishes. Since

R0(x) := − 1

4

(

−4λ + 2ρ x − ρx2β + 2x3ρβ
)

[(3ρβ2 + 2ρβ + 4λβ3)x3

+ (5ρβ + 12λβ2)x2 + (2ρ + 12λβ)x + 4λ],(7.26)

then R0(x) vanishes at x > 0 if, and only if

(7.27) R1(x) := x3 − 1

2
x2 +

x

β
− 2

λ

β ρ
= 0.

But at this singular point, the trace vanishes if, and only if the resultant
in x of R1(x) and u1(x) is zero. A calculation shows that this resultant
indeed vanishes identically. Also, R1(x) has only positive root(s), either
1 or 3; moreover, since the branch of solution of P (α, δ, λ) = 0 which

intersects α = β2

4 strictly lies between (SNr) and (SN), one thus has that

x0 ∈]12 − η, 1
2 [. Consequently, the y-coordinate of the singular point and

the determinant of the linearized system are strictly positive. The result
follows by continuity.

�

This finishes the proof of Theorem 7.3. As a consequence of Theorems 7.3, 7.2
and Proposition 7.4, we have the following result.

Corollaire 7.18. The local bifurcation diagram of codimension 1 of the system
(1.4) in the first quadrant is given in Figure 7.4.

α

δ

(a) λ is small.

α

δ

(SNr)
(H)
(SNa)

(b) λ is neither small,
nor near to ρ

4
.

α

δ

(c) λ is close to ρ
4
.

α

δ

(SNr)

(SN)

(SNa)

(d) λ = ρ
4
.

Figure 7.4. Surfaces of the local bifurcations of the system (1.4)
in the first quadrant of the plan (α, δ).

The bifurcations we are missing are global: the heteroclinic loop bifurcation and
the double cycle bifurcation.

7.4. Position of the separatrices of the singular points of the x-axis for
the system (1.4).

Theorem 7.19. Let C = (x01, 0) and D = (x02, 0) be the singular points on the
x-axis. As soon as C or D is a saddle point, its separatrix cannot have a vertical
asymptote: the separatrix comes from the right side for C, and from the left for D
as illustrated on the Figure 7.6. In particular, when C and D are saddle points, the
three possible positions of their separatrices are presented in Figure 7.7.
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Proof. We have x01 = 1
2 − η and x02 = 1

2 + η for η :=

√
ρ(ρ−4λ)

2ρ
.

• The separatrix of C and D cannot go at infinity. Indeed,

lim
y→+∞

(

dy

dx

)

= lim
y→+∞

(

ẏ

ẋ

)

= lim
y→+∞

y(−δ + p(x))

−yp(x) + ρx(1 − x) − λ

=
δ − p(x)

p(x)
:= L(x).(7.28)

However, L is bounded since continuous on the compact [x1, x2]. Since the slope
of the field is bounded between the lines of equation x = x1 and x = x2, the
separatrices of C and D cannot go at infinity.
Moreover, ẋ < 0 on x = x1 and x = x2, which ensures that, in the neighborhood
of the singular points, the portion of the separatrix contained in the first quadrant
lies inside the strip {x ∈]x1, x2[} (see Figure 7.5).

There are thus two possible positions for the left separatrix and two possible

x1 x2

Figure 7.5. Behavior of the trajectories at the neighborhoods
of C and D (when those are saddle points).

positions for the right separatrix (see Figure 7.6).
• If C and D are saddle points, then the coordinates of the third singular point

x1 x2

(a) possible positions of
the separatrix of C

x1 x2

(b) possible positions of
the separatrix of D

Figure 7.6. Possible positions of the separatrices of the singular
points on the x-axis for the system (1.4)

E = (x0, y0) satisfy x1 < x0 < x2 and y0 > 0.
Hence, when C and D are saddle points, the three possible configurations of their
separatrices are presented in Figure 7.7. �
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x1 x2

(a) 1st case

x1 x2

(b) 2nd case

x1 x2

(c) 3rd case

Figure 7.7. Possible positions of the separatrices of the singular
points C and D when they are saddle points.

Proposition 7.20. For λ, α, β, ρ fixed such that C and D are saddle points, the
portion of the separatrix of C (resp. D) inside the strip {x ∈]x1, x0]} (resp. {x ∈
[x0, x2[}) lies above the isocline ẋ = 0. In this region, corresponding to ẋ < 0, the
vector field is rotational with respect to δ and the separatrices move in a monotonous
way when δ increases: the separatrix of C (resp. D) moves up (resp. down) when
δ increases. Hence, there is at most one value of δ for which a heteroclinic loop
bifurcation occurs.

Proof. For λ, α, β, ρ fixed, one easily checks that the vector product of the vector
field evaluated at δ = δ1 with the vector field evaluated at δ = δ2 does not vanish
in the region ẋ < 0 if δ1 6= δ2. The monotonous movement of the separatrices is
shown for example in [30]. �

7.5. Heteroclinic loop bifurcation. In figure 7.4, let us consider the following
case

λ ∈]0,
ρ

4
[ and p

(

1

2
− η

)

< δ < p

(

1

2
+ η

)

.(7.29)

There are exactly three singular points, C, D and E where C = (1
2 − η, 0) and

D = (1
2 + η, 0) are saddle points located on the x-axis and E = (x0, y0) is in the

first quadrant.

Proposition 7.21. (1) A heteroclinic loop bifurcation occurs in the parameter
region limited by (SNr) and (SNa). More precisely, on each line α =
constant, there exist a unique point of heteroclinic loop bifurcation located
between the intersection points of this line with (SNr) and (SNa).

(2) The heteroclinic loop bifurcation surface, (HL), tends to δ = 0 when λ → 0.

Proof. (1) Existence of the heteroclinic loop bifurcation
In the region limited by (SNr) and (H), the position of the separatrices (see
Theorem 7.19) and phase portraits of (1.4) (see Figures 2.2, 2.3 and 2.4) in
the neighborhood of (SNr) (where there is no limit cycle because (x0, y0)
merges with a singular point of the x-axis) and in the neighborhood of Hr

(where there is a repelling limit cycle) show that there is necessarily a het-
eroclinic loop allowing the limit cycle to disappear before the saddle-node
bifurcation. Indeed, the limit cycle cannot disappear at infinity (see Theo-
rem 7.19). The uniqueness of the value of δ comes from Proposition 7.20.

(2) For λ small, one has that (SNr) and the lower branch of (H) tend to δ = 0
(see the equations of (SNr) and of (H)). Since (HL) does not exist any
more when λ = 0, the only possibility is that (HL) tends to δ = 0 when λ
tends to 0.
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The type and the codimension of the heteroclinic loop (for which the connection
CD is fixed) are given by the following proposition:

Proposition 7.22. Let

H(α) :=
1

2

[

p

(

1

2
− η

)

+ p

(

1

2
+ η

)]

.(7.30)

The heteroclinic loop is:
• of codimension greater or equal to two, i.e. rCrD = 1, if

(R) : δ = H(α);(7.31)

• of codimension 1 and repelling (resp. attracting) (i.e. rCrD < 1 (resp. rCrD >
1)) if δ < H(α) (resp. δ > H(α)).

Proof. The criteria rCrD = 1, rCrD < 1 and rCrD > 1 are well-known in the liter-
ature (see for example [13]). Recall that, for p

(

1
2 − η

)

< δ < p
(

1
2 + η

)

, the points
C and D are hyperbolic saddles; their hyperbolicity ratios are given respectively by

rC :=
δ − p(1

2 − η)

2ρη
and rD :=

2ρη

p(1
2 + η) − δ

,(7.32)

so that

rCrD − 1 =
2δ − [p(1

2 − η) + p(1
2 + η)]

p(1
2 + η) − δ

.

By (7.29), the sign of rCrD − 1 are exactly that of

N(δ, η) := 2δ −
[

p

(

1

2
− η

)

+ p

(

1

2
+ η

)]

.

It is clear that N(δ, η) = 0 if and only if (7.31). �

Conjecture 7.23. In the region limited by (SNr) and (SNa), the type (attracting
or repelling) of the single branch of heteroclinic loop, (HL), is determined by the
organizing center, i.e. at the time of the nilpotent saddle bifurcation for B = (1

2 , 0)

(triple point for λ = ρ
4 and δ = 1

α+2β+4). This point is of codimension 2 except for

α = αβ := β2+8 β+24
β+6 > 0 where it is of codimension 3 when β > 0 and conjectured

to be of infinite codimension when β = 0.

(1) When β > 0, the system has a unique point of heteroclinic loop of codimen-
sion 2 in the neighborhood of the organizing center of codimension 3 (corre-
sponding to ρ = 4λ, δ = 1

α+2β+4 and (6.2)) located at HL2 := (HL) ∩ (R)

where (R) is given in (7.31) and (7.30). This point is the endpoint of the
curve of double limit cycle. All other points along the heteroclinic loop bi-
furcation curve have codimension 1. The conjecture is that this is also the
situation for all smaller values of λ.

(2) When β = 0 and we are located at (HL)∩(R), then it is conjectured that the
system (1.4) is integrable with an annulus of periodic solutions surrounded
by a center and ending in a heteroclinic loop.

7.6. Place of the Hopf bifurcation of order 2. From the study (in Section 5)
of the first two Lyapunov coefficients, the Hopf bifurcation of order 2 exists for all
the values of λ ∈]0, ρ

4 [. We now make a deeper stuy of the locus where the first
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Lyapunov coefficient vanishes in the parameter space. Indeed, we saw in Section 5
via (5.10), that the first Lyapunov coefficient is given, modulo a positive factor
multiplicative, by L1(x) in (5.23) where x represents the x-coordinate of E, i.e.
the positive root of f(x) given in (4.5). L1(x) vanishes at the singular point of
x-coordinate x 6= 1

2 if, and only if its last factor vanishes, namely

l1(x, α) :=
(

β3 + 2 αβ − α β2
)

x4 +
(

6 β2 − 6 αβ
)

x3 + (6 β − 6 α)x2 + 4 β x + 6 = 0

(7.33)

or, according to a equivalent formula to L1(x) (obtained from L1(x) by using that
u(x) := −2 ρ αx4 + ρ (α − β) x3 + (−ρ + λβ) x + 2 λ = 0, expressing the fact that
the trace is zero at the singular point),

m1(x, λ) := −2 β2ρ x5 − 6 ρ β x4 +
(

λβ2 − 2 β λ − ρ β − 6 ρ
)

x2 + 6 λβ x + 6 λ = 0.

(7.34)

It is observed that:
• limα→0 l1(x, α) = β3x4 + 6 β2x3 + 6 β x2 + 4 xβ + 6 > 0 for all x ∈]12 − η, 1

2 [ ;

• limα→+∞ l1(x, α) = limα→+∞[−αx2
(

−2 xβ (x − 3) + x2β2 + 6
)

] < 0 for all x ∈
]12 − η, 1

2 [;

• limλ→0 m1(x, λ) = −ρ x2
(

2 β2x3 + 6 β x2 + β + 6
)

< 0 for all x ∈]12 − η, 1
2 [ ;

• When λ →
(

ρ
4

)−

, (H) tends to (SN) and x →
(

1
2

)−

. Then,

lim
λ→( ρ

4 )
−

m1(x, λ) = − 1

4
ρ (−1 + 2 x) [4 x4β2 + 12 β x3 + 2 β2x3

+ 6 β x2 + x2β2 + 12 x + 6 xβ + 6] → 0+.

(7.35)

• In the parameter space, L1(x) and f(x) vanish at the singular point with x-
coordinate given by x if and only if the resultant of l1(x, α) and f(x) with respect
to x, which we call L(α, δ), vanishes. We have that

L(α, δ) =
(

2 β3 + β2 − 2 α β2 − 6 αβ + 9 α2
) (

β2 − 4 α
)2

δ4

+ 12
(

β2 − 4 α
) (

2 β3 + β2 − 2 α β2 − 6 αβ + 9 α2
)

δ3

+
(

468 α2 − 264 αβ + 36 β2 − 108 αβ2 + 84 β3
)

δ2

+
(

72 β − 216 α + 8 β2
)

δ + 36.(7.36)

Let (L) : L(α, δ) = 0 and H2 := (H) ∩ (L) (the locus of the Hopf bifurcation of
order 2). Let us determine H2.
As for (H), we will be interested in what occurs when λ is small, λ is close to ρ

4
and when λ is neither small, nor close to ρ

4 :

7.6.1. Locus of the Hopf bifurcation of order 2 when λ tends to 0.

Proposition 7.24. When λ is small, the Hopf bifurcation of order 2 is located very
far on the right along the Hopf curve (i.e. for α very large) and passes at infinity
when λ = 0.

Proof. For λ = 0, there occurs a supercritical Hopf bifurcation of order one (see
[29]). Then, by structural stability, it comes that [27]: for each compact K in the
space (α, β, ρ, δ), there exists λK > 0 such that the supercritical Hopf bifurcation
persists for (α, β, ρ, δ) ∈ K and λ < λK . But, since the space (α, β, ρ, δ) is not
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compact, it is not possible to find a uniform λ > 0 for this space (indeed, the larger
K, the smaller λK is). However, for β, ρ, δ fixed inside K, the smaller λ, the larger
the corresponding α is. Therefore, for λ → 0, the locus of the Hopf bifurcation of
order 2, denoted H2 := (αp, δp), corresponds to αp = α(λ) with α(λ) → +∞ when
λ → 0. It remains to show that H2 cannot escape from the bifurcation diagram for
positive λ. Indeed, by (5.23), one has that

lim
α→+∞

L1(x) = lim
α→+∞

l1(x, α)

= lim
α→+∞

[−αx2
(

−2 xβ (x − 3) + x2β2 + 6
)

] < 0

(7.37)

for all x ∈]12 − η, 1
2 [ (region of the Hopf bifurcation). �

7.6.2. Locus of the Hopf bifurcation of order 2 when λ tends to
(

ρ
4

)−

.

Proposition 7.25. When λ tends to
(

ρ
4

)−

, one has that:

(1) (H) tends to (SN).
(2) H2 tends to the point of coordinates (αn, δn), defined by

(7.38) αn :=
β2 + 8 β + 24

β + 6
and δn :=

β + 6

3 (β + 4)2
,

which corresponds to the nilpotent point of codimension 3.

Proof. (1) This comes from Proposition 7.11 (2).
(2) Indeed:

(i) Let σ := ρ − 4λ. Then, m1(x, λ) is linear in σ. Thus, m1(z, σ) = 0 has
a unique solution σ = σ(x) such that σ(1

2 ) = 0.
(ii) l1(x, α) is linear in α and thus has a unique zero α = α(x) such that

α(1
2 ) = β2+8β+24

β+6 .

(iii) The result follows by substituting α = β2+8β+24
β+6 in the equation (SN) :

δ = 1
α+2β+4 , yielding δ = 1

3
β+6

(β+4)2
.

�

7.6.3. Locus of the Hopf bifurcation of order 2 when λ is neither small, nor close
to ρ

4 .

Conjecture 7.26. (H) and (L) have only one intersection point in the first quad-
rant.

Illustration. Indeed, if there were more than one intersection point, then the passage
from one intersection point (when λ is close to ρ

4 ) to two or three intersection points
(when λ moves away from ρ

4 without being small) would require the existence of a
contact point between (H) and (L), i.e. for β, ρ and λ ∈]0, ρ

4 [ fixed, there would
exist α = αc and δ = δc such that

(7.39)











L(αc, δc) = 0,

P (αc, δc, λ) = 0,

∇L(αc, δc)//∇P (αc, δc, λ) i.e
(

∂P
∂α

∂L
∂δ

− ∂P
∂δ

∂L
∂α

)

(αc, δc) = 0.

The Conjecture 7.26 follows from the following conjecture.

Conjecture 7.27. There is no “admissible” solution of (7.39).
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Such a conjecture can be validated in particular cases with the use Gröbner
bases. But, the calculations were quite involved and we limited ourselves to some
isolated tests (see [17]).

7.6.4. Numerical validation of the position of H2. Let λ1 := λ
ρ
. For β fixed, some

numerical tests highlight that:
• If λ1 is very small, then H2 is located not far from the lower point of turning-back
(i.e. on the lower branch);
• When (H) has a contact point of order 2 with the vertical direction, then H2 is
located slightly left of this point;
• If λ1 is close to 1

4 , then H2 (which, by Proposition 7.25, tends to the point (αn, δn)
defined in (7.38)) is located to the left of C on the curve (H).

7.7. Bifurcation diagram and phase portraits. Corollary 7.18, Conjecture 7.23
and Figure 6.3, “prove” Theorem B (of course modulo the conjecture!).

Let us recall that the important parameter is λ1 := λ
ρ
, rather than the two

independent parameters λ and ρ. There are thus three essential parameters: α, δ
and λ1. The parameter β seems to be a measure of the non-integrability of the
system. Indeed, in the case of two limit cycles or a heteroclinic loop, the larger β,
the more hyperbolic the limit cycles or the loop are.

8. A Biological Interpretation

We give a biological interpretation of the system when its parameters are in
an open region of the bifurcation diagram (because the vector field is structurally
stable there); and in each one of these regions, we make the assumption that the
initial conditions are realistic biologically.

Remark 8.1. Let us note immediately that the model is not realistic in a narrow
strip along the y-axis: x ∈ [0, ǫ] because the y-axis is not invariant and the trajec-
tories would cross to the region x < 0. Therefore, it is necessary to interpret the
model for x > ǫ for some threshold ǫ > 0.

The regimes which we will define are stable for initial conditions outside the
stable or unstable manifolds of singular points, and not on an unstable limit cycle;
this implies that the final regime will be the same after a small change in the initial
conditions. There are three types of stable regimes:
• REP(Regime with Extinction of the Predators): it is a regime where there exists
an open set of initial conditions for which there is extinction of predators, and the
population of preys reaches a stable equilibrum.
• RME(Regime of Mixted Equilibrum): a regime where there exist an open set of
initial conditions for which predators and preys co-exist while tending to a stable
equilibrum(attracting singular point in the first open quadrant).
• OR(Oscillatory Regime ): a regime where there exist an open set of initial condi-
tions for which predators and preys tend to a stable oscillatory regime (stable limit
cycle).
Except for the open regions I and II (where there is extinction of the preys), each
generic vector field (i.e. whose parameter values are in an open region of the bifur-
cation diagram) has one of the stable regimes described above. More precisely:
- The phase portrait of the open region III corresponds to the stable regime RME
under the separatrix of the left singular point and to the extinction of the preys
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elsewhere.
- The phase portrait of the open region V corresponds to the stable regime RME
in a small region corresponding to the interior of the limit cycle.
- For parameter values inside the open region IV and good initial conditions we
obtain the stable regime REP.
- For parameter values inside the open region VI and VII we get the stable regime
OR, but only for a small open set of initial conditions.

What is striking when we observe these phase portraits, is that the two species
become quite vulnerable when one introduces prey harvesting of the type consid-
ered here without corresponding harvesting of predators, and this, even if λ is small.
A very large set of initial positions leads to the extinction of the two species. For
example, it is the case of all the initial conditions in the regions I and II, even
for λ very small. The regions I and II correspond to δ small, i.e. a low level of
mortality of the predators. In the other regions, a very important role is played by
the separatrices of the points C and D. Thus, in the regions V and VI, any initial
condition (x(0), y(0)), where x(0) is large and y(0) > 0, leads to the extinction of
the species. It is absolutely necessary to take parameter values above the curve of
heteroclinic loop (regions III, IV and VII) to ensure the existence of initial con-
ditions (x(0), y(0)), where x(0) is large and y(0) > 0, which allow survival of the
population of preys: (x(0), y(0)) must be located under the separatrix of the point
C, i.e. only initial conditions with y(0) small for the predators are allowed for the
preys to survive. But, if the number of predators is somewhat large, there is an
increasing risk of extinction of the preys. As a general conclusion, for λ = 0, one
observes the survival of the preys for all the values of the remaining parameters and
all initial conditions (x(0), y(0)), with x(0), y(0) > 0. In our model, as soon as λ
is positive, for any value of the remaining parameters, there exist initial conditions
(x(0), y(0)), with x(0), y(0) > 0 leading to the extinction of species.

Our results thus suggest several avenues for further research:

• to make a quantitative analysis of the results described above for deter-
mining the approximate position of the separatrices of the points C and D,
while concentrating on the parameter values which are realistic biologically.
This analysis will allow to determine quantitatively the initial conditions
leading to the survival of the species;

• to see whether other strategies of harvesting are less “dangerous” ecologi-
cally. It is already the case of the rate S(x, h) = hx since the model with
such a rate is equivalent, after scaling, to our model (1.4) for λ = 0 and
new values of the remaining parameters;

• to combine the strategy of prey harvesting studied here with a strategy of
predator harvesting in order to determine whether the simultaneous har-
vesting of predators and preys increases the chances of survival of the two
species.

Remark 8.2. (1) When λ = 0 and β ≥ 0, the phase portraits of the open
regions I0, II0 and III0 (see Figure 2.1) correspond respectively to the
stable regimes REP, RME and OR.
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(2) The absolute maximum sustainable yield (MSY) of the prey harvesting is
λMSY = ρ

4 : indeed, if λ ≥ ρ
4 , then ẋ < 0 and there is extinction of the

preys.
(3) Quantitative analysis:

Let us recall that ẏ = y(−δ + p(x)).
a) If δ < 1

α
, then there exist x0 such as p(x0) = δ (see Figure 8.1(a)): if

x

1
α

p(x)

ẏ < 0

δ

x0 ẏ > 0
(a) ẏ for δ < 1

α

x

1
α

p(x)

ẏ < 0

δ

(b) ẏ for δ ≥ 1

α

Figure 8.1. The sign of ẏ.

x < x0, then ẏ < 0; if x > x0, then ẏ > 0; and if x = x0, then ẏ = 0. Thus
y grows if x is large and y decrease if x is small.
b) If δ ≥ 1

α
, then ẏ < 0 for all x ≥ 0 (see Figure 8.1(b)).

(4) Extreme cases:
By (2) and (3), we observe the two following extreme cases:
• There is extinction of the predators when δ is large.
• For λ ≥ ρ

4 , no population can survive.

Acknowledgments

We are very grateful towards Huaiping Zhu to have suggested the subject to us.
We thank him, as well as Robert Roussarie, for stimulating discussions and relevant
suggestions.

References

[1] V.I. ARNOLD, Geometrical methods in the theory of ordinary differential equations,
Springer-Verlag, New York, (1983).

[2] ANNIK MARTIN, Predator-Prey Models with Delays and prey harvesting, Master of
Science thesis, Dalhousie University Halifax.Nova Scotia, (1999).

[3] A.D. BAZYKIN, Nonlinear Dynamics of Interacting Populations, World Scientific
Series on Nonlinear Science, Series A, Vol. 11, World Scientific Publishing Co.Pte.Ltd.,
(1998).

[4] F. BRAUER and C. CASTILLO-CHAVEZ, Mathematical Models in Population
Biology and Epidemiology, Springer-Verlag, New York, Heidelberg, Berlin, (2001).

[5] H.W. BROER, V. NAUDOT, R. ROUSSARIE, K. SALEH, Dynamics of a
predator-prey model with non-monotonic response function, Disc. Cont. Dyn. Sys., Vol.
18 (2007), 221-251.



GENERALIZED GAUSE MODEL WITH PREY HARVESTING 43

[6] F. BRAUER and A.C. SOUDACK, Stability Regions in Predator-Prey Systems with
Constant Rate Prey Harvesting, J.Math.Biol., 8, 55-71, (1979).

[7] F. BRAUER and A.C. SOUDACK, Coexistence Properties of some Predator-
Prey Systems under Constant Rate Harvesting and Stocking, J.Math.Biol., 12, 101-114,
(1981).

[8] C.W. CLARK, Mathematical Bioeconomics, The Optimal Management of Renewable
Resources, 2nd ed., John Wiley and Sons, New York, Toronto, (1990).

[9] M. CAUBERGH and F. DUMORTIER, Hopf- Takens Bifurcations and Centres,
Journal of Differential Equations, Vol. 202, 1-31, (2004).

[10] S.N. CHOW and J.K. HALE, Methods of Bifurcation Theory, Springer-Verlag, New
York, Heidelberg, Berlin, (1982).

[11] S.N. CHOW, C. LI and D. WANG, Normal Forms and Bifurcation of Planar Vector
Fields, Cambridge University Press, New York, (1994).

[12] F. DUMORTIER, Local Study of Planar Vector Fields: Singularities and their Un-
foldings, in Structures in Dynamics, Finite Dimensional Deterministic Studies., North-
Holland Publishing Co., Amsterdam, 161-241, (1991).

[13] F. DUMORTIER, R. ROUSSARIE, C. ROUSSEAU, Elementary Graphics of
Cyclicity One or Two, Nonlinearity 7, 1001-1043, (1994).

[14] F. DUMORTIER, R. ROUSSARIE and J. SOTOMAYOR, Generic 3-parameter
Families of Planar Vector Fiels, Unfolding of Saddle, Focus and Elliptic Singularities
with Nilpotent Linear Parts. In Lecture Notes in Math., Vol. 1480, 1-164, Spriger-Verlag,
New York, (1991).

[15] G.R. DAI and M. TANG, Coexistence Region and Global Dynamics of a Harvested
Predator-Prey System, SIAM Journal of Applied Mathematics, Vol. 58, No. 1, 193-210,
(1998).

[16] G.R. DAI and C. X. XU, Constant Rate Predator Harvested Predator-Prey System
with Holling-type I Functional Response, Acta Math.Sci., Vol. 14, 134-144(in Chinese),
(1994).

[17] R.M.D. ETOUA, Étude d’un modèle de Gause généralisé avec récolte de proies et fonc-
tion de Holling type III généralisée, Thèse de Ph.D., Université de Montréal, (Novembre
2008).

[18] R.M.D. ETOUA, Étude des familles standard des déploiements du col nilpotent dont
l’axe des abscisses est invariante, en préparation.

[19] H.I. FREEDMAN, Deterministic Mathematical Models in Population Ecology, Marcel
Dekker, Inc, New-York, (1980).

[20] H.I. FREEDMAN, Stability Analysis of a Predator-Prey System with Mutual Interfer-
ence and Density-Dependent Death Rates, Bulletin of Mathematical Biology, 41, 67-78,
(1979).

[21] H.I. FREEDMAN and G.S.K. WOLKOWICZ, Predator-Prey Systems with Group
Defence: The Paradox of Enrichment Revisited, Bulletin of Mathematical Biology,
Vol.48, No.5/6, 493-508, (1986).

[22] G. FISCHER, Plane Algebraic Curves, Student Mathematical Library, vol. 15, (2001).
[23] G.F. GAUSE, The Struggle for Existence, Williams and Wilkins, Baltimore, (1935).
[24] J. GUCKENHEIMER and P. HOLMES, Nonlinear Oscillations, Dynamical Sys-

tems, and Bifurcation of Vector Fields, Springer-Verlag, New York, (1983).
[25] R. GODEAU, Algèbre Supérieure: Deuxième Édition, Université Libre de Bruxelles,

(1962).
[26] C.S. HOLLING, The Functional Response of Predators to Prey Density and its Role in

Mimicry and Population Regulation , Memoirs of the Entomological Society of Canada,
Vol. 45, 3-60, (1965).

[27] Y.A. KUZNETSOV, Elements of Applied Bifurcation Theory : Third Edition, Appl.
Math. Sci. 112, Springer-Verlag, New York, (2004).

[28] A. LOTKA, Elements of Physical Biology, Williams and Wilkins Co, Baltimore,
(1925).

[29] Y. LAMONTAGNE, C. COUTU and C. ROUSSEAU, Bifurcation Analysis of a
Predator-prey System with Generalised Holling Type III Function Response, Journal of
Dynamics and Differential Equations, Vol. 20, No. 3, 535-571, (2008).



44 REMY MAGLOIRE ETOUA
†
AND CHRISTIANE ROUSSEAU

‡

[30] L. PERKO, Differential equations and dynamical systems, Springer-Verlag (Texts in
App. Math, no7), Third Edition (2002).

[31] M.L. ROSENZWEIG and R.H. MACARTHUR, Graphical Representation and
Stability Conditions of Predator-Prey interactions, Am.Nat. 47, 209-223, (1963).

[32] D. SCHLOMIUK, Algebraic and Goemetric Aspects of the Theory of Polynomial
Vector Fields, in Bifurcations and Periodic Orbits of Vectors Fields, ed D. Schlomiuk
(NATO ASI Series) series C, Vol 408, pp 429-467, (1993).

[33] SHI-SHONGLING, A Method of Constructing Cycles without Contact around a Weak
Focus, J. Differential Equations 41, 301-312, (1981).

[34] V. VOLTERRA, Fluctuations in the Abundance of Species Considered Mathemati-
cally, “Nature”, Vol. CXVIII, 558-560, (1926).

[35] G.S.K. WOLKOWICZ, Bifurcation Analysis of a Predator-Prey System Involving
Group Defence, SIAM Journal of Applied Mathematics, Vol. 48, No. 3, 592-606, (1988).

[36] D. XIAO and L.S. JENNINGS, Bifurcations of a ratio-dependent predator-prey
system with constant rate harvesting, SIAM Journal of Applied Mathematics, Vol. 65,
No. 3, 737-753, (2005).

[37] D. XIAO and S. RUAN, Global Analysis in Predator-Prey System with Nomonotonic
Functional Response, SIAM Journal of Applied Mathematics, Vol. 61, No. 4, 1445-1472,
(2001).

[38] H. ZHU, S.A. CAMPBELL and G.S.K. WOLKOWICZ, Bifurcation Analysis
of a Predator-Prey System with Nonmonotonic Functional Response, SIAM Journal of
Applied Mathematics, Vol.63, No. 2, 636-682, (2002).

[39] C. ROUSSEAU and H. ZHU, Finite Cyclicity of Graphics with a Nilpotent Singu-
larity of Saddle or Elliptic Type, J. Differential Equations 178, 325-436, (2002).


