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Abstract. In this, paper, we give a complete modulus for germs of generic
unfoldings of nonresonant linear differential systems with an irregular singular-
ity of Poincaré rank k at the origin, under analytic equivalence. The modulus
comprises a formal part depending analytically on the parameters which, for
generic values of the parameters, is equivalent to the set of eigenvalues of the
residue matrices of the system at the Fuchsian singular points. The analytic
part of the modulus is given by unfoldings of the Stokes matrices. For that
purpose, we cover a fixed neighbourhood of the origin in the variable with sec-
tors on which we have an almost unique linear transformation to a (diagonal)
formal normal form. The comparison of the corresponding fundamental ma-
trix solutions yields the unfolding of the Stokes matrices. The construction is
carried on sectoral domains in the parameter space covering the generic values
of the parameters corresponding to Fuchsian singular points.

1. Introduction

In this paper, we provide an analytic classification of germs of generic unfoldings
of the systems

(1.1) xk+1y′ = A(x)y,

where A is a matrix of germs of analytic functions in x at the origin such that A(0)
has distinct eigenvalues, x ∈ (C, 0), y ∈ Cn, and k is a strictly positive integer
called the Poincaré rank. The case k = 1 has been completely investigated in [8].

The analytic classification of the nonresonant linear differential systems with
an irregular singular point of Poincaré rank k (i.e. the systems (1.1) when the
irregular singularity is at the origin) is an important chapter of mathematics, with
contributions of many mathematicians. A complete statement in an essentially final
form can be found in W. Balser, W.B. Jurkat and D.A. Lutz [1]. The modulus (or
complete system of analytic invariants) is given by the formal normal form and
equivalence classes of Stokes matrices (a concise presentation can be found in [6]
pp. 351–372), and the modulus space has been identified.

The unfolding of the systems (1.1) that we pursue replaces the xk+1 in (1.1) by
the family of polynomials pε(x) of degree k + 1, turning the system into a generic
family of systems parameterized by a multi-parameter ε ∈ Ck whose generic element
has only Fuchsian singular points. The aim is to relate the analytic invariants of
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the original system to the ones of the generic unfolded system and, from this, to
understand the meaning of the Stokes data.

When unfolding the systems (1.1), the modulus is composed of formal and ana-
lytic invariants. We prove that the formal invariants are simply given through the
formal normal form, which is a diagonal system with the matrix being a polynomial
of degree k in x: the formal invariants consist in n(k+1) germs of analytic functions
in the parameter. The formal normal form is the polynomial part of degree k of an
analytic prenormal form obtained in [8].

The analytic part of the modulus measures the obstruction to the existence of
an analytic equivalence between the system and its formal normal form over a
fixed neighbourhood Dr of the origin in x-space. The first aim is in some sense to
generalize the Stokes sectors. To do this, we cover a neighbourhood of the origin
in x-space minus the singular points with 2k sectors over which there exist linear
(in y) changes of coordinates (i.e., gauge transformations) to the formal normal
form. These linear changes of coordinates are unique up to diagonal changes of
coordinates, thus providing natural fundamental matrix solutions over the sectors.
The analytic invariants measure the mismatch between the fundamental matrix
solutions. They are equivalence classes of unfolded Stokes matrices, which converge
when ε→ 0 to the known Stokes matrices.

The construction of these sectors in x cannot be performed continuously in the
parameters ε. We will partition the ε-space into sectoral domains. While this
partition can be done for all values of the parameters in a neighbourhood of the
origin, it will suffice and be simpler to give it for the open set Σ0 of generic values
of the parameters corresponding to Fuchsian singular points. There will Ck such
domains providing a covering of Σ0, where Ck is the k-th Catalan number. Each
of these sectoral domains is invariant under the action of the positive reals given
by rescaling of the roots of the polynomial pε, and so has a natural cone structure
with a vertex at the origin; all constructions will converge to a unique construction
when ε→ 0 along the rescaling. For each sectoral domain in the parameter space,
one has a partition of the x-plane into 2k sectors, which indeed converge to Stokes
sectors.

The construction of the sectors and sectoral domains comes from [10] and [9]
and were inspired by [5] and [7]. The closure of the 2k sectors in x-space provides a
covering of Dr. For a generic parameter value, each sector is adherent to two distinct
singular points. Also, each sector intersects its two neighbouring sectors (they are
the same for k = 1) along two smaller sectors ending on ∂Dr, each adherent to one
singular point, and called intersection sectors. The sectors are chosen so that, on the
intersection sectors, the space of solutions of the system has a natural flag structure
provided by the asymptotic behavior of solutions near the singular point. The flags
corresponding to the two intersection sectors associated to a sector are transversal
if the deformation parameter ε is small. Thus, appropriate intersections of the flag
subspaces of solutions provide elements of a basis of solutions with good asymptotic
behavior at the two singular points; each element of this basis is determined up to a
constant (in x) scalar, and so the basis is determined up to the action of the diagonal
matrices. The flag structure guarantees that the comparison of the fundamental
matrix solutions over an intersection sector is a triangular matrix. When k = 1,
this procedure gives another proof of the results of [8].
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This paper is dedicated to Yulij Ilyashenko who introduced the third author to
the Stokes phenomena.

2. Preliminaries

2.1. The irregular nonresonant singularity of Poincaré rank k. We consider
the linear differential system (1.1). Performing an appropriate rotation in x and a
linear change of coordinates in y, we can always suppose that the matrix A(0) is
diagonal, and that its (distinct) eigenvalues λj satisfy

(2.1) <(λq1 − λq2) > 0 if q1 < q2.

Remark 2.1. Once (2.1) is realized, there exists φ > 0 such that (2.1) remains
valid when we rotate the complex variable by any angle θ ∈ (−φ, φ).

It is known that a (diagonal) formal normal form of (1.1) is given by

(2.2) xk+1y′ = (Λ0 + Λ1x+ · · ·+ Λkx
k)y,

where the Λj are diagonal matrices containing the n(k+ 1) formal invariants of the
system (1.1). Using a linear change of coordinate in y, which is polynomial in x,
we can always suppose that the k-jet of A(x) is given by (2.2).

The sectorial normalization theorem of Sibuya asserts that there exist a covering
of a disk Dr in x-space with 2k sectors Ω±j , j = 1, 2, ..., k, (see Figure 1), and over
each sector Ω±j , a linear change of coordinate H±j (x) (y 7→ H±j (x)y) transforming
the normal form (2.2) to the system (1.1). If we take the H±j (x) to be 0-tangent to
the identity (i.e. H±j (0) = I), then all transformations H±j have the same unique
asymptotic expansion. Each sector Ω±j contains exactly one ray <xk = 0. Its
intersection with each neighbouring sector contains exactly one ray =xk = 0 (see
Figure 1). The sectors we choose are smaller than the ones used by Sibuya, but they
are sufficiently large to ensure uniqueness as in Sibuya’s theorem. The justification
for this choice will become clear in Section 4.
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Figure 1. The sectors in x-space and the Stokes matrices, k=3.

Let us fix a diagonal fundamental matrix solution of (2.2),

F (x) = xΛk exp

− k−1∑
j=0

Λj
(k − j)xk−j

,
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chosen with the natural determination of the logarithm for x ∈ Ω+
1 , and analytically

continued over the other sectors Ω±j (j ≤ k) when turning in the positive direction.
The monodromy (around x = 0, in the positive direction) of this diagonal solution
is given by e2πiΛk . The matrix

W±j (x) = H±j (x)F (x)

is a fundamental matrix solution of (1.1) over Ω±j .

Notation 2.2. All indices for sectors Ω±j , matrices W±j (x), transformations H±j (x),
etc., are given (mod k), taking values in a range 1 ≤ j ≤ k, so that 0 = k.

We call

(2.3)

{
ΩUj = Ω−j−1 ∩ Ω+

j ,

ΩLj = Ω+
j ∩ Ω−j .

Over ΩUj (resp. ΩLj ), the sectorial automorphism (H−j−1(x))−1H+
j (x) (resp.

(H+
j (x))−1H−j (x)) is determined by an upper (resp. lower) triangular constant

Stokes matrix CUj (resp CLj ) satisfying

(2.4) (H+
j (x))−1H−j (x)F (x) = F (x)CLj , on ΩLj , 1 ≤ j ≤ k,

(2.5) (H−j−1(x))−1H+
j (x)F (x) = F (x)CUj , on ΩUj , 2 ≤ j ≤ k,

and

(2.6) (H−k (x))−1H+
1 (x)F (x) = F (x)e−2πiΛkCU1 , on ΩU1 .

It is common in the literature to omit the term e−2πiΛk in (2.6) so that all
the matrices CUj and CLj be unipotent. Here, we rather choose the determination
of F (x) so that the monodromy (around x = 0, in the positive direction) of the
fundamental matrix solutionW−0 (x) be given by the product of the Stokes matrices
in the right order. Hence the diagonal part of CU1 is e2πiΛk (the matrices CUj for
j 6= 1 and all matrices CLj are unipotent).

Let us now discuss one point of view to understand the particular fundamental
matrix solution which we will be able to unfold for the family. For that purpose,
let us call w±,1j (x), . . . , w±,nj (x), the particular solutions given by the columns of

W±j (x). The solution w±,ij (x) is asymptotic to e−
λi
kxk gi(x) where gi(x) is a power

series such that gi(0) is a multiple of ei (and λi = (Λ0)ii). If we note f ≺ g for f
flatter than g, i.e. f

g = O(x), then we have

(2.7)

e−
λn
kxk ≺ e−

λn−1

kxk ≺ · · · ≺ e−
λ1
kxk , on ΩLj ,

e−
λ1
kxk ≺ e−

λ2
kxk ≺ · · · ≺ e−

λn
kxk , on ΩUj .

So we have two natural flags on the vector space of solutions on Ω±j , namely{
V ±,Lj,n ⊂ V ±,Lj,n−1 ⊂ · · · ⊂ V

±,L
j,1 , on ΩLj ,

V ±,Uj,1 ⊂ V ±,Uj,2 ⊂ · · · ⊂ V ±,Uj,n , on ΩUj ,
(2.8)

where V ±,Lj,i (resp. V ±,Uj,i ) is generated by {w±,nj , . . . , w±,ij } (resp. {w
±,1
j , . . . , w±,ij }).

These flags respect the natural order of flatness of solutions on the sectors ΩUj and
ΩLj .
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All vector subspaces V ±,Lj,i and V ±,Uj,n−i+1 intersect transversally. Hence, V ±,Lj,i ∩
V ±,Uj,n−i+1 has dimension 1. It has the solution w±,ij (x) as a basis, i = 1, . . . , n.

2.2. Prenormal form. Modulo a translation in x and a change of parameter, a
generic unfolding of (1.1) has the form

(2.9) pε(x)y′ = A(ε, x)y,

where

(2.10) pε(x) = xk+1 +

k−1∑
j=0

εjx
j ,

ε = (ε0, ..., εk−1) ∈ Ck and A is a matrix of germs of analytic functions in (ε, x) at
the origin satisfying A(~0, x) = A(x) as in (1.1). For the rest of the paper, x and
the parameter ε will be fixed.

We are interested in equivalence classes of systems (2.9) under the equivalence
relations:

Definition 2.3. Two systems y′ = A(ε, x)y and z′ = B(ε, x)z are locally analyti-
cally equivalent (respectively formally equivalent) if there exists an invertible matrix
T of germs of analytic functions of (ε, x) at the origin (respectively an invertible
matrix of formal series in (ε, x)) such that the substitution y = T (ε, x)z transforms
the first system into the second system.

In [8], it is shown that it is sufficient to consider the classification of the systems
in their prenormal form. Generically, the linear change of coordinates to the formal
normal form diverges. A family can be transformed by an analytic equivalence into
a prenormal form, which is a perturbation of the formal normal form, and on which
the formal invariants can easily be read.

Theorem 2.4. [8] The family of systems (2.9) is analytically equivalent to a family
in the prenormal form

(2.11) pε(x)y′ = (Λ(ε, x) + pε(x)R(ε, x)) y,

where

(2.12) pε(x)y′ = Λ(ε, x)y =

 k∑
j=0

Λj(ε)x
j

 y

is the formal normal form, Λj(ε) are diagonal matrices of germs of analytic func-
tions in ε at the origin, pε(x) is given by (2.10) and R is a matrix of germs of
analytic functions in (ε, x) at the origin.

Hence, for the rest of the paper, it will always be sufficient to consider the systems
(2.9) in prenormal form (2.11).

The fact that (2.12) is indeed the formal normal form of the system (2.11) will be
proved in Theorem 3.2. When ε = ~0, the system (2.12) is the usual formal normal
form.



6 J. Hurtubise, C. Lambert and C. Rousseau

2.3. Size of the neighbourhood in ε and the set Σ0 of generic values. We
will suppose that ε belongs to a polydisk Dρ given by

(2.13) Dρ = {ε; |εj |
1

k+1−j < ρ, j = 0, . . . k − 1},

supposing that the roots of the polynomial pε belong to the disk Dr′ in x-space.
The radius r′ is taken smaller than r, and sufficiently small so that the ordering
(2.1) on the eigenvalues of Λ(ε, x) at (ε, x) = (~0, 0) is kept for (ε, x) ∈ Dρ × Dr.

The reason for this choice of Dρ will become clear in Section 4.2.

Notation 2.5. (1) We let Σ0 = {ε | ∆(ε) 6= 0}, where ∆(ε) is the discriminant
of pε(x), be the set of generic values of ε for which the zeros of pε(x) are
distinct.

(2) For ε ∈ Σ0, we denote the zeros of pε(x) by xl, with l = 0, 1, ..., k.

By the Riemann Removable Singularities Theorem, we will be able to extend to
Dρ analytic and bounded functions that we will define on Σ0 ∩ Dρ.

3. Formal invariants

3.1. Complete system of formal invariants. In this section, we will prove that
the Λ(ε, x) in the prenormal form (2.11) contains all the information on the formal
invariants. In order to prove that a prepared family (2.11) is formally equivalent
to the formal normal form (2.12), we introduce the following decomposition of
matrices:

Definition 3.1. Let B ∈ Mat(n × n,C). The matrix B can decomposed as B =
Diag(B) + Off(B), where

• Diag(B) is the diagonal part of B,
• Off(B) is the off-diagonal part of B.

Theorem 3.2. Two systems (2.11) are formally equivalent if and only if they have
the same Λ(ε, x). Hence, the complete system of formal invariants of the systems
(2.11) depends analytically on ε at ε = 0, and is given by the k+1 diagonal matrices
Λ0(ε), ..., Λk(ε) in the polynomial part of degree k of the prenormal form.

Proof. First, we will prove that a germ of family of systems (2.11) is formally
equivalent to its formal normal form (2.12). We would like to apply the Poincaré-
Dulac Theorem (see [6] p. 45) to the nonlinear system

(3.1)


ẏ = (Λ(x, ε) + pε(x)R(ε, x)) y,

ẋ = pε(x),

ε̇ = ~0,

corresponding to (2.11), in order to bring it to a similar form with R(ε, x) diagonal.
But we need to show that Λ(ε, x) is not changed in the process.

We look for a linear change of coordinates y = (In + B(ε, x))Y , with B off-
diagonal, which would bring the ẏ subsystem to Ẏ = M(ε, x)Y , with M diagonal.
We drop the dependence on ε and x. We have on one side ẏ = ḂY + (I +B)MY ,
and on the other side ẏ = (Λ + pR)(I + B)Y . Comparing the diagonal parts, we
get

(3.2) M = Λ + p (Diag(R) + pDiag(RB)) ,
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which yields that Λ will not have been changed in the process. Comparing the
off-diagonal parts and using (3.2), yields

Ḃ = [Λ, B] + p (Off(R) + Off(RB)−BDiag(R)−BDiag(RB)) .

We include this equation in a larger system

(3.3)


Ḃ = [Λ, B] + p (Off(R) + Off(RB)−BDiag(R)−BDiag(RB)) ,

ẋ = p,

ε̇ = ~0.

Since the eigenvalues corresponding to the off-diagonal entries of B are nonzero,
then the formal series of B(ε, x) satisfying B(0, 0) = 0 is just the center manifold
of the system (3.3), which can be written as a power series in (ε, x) by the center
manifold theorem.

We now have pε(x)Y ′ = (Λ(ε, x) + pε(x)S(ε, x))Y with S(ε, x) diagonal. The
transformation Z = e−

∫ x
0
S(ε,x)dxY leads to the formal normal form.

To prove the converse, let us first define Aα(ε, x) = Λα(ε, x)+pε(x)Rα(ε, x) with
α = 1, 2. Let us suppose that the two systems pε(x)y′1 = A1(ε, x)y1 and pε(x)y′2 =
A2(ε, x)y2 are formally equivalent. Since each of them is formally conjugated to its
formal normal form, there exists an invertible formal transformation T (ε, x) from
the first system pε(x)z′1 = Λ1(ε, x)z1 to the second system pε(x)z′2 = Λ2(ε, x)z2,
leading to

(3.4) pε(x)T ′(ε, x) + T (ε, x)Λ1(ε, x) = Λ2(ε, x)T (ε, x).

We expand T (ε, x), Λj(ε, x) as power series in ε with the multi-index notation:
T (ε, x) =

∑
s Ts(x)εs, and Λj(ε, x) =

∑
s Λjs(x)εs. We show by multi-induction on

s that Λ1
s(x) = Λ2

s(x) = Λs, and that Ts is a constant diagonal matrix. For s = 0,
we have

(3.5) xk+1T ′0 = Λ1
0T
′
0 − T ′0Λ2

0.

The result is known, but we sketch briefly the argument: (3.5) is a product of n2

independent differential equations, all of the form

(3.6) xk+1t′ = b(x)t,

with b(x) a polynomial of degree at most k. Each equation of type (3.6) has
no nonzero power series solution if b(x) is non identically zero, and has constant
solutions if b(x) ≡ 0. Also, since T0(0) conjugates Λ1

0(0) and Λ2
0(0), it must be a

diagonal invertible matrix. Hence, we need to have Λ1
0 = Λ2

0, and T0 must be a
constant diagonal matrix.

Now, suppose that the result is known for all s′ = (s′k−1, . . . , s
′
0) less than s =

(sk−1, . . . , s0) (i.e. s′j ≤ sj for all j and there exists ` such that s′` < s`). Then Ts
is solution of a system

(3.7) xk+1T ′s = Λ0Ts − TsΛ0 +D(x),

where D(x) is a diagonal matrix that depends on Ts′ and Λs′ for smaller s′. The
matrix D is a sum of expressions of the form Λ2

s′′Ts′ − Ts′Λ1
s′′ for s

′′ + s′ = s. By
induction all these expressions vanish except (Λ2

s − Λ1
s)T0, since diagonal matrices

commute and Λ2
s′′ = Λ1

s′′ for s
′′ smaller than s. Hence, D(x) = (Λ2

s − Λ1
s)T0. We

must show that a system of the form (3.7), with D(x) a polynomial diagonal matrix
of degree at most k has a formal solution in x only if D ≡ 0, and that the solution
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is a constant. The system (3.7) is also a product of n2 independent differential
equations. Outside the diagonal, the differential equation for the entries of Ts are
of the type (3.6) with b(x) nonzero, and hence the solutions vanish identically. The
differential equations for each entry on the diagonal are of the form

xk+1t′ = d(x),

where d(x) is a polynomial in x of degree at most k. A solution t(x) of this equation
can be a power series in x only if d(x) ≡ 0, in which case t will be constant. �

3.2. The set of residue matrices at the Fuchsian singular points.

Definition 3.3. A Fuchsian singular point xl is resonant when at least two eigen-
values differ by an integer, which is equivalent to saying that the eigenvalues of the
monodromy matrix around xl are not all distinct.

When ε ∈ Σ0 (Notation 2.5) and a singular point xl is not resonant, it is well-
known that the local formal (and analytic) invariants (corresponding to a transfor-
mation centered at xl and for fixed ε) are given by the (diagonal) residue matrices
of the system (2.11). The set of all these invariants at the different Fuchsian singu-
lar points may be used to compute the complete system of formal invariants (i.e.
Λ(ε, x)):

Lemma 3.4. The formal normal form (2.12), hence the polynomial matrix Λ(ε, x),
is uniquely determined from the set of matrices

(3.8) Ul = diag(µ1
` , µ

2
` , ..., µ

n
` ) =

Λ(ε, xl)

p′ε(xl)
, l = 0, 1, ..., k,

which correspond to the residue matrices of the system (2.11) at the Fuchsian sin-
gular points xl .

Proof. For ε ∈ Σ0, let Λj(ε, x) be the j-th entry of Λ(ε, x) on the diagonal. It
is a polynomial of degree k. Its values at the k + 1 singular points xl are given
by p′ε(xl)µ

j
` , where µj` is given by (3.8). The polynomial Λj(ε, x) is completely

determined by Lagrange interpolation formula. Since it is determined for ε ∈ Σ0

and is analytic in ε, it is determined for ε ∈ Dρ. �

Remark 3.5. For a fixed non resonant ε ∈ Σ0, there are n(k + 1) eigenvalues
of the residue matrices at the (non resonant) singular points, and n(k + 1) formal
invariants. As in similar works (for instance [8]), it is observed that the number of
formal invariants is exactly the same. This reflects the fact that there is no relation
between the eigenvalues of the residue matrices at the different non resonant singular
points up to the limit ε = 0.

3.3. Asymptotic behavior of the solutions of the formal normal form.

Lemma 3.6. For ε ∈ Σ0 ∪ {0}, the formal normal form (2.12) has the following
fundamental matrix solution:

(3.9)

F (ε, x) = diag(f1(ε, x), f2(ε, x), ..., fn(ε, x))

=

{ ∏k
l=0(x− xl)Ul , ε ∈ Σ0,

xΛk(~0) exp
(
−
∑k−1
j=0

Λj(~0)
(k−j)xk−j

)
, ε = ~0,

where Ul is given by (3.8). The matrix representing the monodromy of F (ε, x) in the
positive direction around a singular point xl (l ∈ {0, ..., k}) is given by Dl = e2πiUl .
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(The monodromy of F (ε, x) in the positive direction around the set of all singular
points is represented by

∏k
l=0Dl = e2πiΛk(ε).)

In Section 4, we will construct (generic) unfoldings Ω±j,ε of the sectors Ω±j . The
unfolded sectors Ω±j,ε will intersect along two types of domains. One type will be
denoted by ΩUj,ε (resp. ΩLj,ε); it will converge to ΩUj (resp. ΩLj ) when ε→ 0 and will
be attached to a Fuchsian singular point xl. The other type will be attached to
two Fuchsian singular points and will disappear when ε → 0. The construction of
the sectors Ω±j,ε will ensure (see Section 4.4) that we have the following asymptotic
behavior of the solutions (3.9) over the sectors near the Fuchsian singular points xl:

(3.10) lim
x→xl

fp(ε, x)

fq(ε, x)
= 0, for

{
q > p, if xl is attached to an ΩUj,ε,
q < p, if xl is attached to an ΩLj,ε.

Note that we have a similar behavior when ε = 0 (see also (2.7)):

(3.11) lim
x→0
x∈Ω†j

fp(~0, x)

fq(~0, x)
= 0, for

{
q > p, if † = U,

q < p, if † = L.

The limit (3.10) may be used to prove that the unfolded Stokes matrices are
triangular matrices.

4. Sectors in x-space and sectoral domains in parameter space

In order to obtain the complete system of analytic invariants, we first need to
define the domains on which we take the variable and the parameter. We partition
the generic set Σ0 of the parameter space into a finite number of sectoral domains
Ss ⊂ Σ0; for ε in each sectoral domain, we construct 2k sectors in x-space covering
the complement of the singular set of the equation; this construction varies continu-
ously with ε in the sectoral domain. The construction is similar to the construction
of the sectors in [10]. In [10], the number of sectoral domains Ss was not minimal,
allowing a simpler construction of the sectors Ω±j,ε in x. Here we will use a slightly
more elaborate construction in order to use the minimal number Ck of sectoral
domains in ε. We will only do the construction for values of the parameters ε ∈ Σ0

for which the singular points are Fuchsian, but it can be extended to all values of
the parameters.

The sectors Ω±j,ε in x-space will be unfoldings of the sectors Ω±j defined in Sec-
tion 2.1 for ε = 0. In particular, any compact set K included in some Ω±j will
be included in Ω±j,ε for ε sufficiently small. A sector Ω±j,ε will be adherent to two
singular points which coalesce to 0 when ε→ 0.

Each sector Ω±j,ε is a union of “trajectories” of the polynomial vector field

(4.1) vε(x) = pε(x)
∂

∂x
= (xk+1 + εk−1x

k−1 + . . . ε1x+ ε0)
∂

∂x
.

Solving the differential equation

(4.2)
dx

dt
= pε(x)

with complex time t, these trajectories will be, in general, the images in x-space of
the lines Im(t) = constant. Occasionally, the trajectories Im(t) = constant will be
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+,∞
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,∞

(a) Neighbourhood of infinity

Ω2,ε
+

Ω3,ε
+

Ω1,ε
+

Ω1,ε
−

Ω2,ε
− Ω3,ε

(b) Near ∂Dr

Figure 2. The phase portrait of vε(x) at infinity and near the
boundary of Dr when k = 3.

deformed to other images of real curves in t-space. The Fuchsian (resp. irregular)
singular points of the system correspond to simple (resp. multiple) singular points
of the vector field. Hence, the construction relies heavily on the phase portrait of
the vector field vε(x).

The phase portrait of vε(x) has been extensively studied in the literature. It is
organized by its pole at infinity (see Figure 2(a)), which yields for small ε the phase
portrait of Figure 2(b) along the boundary of Dr.

The pole at infinity has order k− 1 (hence for k = 1, infinity is a regular point),
and so has 2k separatrices, alternating between outwards and inwards, labelled
cyclically anticlockwise around the point at infinity as sω1 , sα1 , sω2 , sα2 , ...,. Between
these sectors, on a disk around infinity, we have wedge shaped open sets Ω+,∞

j,ε

between sαj−1 and sωj , and Ω−,∞j,ε between sωj and sαj . We want to extend these
inwards away from infinity, expanding Ω±,∞j,ε to Ω±j,ε, to cover the plane.

The separatrices move inwards from infinity, and can either come back to infinity
(a homoclinic connection), or land at a singular point xl (l ∈ {0, ..., k}). The latter
is the generic case:

Definition 4.1. Let us define Σ1 as the (open) subset of Σ0 composed of values of
ε for which the phase portait of vε has no homoclinic connection from separatrix to
separatrix. By a straightforward contour integral along the homoclinic connection
if there is one, one deduces that the absence of such a connection is guaranteed
by the following generic condition: for any subset of I ⊂ {0, . . . , k} of the set of
singular points, then

(4.3)
∑
j∈I

1

p′ε(xj)
/∈ iR.

In the generic condition detailed in Definition 4.1, extending the separatrices
inwards, each sector Ω±j,ε will be adherent to two singular points:

Definition 4.2. One of these points is an ω-limit point for the trajectories of vε (i.e.
attracting along these trajectories), and the other an α-limit point (i.e. repelling
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(a) (b)

Figure 3. Division of a finite disk by the separatrices and chosen
trajectories joining the singular points when k = 9. In (b) we
highlight the lines determining the combinatorial invariant.

along these trajectories). For these reasons, the first point will be called an ω-point,
and the second an α-point (see Figure 3).

Remark 4.3. Note that since it is defined by a contour integral, the limit of the
quantity (4.3) exists when several singular points, all having indices inside I or
outside I, coalesce, and the contribution of the multiple point is equal to the formal
invariant at the corresponding multiple point, which is defined as follows: if x0 is
the multiple point, then the vector field has the normal form (x−x0)m

1+a(x−x0)m−1
∂
∂x near

x0, and a is the formal invariant.

4.1. Defining the sectors over the complex plane. While we are primarily
concerned with the equations for x in a disk of radius r around the origin, the
equation for x, ẋ = pε(x), has real trajectories defined over all of the complex
plane. We therefore define the sectors Ω±j,ε on the whole complex plane and then
restrict them to Dr. We begin by noting that the differential equation (4.2) is solved
by

t =

∫
dx

pε(x)
.

This change of parameters has the singular points (zeros of pε) moved out to infinity
in the t-plane, with the repulsive α-points moved to the Re(t) → −∞ limit, and
the attractive ω-points moved to Re(t) → ∞; the point at infinity in the x-plane
(or rather several copies of it) lives in the finite portion of the t-plane since a pole
is reached in finite time; the function x(t) is multivalued there. Near such a point
t0 that is mapped to infinity, consecutive separatrices become horizontal half-lines
moving out from t0 in the positive and negative directions. This line in the t-plane is
one half of the boundary of a strip of horizontal lines in t (with constant imaginary
part), which get mapped to flow lines joining a fixed α-point xα to a fixed ω-point
xω (see Figure 4). One can continue in this way until one hits a horizontal line
containing another preimage t1 of infinity, with again two separatrices emanating
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t0

t1
j

j’

Figure 4. Two regions in the t-plane corresponding to sectors Ω+
j,ε

and Ω−j′,ε in x-space, joining along x(t). The disks correspond to
the preimages of the complement of Dr in t-space. Each half line
from ∞ to either t0 or t1 will be mapped to a separatrix.

from it. The result is a horizontal strip bounded by t0 on one side and t1 on the
other side. Cut this strip in half, by the horizontal line through the midpoint of the
segment joining t0 and t1. The bottom half of the strip will map to a region Ω−j′,ε
in x-space, which is a triangle bounded on two sides by separatrices joining infinity
to xα, xω, and on the third by a flow line x(t) joining xα to xω; the top half will
be a region Ω+

j,ε, again a triangle bounded on two sides by separatrices, and on the
third by x(t). Repeating this construction gives 2k sectors, with half labelled by +,
and half labelled by −. One such possibility, for k = 9, is shown in Figure 3. The
Figure 4 shows two regions in t-plane corresponding to two sectors in x-space.

One sees that the sectors Ω+
j,ε and Ω−j′,ε, are naturally paired. The possible such

pairings are shown in [5] to be exactly the ones corresponding to the different ways
of linking the 2k sectors of ∂Dr by k non-intersecting lines as in Figure 3(b). This
partitions Σ1 into Ck open connected regions in parameter space, denoted by S̃s.
The number Ck is the k-th Catalan number

(4.4) Ck =

(
2k
k

)
k + 1

.

The sectoral regions S̃s are simply connected, indeed contractible (see [5] and also
Theorem 4.4 in [9]; we summarise this below, in Remark 4.10).

The sectoral domains in parameter space covering Σ1 are strongly linked to the
structure of the vector field vε(x) given by (4.1). They both have an invariance un-
der rescaling, and we use this to introduce an equivalence relation on the parameter
space.

4.2. Equivalence relation on the parameter space. Let us remark that vε is
invariant under

(4.5) (z, t, εk−1, . . . , ε0) 7→ (cz, c−kt, c2εk−1, . . . , c
k+1ε0).

This is simply the equivalence relation induced by scaling the roots of pε, and
suggests the following norm on ε.
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Definition 4.4. Let us define

(4.6) ‖ ε ‖:= max{|ε0|
1
k+1 , |ε1|

1
k , ..., |εk−1|

1
2 }.

Remark 4.5. When considering the norm defined by (4.6), all the roots of pε(x)

are contained in a closed disk of radius at most
√
k||ε||.

Definition 4.6. In the parameter space, let us consider the following equivalence
relation (motivated by (4.5)):

(4.7)
ε = (ε0, ε1, ..., εk−1) ∼ ε′ = (ε′0, ε

′
1, ..., ε

′
k−1)

⇐⇒ ∃η ∈ R>0 : ε′j = ηk+1−jεj , j = 0, 1, ..., k − 1.

The open sets Σ0 and Σ1 in parameter space are unions of equivalence classes
defined by the relation (4.7). In Section 4.5, we will construct an open covering of
Σ0 by open sectoral domains Ss such that each Ss has a vertex at ε = 0 and is a
union of equivalence classes (under the relation (4.7)).

4.3. Sectors in the disk, ε ∈ Σ1, no homoclinic connection in the disk. We
will be interested in equations defined over the disk Dr, even if the flow lines in
x are defined over the whole complex plane. It is therefore important to ensure
that the geometry described above restricts to the disk. As the singularities lie
in a Dr′ ⊂ Dr, the separatrices end up in Dr′ . However, in the generic situation
described by Definition 4.1, even if the separatrices all enter Dr, a separatrix may
exit Dr before landing at a singular point. This splits Dr into two parts, each
containing singular points. Although this phenomenon occurs on an open set in
parameter space, we say that there is a homoclinic connection in the disk, in the
sense of a trajectory from boundary to boundary. (Note that for ε in the polydisk
Dρ, the relative measure of this open set goes to 0 as ρ → 0.) We will study
separately the cases when there is a homoclinic connection (in the disk) in 4.4.

If there is no homoclinic connection, the picture we have on the complex line
extends well to the disk, and there is not much need to modify the construction.
We will, however, also want to enlarge the sectors somewhat, as we will want to
compare the solutions on the different sectors, and so would like them to overlap.
We do this here simply by enlarging the horizontal strip in the t-plane.

4.4. Sectors in the disk, ε ∈ Σ1, homoclinic connection in the disk. Let
us now consider what happens when we have a homoclinic connection in the disk.
For this, it is perhaps best to consider what is happening in t-space (see Fig-
ure 5). Let t0, t1, be mapped to infinity in x-space. If Im(t0) = Im(t1), one has a
(true) homoclinic connection linking infinity to itself in x-space. Now suppose that
|Im(t0) − Im(t1)| is small. The outside of the disk Dρ in x space corresponds to
regions D(ti), which are approximate disks of radius 1

r in the imaginary direction
around t1, t0. If 2

r is greater than |Im(t1) − Im(t0)|, one can have the horizon-
tal line through t0 entering and exiting the regions D(t1), and the horizontal line
segments between the two regions D(ti) correspond to homoclinic connections in
the disk (this in some sense justifies the terminology, as they are in some sense
approximations of true homoclinic connections).

It is shown by Douady and Sentenac ([5] Corollary I.2.2.1) that if ε is small,
the points t1, t0 are far apart; indeed in such a way that if the imaginary parts of
the regions D(ti) overlap, their real parts are separated by a constant K, with K
going to infinity uniformly if ε goes to zero. This then ensures that if ε is bounded
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t0
t1

Figure 5. A homoclinic connection in the disk.

suitably, one can leave D(t0) horizontally for a distance of the order of c
‖ε‖k , and

then move out to infinity along a curve Im(eiθt) = constant, while avoiding D(t1),
all the time keeping θ in an interval [−φ/2, φ/2].

Lemma 4.7. There exists K < 0 such that, for any ρ such 4ρ < r, then, for
‖ ε ‖< ρ, the time along the part of a homoclinic loop separating singular points
inside Dr is larger than K

‖ε‖k .

Proof. Let |z| = a ‖ ε ‖. Then

|Pε(z)| ≥‖ ε ‖k+1

ak+1 −
k−1∑
j=0

aj

 > 0,

as soon as a > 2. Hence, all roots of Pε(z) lie inside 2 ‖ ε ‖ D (where D is the unit
disk). We can of course take ρ sufficiently small so that 4ρ < r (remember that
‖ ε ‖< ρ). Since all singular points are located inside the disk 2 ‖ ε ‖ D, then any
homoclinic path passing between the singular points has some points inside the disk
2 ‖ ε ‖ D. The length of the path included in the disk 4 ‖ ε ‖ D is therefore larger
than 2 ‖ ε ‖. Over this disk, the speed of the vector field is |Pε(z)| < C ‖ ε ‖k+1.
Hence, the time spent inside rD is larger than 2‖ε‖

C‖ε‖k+1 = K
‖ε‖k for some positive

K. �

Changing our paths in this way will allow, in essence, to modify the sectors
and the system of paths that goes with them so that the homoclinic connection
disappears. There is one thing that must be preserved in these modifications: as
we shall see, the main tool for understanding the geometry of the unfolding is the
flag given by the decay rate of solutions to the equation for y as one approaches the
singular points. This decay rate can depend on the way one approaches the singular
points, more precisely, it depends on the angle in t-space one uses to approach the
singular point. Since we want our constructing to pass to the limit when ε → 0,
we choose θ ∈ (−φ2 ,

φ
2 ), where φ is the angle defined in Remark 2.1. The angle we

use when there is no homoclinic connection in the disk is zero, so that one fixes the
imaginary part of t and moves out to infinity in that direction. The flag for the
solutions in y is then determined by the ordering of the real parts of the eigenvalues
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(a) (b) (c)

Figure 6. Four regions in the t-plane corresponding to sectors in
x-space when k = 2. Three of the four intersections are shown.
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Figure 7. Some set of sectors approaching the singular points
along spirals when k = 2.

of <(Λ(ε, xl)). If, instead, one chooses an angle θ, the controlling ordering is that
of the eigenvalues of <(eiθ(Λ(ε, xl)). One can thus perturb the direction somewhat,
keeping |θ| < φ

2 . One can do this continuously over the sectoral domain (see
Figures 6 and 7). (The condition |θ| < |φ2 | allows to have, for ε sufficiently small,
the asymptotic behavior described by (3.10) over the sectors near the Fuchsian
singular points xl.)

On the other hand, away from the singular point, we would like the shape of the
sectors to pass to the limit. Hence, in the t-space, it is natural to choose paths that
are horizontal for small and moderate t, and then deviate from the horizontal by
an admissible angle θ for large t.

We also, as in the preceding case, fatten our sectors by extending the width of
our strips.

This will be our modified system of sectors and curves; in short we have modified
things so that there are no homoclinic connections on our disk, and the portrait on
our disk is essentially the one we have on C for ε ∈ Ss.
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4.5. From Σ1 to Σ0. The approach used in Section 4.4 allows us to extend the
sectoral domains from a covering of Σ1 to a covering of Σ0 in a straightforward way.
We have decomposed Σ1 into Ck sectoral domains S̃s, where the open sectors S̃s
are disjoint and invariant under the equivalence relation (4.7). Over each of these
domains, we have decomposed the disk Dr into a union of 2k sectors Ω±j,ε, for all
values of ε ∈ Σ1 =

⋃Ck
s=1 S̃s. The subset Σ0\Σ1 is of real codimension 1, i.e. a real

hypersurface in the parameter space. The boundary of S̃s consists of hypersurfaces
where homoclinic connections occur. These homoclinic connections are created by
paths Im(t) = constant.

Pushing the construction of Section 4.4 continuously allows to enlarge the S̃s to
larger sectoral domains Ss, the union of which covers Σ0. For the extended sectoral
domain Ss, we simply take an open neighbourhood of the closure of S̃s inside Σ0,
for which we can eliminate the homoclinic connection with a angle θ ∈ (−φ2 ,

φ
2 )

while keeping all singular points of the same type as in S̃s.
This extension of the sectoral domain can be made to branch around the dis-

criminant locus ∆; the extension may have self-intersections, as one moves around
∆. This is no problem and we will indeed use these auto-intersections in Section 6.

4.6. The structure of sectoral domains. It is worth recalling the description
of Douady and Sentenac of the sectoral domain S̃s. As we saw, the sectors Ω±j,ε
corresponding to an element of ε of Σ1 were constructed as the images of strips
in the t-space, which mapped bijectively to the union of pairs Ω+

j,ε, Ω−j′,ε; it is this
pairing that defines the combinatorial invariant. The strip is bounded by two lines
which are union of separatrices; they each contain points tj (above), tj′ (below)
mapping to infinity in x-space. Douady and Sentenac show that the differences
τj = tj− tj′ , for each pair in the combinatorial invariant, form a complete invariant
for the polynomial vector field. In short, the sectoral domain is the product of
k copies of the upper half plane. The differences tj − tj′ can be thought of as
the complex times in getting from infinity to infinity along the dotted curves of
Figure 3(b).

The points for which τj are pure imaginary correspond to the points for which
all p′ε(x`) are real, and for which the trajectories are simplest. This defines a core,
isomorphic to (R+)k, to each stratum.

Definition 4.8. The real codimension k subset of S̃s for which all singular points
have real eigenvalues is called the organizing center of Ss.

On the enlarged sectoral domains Ss, we have constructed 2k sectors Ω±j,ε in x-
space depending continuously on ε ∈ Ss. The process associates two non equivalent
(i.e. some corresponding boundaries are not attached to the same singular point)
sets of sectors {Ω±j,ε} to a parameter value ε belonging to the intersection of two
sectoral domains Ss1 and Ss2 .

Notation 4.9. Whenever necessary, we will add a subscript Ss to Ω±j,ε and other
quantities to highlight the dependence of the construction on the sectoral domain
Ss.

The construction passes to the limit in a sectoral domain Ss when several singular
points coalesce in a multiple point. In that case, the width of the strip becomes
infinite with the full curve disappearing at infinity. When the α-point and ω-point
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(Definition 4.2) coalesce, such a (generalized) half-plane parameterizes a sector of
the form described in Section 2.1.

Remark 4.10. S̃ is parametrized by (τ1, . . . , τk) ∈ Hk and is hence simply con-
nected.

5. The modulus of analytic classification

We now consider ε in a sectoral domain Ss in parameter space, and corresponding
sets of sectors {Ω±j,ε} in x-space. We have seen that for each sector Ω+

j,ε, there is a
unique sector Ω−j′,ε such that Ω+

j,ε and Ω−j′,ε are adherent to the same two singular
points. This allows us to define a bijection

σ : {1, . . . , k} → {1, . . . , k},
by j 7→ j′.

5.1. The geometry of a covering {Ω±j,ε} of Dr.

Definition 5.1. The intersection of the two sectors Ω+
j,ε and Ω−σ(j),ε has one con-

nected component adherent to the two singular points. We call it a gate sector and
denote it by ΩGj,σ(j),ε. Let us recall that we have enlarged our sectors {Ω±j,ε} so that
they overlap on more than a single curve x(t) from the ω-point to the α-point. The
gate sector is an open set, in essence fattening x(t).

Definition 5.2. If a connected component of the intersection of two sectors is
adherent to a single singular point, and its boundary has a nonempty intersection
with ∂Dr, it is called an intersection sector. We denote by ΩLj,ε (resp. ΩUj,ε) the
intersection sector included into Ω+

j,ε∩Ω−j,ε (resp. Ω+
j,ε∩Ω−j−1,ε). It is attached to an

ω-point (resp. an α-point), and can be thought of as the fattening of the separatrix
emerging from infinity going to the singular point.

The Fuchsian singularities are all tied together by the closure of the gate sectors,
whose skeleton is a graph with vertices, the singular points, and edges, the curves
x(t) from ω-point to α-point; this graph is in fact a tree. For k > 1, the intersection
of the closure of two arbitrary sectors (of type Ω±j,ε) consists of one of the following
(see Figure 8):

(1) one singular point (for instance, Ω−1,ε ∩ Ω−3,ε),
(2) two singular points and a gate sector (for instance, Ω+

2,ε ∩ Ω−3,ε),
(3) one singular point and an intersection sector (for instance, Ω+

1,ε ∩ Ω−4,ε),
(4) two singular points, a gate sector and an intersection sector (for instance,

Ω−2,ε ∩ Ω+
3,ε).

(In the case k = 1, the intersection of the closure of the two sectors consists of
two singular points, a gate sector and two intersection sectors.)

5.2. Bases of solutions of (2.11). In this section, we will define particular bases
of solutions to the equation (2.11) over each sector Ω±j,ε. The comparison of these
bases of solutions over the intersection sectors (Section 5.3) will lead to the analytic
invariants. Over each sector Ω+

j,ε (resp. Ω−j,ε) the n-dimensional space of solutions is
denoted by V +

j,ε (resp. V
−
j,ε). We will show that the space of solutions has over each

Ω±j,ε two natural flags (sequences of nested subspaces) coming from the respective
order of flatness of solutions as one approaches the two singular points of the sector,
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Figure 8. The different types of intersection of the closure of two
arbitrary sectors (of type Ω±j,ε).

unfolding the flags of (2.8). Let us recall (see Section 2.3) that the eigenvalues
λi(ε, xl) of the diagonal matrix Λ(ε, xl) have distinct real parts ordered as:

(5.1) <(λ1(ε, xl)) > <(λ2(ε, xl)) > · · · > <(λn(ε, xl)).

For a fixed ε in the organizing centre of the sectoral domain, let us consider a singular
point x` attached to an ΩUj,ε (resp. ΩLj,ε). Then p′ε(x`) ∈ R+ (resp p′ε(x`) ∈ R−),
i.e. the point is an α-limit (resp. ω-limit) point. Hence, if the eigenvalues λi(ε, xl)
are distinct and real, there are simple growth rates of a sequence of n solutions to
the equation at the singularity, whose leading order terms are:{

(x− x`)µ
n
` ≺ (x− x`)µ

n−1
` ≺ · · · ≺ (x− x`)µ

1
` , on ΩLj,ε,

(x− x`)µ
1
` ≺ (x− x`)µ

2
` ≺ · · · ≺ (x− x`)µ

n
` , on ΩUj,ε (resp. ΩUj+1,ε),

where µi` is given by (3.8).
When the eigenvalues are not all real, i.e. ε not in the organizing center (Defi-

nition 4.8), then the direction of approach is important, and indeed, one can vary
the flag by choosing different paths into the singularity (typically, spirals of differ-
ent type). This is where the uniformisation of the system in t-space (which also
intervenes in the definition the sectors), is essential. With x, y as functions of t, the
equation is (3.1).

We have built our sectors from the image in x-space of the horizontal strips
in t-space. Our direction of approach to the singularities will be along Im(t) =
constant, staying within the strip, as one goes to plus or minus infinity. This gives
spirals in x-space approaching the singularity, if ε is not in the organizing centre,
but they are of fixed type. The existence of the flag, and its continuity as one varies
ε (even moving out of Σ0) is given by the following theorem of Levinson [4] (see
Coddington and Levinson [3], Theorem 8.1, p. 92).

Theorem 5.3. Let a system of linear differential equations of the form

(5.2) ẏ =
(

Λ̃0(ε) + Λ̃(ε, t) + P (ε, t)
)
· y,
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be given on the real line, for which Λ̃0 is diagonal, with distinct real parts of the
eigenvalues, Λ̃(ε, t) is also diagonal, with limit zero at t =∞ and

(5.3)
∫ ∞

0

∣∣∣∣ ddt (Λ̃(ε, t))

∣∣∣∣ dt <∞, ∫ ∞
0

|P (ε, t)| dt <∞.

Then, setting λ`(ε, t), ` = 1, . . . , k, to be the successive eigenvalues of Λ̃0(ε)+Λ̃(ε, t),
there exist t0 ∈ (0,∞) and solutions φ`,ε(t) of the system for t ∈ (t0,∞) with

lim
t→∞

φ`,ε(t) · exp

(
−
∫ t

t0

λ`(τ)dτ

)
= v`(ε),

for v`(ε) a non-zero eigenvector of Λ̃0(ε) corresponding to λ`(∞). If Λ̃0(ε), Λ̃(ε, t)
and P (ε, t) depend continuously (resp. analytically) on ε over compact sets in t-
space, with the integrals in (5.3) uniformly bounded, then the solutions can be chosen
depending continuously (resp. analytically) on ε.

This theorem applies to our situation: indeed, when we consider a slanted
strip we perform the generalized change of variable t = e−iθ

∫
dx
pε(x) (the case of

a horizontal strip corresponding to θ = 0), with θ ∈ (0, φ2 ) and φ defined in Re-
mark 2.1. Then, Λ̃0(ε) + Λ̃(t, ε) = eiθΛ(ε, x(t)), and P (ε, t) = eiθpε(x(t))R(ε, x(t)),
for Λ, p, R analytic in their arguments, and x(t) converging towards a singular
point (we multiply time by −1 when the singular point is of α-type). We have that
d
dt Λ̃(ε, t) = d

dx Λ̃(ε, t)e−iθpε(x); hence,∫ ∞
0

∣∣∣∣ ddt (Λ̃(ε, t))

∣∣∣∣ dt =

∫ ∣∣∣∣ ddx (Λ(ε, x))

∣∣∣∣ |dx| < K,

where the bound K can be chosen uniform in ε, since we approach the singularity
along logarithmic spirals |x| = aeib arg(x), the length of which is uniformly bounded
if we force b to remain bounded away from 0 (this is achieved by taking the sectoral
domains Ss not too large). The second part of (5.3) is similar. Indeed,∫ ∞

0

|P (ε, t)| dt =

∫
|R(ε, x)| |dx|

is also uniformly bounded.
For finding the flags, it suffices to consider one line in t-space, the image of which

in x-space is contained in a sector ΩUj,ε or ΩLj,ε, but the flag is of course intrinsic
and independent on the choice of the line and we could have chosen to consider the
parametric families of parallel lines in t-space corresponding to the sector ΩUj,ε or
ΩLj,ε (parameterized by an additional parameter).

Note that the original theorem of Levinson does not include the dependence
on the parameter ε stated in Theorem 5.3. For that reason, we will say a word
on the proof. The solution φ`,ε is found by a successive approximation as a fixed
point of an integral operator, starting from the `-th eigensolution of the diagonal
system ẏ =

(
Λ̃0(ε) + Λ̃(ε, t)

)
· y. The minimal distance between the real parts of

the eigenvalues of Λ̃0(ε) + Λ̃(ε, t) remains bounded from below for (ε, x) sufficiently
small, and θ well chosen depending on ε. Under this condition, if we let P (ε, t) =
(rj,`(ε, t))

n
j,`=1, the crucial ingredient is to choose t0 so that

∫∞
t0

∑
j,` |rj,`(ε, t)| dt be

sufficiently small in order that the integral operator becomes a contraction. This
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can be achieved uniformly in ε, again because we approach the singularity along
logarithmic spirals |x| = aeib arg(x), the length of which is uniformly bounded.

Getting the analyticity in ε is no problem, as long as the input is varying ana-
lytically, e.g., within a sectoral domain: we know that the solutions of the system
depend analytically on ε. Hence it suffices to choose a normalization depending
analytically on ε: for instance we normalize the value of the `-th coordinate of
the `-th vector of the basis at a fixed point inside Ω±j,ε. The beauty of the use of
Theorem 5.3 is that it gives us the flag and its analyticity in ε, regardless whether
the Fuchsian singular point is resonant or not.

One can also see this independence of the flag from resonance from the other
way of solving the equations over Σ0, which would be to look for Frobenius series
solutions. Indeed, while the solution of the full ODE y′ = pε(x)A(x)y gives us an
infinite sequence of values of ε converging to zero for which there are resonances,
the quotiented problem y′B = pε(x)A(x)yB, where B is the subgroup of upper
triangular matrices, does not; the matrix entries for which resonances occur all lie
in B, and are quotiented out.

Theorem 5.3 also gives a clear picture of what happens at the boundary of the
Ω±j,ε: basically our solutions behave well as long as the curves x(t) do not bifurcate.

Summarising, we have proved the following theorem:

Theorem 5.4. The space of solutions V +
j,ε over Ω+

j,ε has two natural flags defined
from the asymptotics of solutions over its boundary sectors ΩLj,ε and ΩUj,ε:{

V +,L
j,n,ε ⊂ V

+,L
j,n−1,ε ⊂ · · · ⊂ V

+,L
j,1,ε = V +

j,ε,

V +,U
j,1,ε ⊂ V

+,U
j,2,ε ⊂ · · · ⊂ V

+,U
j,n,ε = V +

j,ε.

Similarly, the space of solutions V −j,ε over Ω−j,ε has two natural flags defined from
the asymptotics of solutions over its boundary sectors ΩLj,ε and ΩUj+1,ε:{

V −,Lj,n,ε ⊂ V
−,L
j,n−1,ε ⊂ · · · ⊂ V

−,L
j,1,ε = V −j,ε,

V −,Uj,1,ε ⊂ V
−,U
j,2,ε ⊂ · · · ⊂ V

−,U
j,n,ε = V −j,ε.

Here the dimension of V ±,Lj,i,ε is n − i + 1; that of V ±,Uj,i,ε is i. The flags depend
analytically on ε in a fixed sectoral domain Ss. They have a continuous limit along
the boundary of Σ0, as long as the paths xε(t) and their limit points xε(±∞) vary
continuously.

As we have seen, the flags vary continuously. There are two for each sector,
one labeled by L, one by U ; at ε = 0, these are transverse, in the sense that the
intersections of the subspaces of the L-flag and the subspaces of the U -flag have
minimal dimension. This property then extends to ε small.

Proposition 5.5. If ρ is chosen sufficiently small, the vector subspaces V ±,Lj,i,ε ∩
V ±,Uj,i,ε , i = 1, . . . , n, all have dimension 1. One can form a basis of solutions B±j,ε of
V ±j,ε by choosing one vector in each of these intersections; the choices are determined
up to the action of (C∗)n.
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5.3. Normalized bases of (2.11) and transition matrices. We now choose
some normalization for the bases of Proposition 5.5 (i.e. adequate multiples of the
vectors of each basis) so that all bases B±j,ε, j = 1, . . . , k are completely determined
by B+

1,ε.

Definition 5.6. Let W±j,ε be the fundamental matrix solution whose columns are
given by the vectors of the basis B±j,ε of Proposition 5.5. We define the unfolded
Stokes matrices, for j = 1, 2, ..., k, by

(5.4)

{
W+
j,ε = W−j−1,εC

U
j,ε, on ΩUj,ε,

W−j,ε = W+
j,εC

L
j,ε, on ΩLj,ε.

The flag structure guarantees that the comparison of the fundamental matrix
solutions over an intersection sector is a triangular matrix. We normalize the bases
B±j,ε so that the unfolded Stokes matrices CUj,ε and CLj,ε have diagonal part I (i.e.
the identity matrix), except for CU1,ε which has diagonal part e2πiΛk(ε). In order
to have uniform convergence of the elements of B±j,ε to the elements of B±j,0 over
compact subspaces of Ω±j , it suffices that it be the case for B+

1,ε. One possibility
for achieving this is to take some x0 ∈ R+ sufficiently large (for instance x0 = 3r

4 ),
and to choose the i-th element B+

1,ε, so that its i-th coordinate at x0 be equal to 1.
(Note that the basis B±j,0 is precisely a basis of a fundamental matrix solution W±j
of Section 2.1.)

This normalization provides the following theorem, which is an unfolding of
Sibuya’s sectorial normalization theorem

Theorem 5.7. We consider a germ of family of systems (2.9) in prenormal form.
For each sectoral domain Ss in Σ0, and the corresponding associated sectors Ω±j,ε,Ss ,
there exist linear changes of coordinates H±j,ε,Ss (y 7→ H±j,ε,Ssy) transforming the
formal normal form (2.12) to the system (2.9), with continuous limits H±j at ε = 0

independent of Ss. The convergence to H±j is uniform over compact sets of Ω±j .
Moreover the map H±j,ε,Ss is uniformly bounded in the neighbourhood of the two
singular points x` adherent to Ω±j,ε,Ss .

Proof. We consider the fundamental matrix solutions W±j,ε,Ss of Definition 5.6.
Then the maps H±j,ε,Ss are simply given by

(5.5) H±j,ε,Ss = W±j,ε,SsF
−1
ε ,

where Fε is the solution of the formal normal form (2.12) using the standard de-
termination of the logarithm on Ω+

1,ε,Ss
and analytically continued over the other

sectors Ω±j,ε,Ss when turning in the positive direction. From their construction the
columns of W±j,ε,Ss have asymptotic expansion at the singular points which are the
same as the asymptotic expansion of the columns of Fε, and the coefficients of the
expansion are uniformly bounded and bounded away from 0. This yields the uni-
form boundedness ofH±j,ε,Ss in the neighbourhood of the singular points x` adherent
to Ω±j,ε,Ss . �
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Definition 5.8. We call gate matrices the transition matrices CGi,σ(i),ε representing
the passage from Ω+

i,ε to Ω−σ(i),ε through a gate sector ΩGi,σ(i),ε, satisfying

(H−σ(j),ε,Ss
(x))−1Hj,ε,Ss(x)+Fε(x) = Fε(x)CGj,σ(j),ε,Ss

.

Remark 5.9. The product in the right order of the gate matrices (or their inverses)
attached to a singular point yields the monodromy of the fundamental matrix so-
lution (3.9) of the formal normal form (2.12) around a Fuchsian singular point
xl.

6. The theorem of analytic classification

Theorem 6.1. Two germs of generic unfoldings of linear differential systems,
pε(x)y′ = A(ε, x)y and pε(x)z′ = A(ε, x)z with an irregular non resonant singu-
larity of Poincaré rank k, are analytically equivalent if and only if

• they have the same formal invariants (i.e. the same formal normal form
(2.12));

• For each germ of sector Ss of the covering of Σ0, they have equivalent
collections of unfolded (normalized) Stokes matrices {C†j,ε,Ss}, † ∈ {L,U},
where two collections {C†j,ε,Ss} and {C†j,ε,Ss} are equivalent if there exists
a family of diagonal matrices Dε,Ss depending analytically on ε ∈ Ss with
continuous invertible limit at ε = 0 independent of Ss, such that, for all j
and †,

Dε,SsC
†
j,ε,Ss

= C
†
j,ε,SsDε,Ss .

In particular a germ of generic unfolding of linear differential system,
pε(x)y′ = A(ε, x)y is diagonalizable, and hence analytically equivalent to
its formal normal form, if and only if all its unfolded Stokes matrices are
diagonal.

Proof. Let us first suppose that two systems are analytically equivalent. We can of
course suppose that the two families of systems are in prenormal form. We have
already seen (in Theorem 3.2) that they have the same formal invariants. Moreover,
we can always restrict r and ρ so that we have the same sectors Ω±j,ε,Ss covering Dr
for ε ∈ Ss∩Dρ. Then, a normalization of the family pε(x)z′ = A(ε, x)z over a sector
Ω±j,ε,Ss is obtained as the composition of an equivalence between that system and the
system pε(x)y′ = A(ε, x)y, with a normalization of the system pε(x)y′ = A(ε, x)y
over Ω±j,ε,Ss . It follows that the collections of unfolded Stokes matrices over Ss are
equivalent; indeed, as the data that defines them is geometric, this is not surprising.

Conversely, let consider two germs of families, pε(x)y′ = A(ε, x)y and pε(x)z′ =
A(ε, x)z, with same formal invariants and equivalent collections of unfolded Stokes
matrices. As before, we can restrict r and ρ so that they are the same for the two
families. We first show that the two families are equivalent by means of a linear
equivalence z = Tε,Ss(x)y over each sectoral domain Ss, where all the Tε,Ss have
the same limit T0 for ε ∈ Ss and then tending to 0. We then correct to a linear
equivalence single-valued in ε ∈ Σ0 ∪ {0}, i.e independent of the sectoral domain.
The map Tε,Ss is defined as follows

Tε,Ss = H
±
j,ε,SsDε,Ss(H

±
j,ε,Ss

)−1, on Ω±j,ε,Ss .
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We first need to show that this map is single-valued in x, that is, independent
of the sectors Ω±j,ε,Ss . First, it glues uniformly over the intersection sectors ΩUj,ε
and ΩLj,ε since Dε,Ss commutes with F±j,ε. Also, when we consider a gate sector
ΩGj,σ(j),ε,Ss

(see Definition 5.1), the transition matrix CGj,σ(j),ε,Ss
through the gate

sector is diagonal since the same flags have been used for the two sectors Ω+
j,ε,Ss

and
Ω−σ(j),ε,Ss

. The diagonal matrix CGj,σ(j),ε,Ss
depends only on the eigenvalues at the

singular points and on the normalization we have chosen for the unfolded Stokes
matrices. Hence the two systems have the same transition matrices over the gate
sectors. From this it follows that Tε,Ss is uniform in x. Also, Theorem 5.7 ensures
that limx→xl

x∈Ω±j,ε,Ss

H±j,ε,Ss is bounded when x` is adherent to Ω±j,ε,Ss . Moreover, the

limit maps T0 for ε = 0 are independent of Ss.
We now need to show that we can construct a uniform equivalence Tε(x) between

the two systems, that is, which is both independent of the sectoral domain Ss and
extended to Dρ \ Σ0. Here is the strategy. Let us first show how to do this on Σ0.
We consider pairs of intersecting sectoral domains Ss and Ss′ and the corresponding
Tε,Ss and Tε,Ss′ . Then the map Tε,Ss(Tε,Ss′ )

−1 is an automorphism of the second
system for ε ∈ Ss ∩ Ss′ and x ∈ Dr. Hence we need to analyze the automorphisms
of families of systems of the form (2.9). This is done in the following lemma.

Lemma 6.2. The automorphism group of each system of the form (2.9) is a direct
sum of m copies of C∗, with m ≤ n.

Proof. In some sense, as the model system has symmetries (C∗)n it will follow that
the symmetries of any deformation of it will be a subgroup of this group. Explicitly,
for each system with ε ∈ Ss we consider the corresponding set of sectors Ω±j,ε and
transformations H±j,ε from the normal form to the system over Ω±j,ε. For the normal
form, it is obvious that the symmetry group is the group of invertible diagonal
matrices which is isomorphic to (C∗)n, and an element of the symmetry group is
given by diag(c1,ε, . . . , cn,ε). Now symmetries of (2.9) need to commute with the
unfolded Stokes matrices. If some unfolded Stokes matrices are non diagonal, then
this forces some of the cj,ε to take equal values. Hence the numberm of independent
cj,ε is equal to the maximum number of blocks in a common block diagonal form for
all unfolded Stokes matrices after applying a given permutation of rows and columns
to all unfolded Stokes matrices simultaneously. To emphasize the structure of direct
sum we write the corresponding automorphism of (2.9) as Gε ◦ diag(c1,ε, . . . , cn,ε),
with the understanding that some of the cj,ε may be equal. �

End of proof of Theorem 6.1. Hence,

Tε,Ss(Tε,Ss′ )
−1 = Ξs,s′(ε) = Gε ◦ diag(c1,s,s′(ε), . . . , cn,s,s′(ε)).

For fixed j, each set {cj,s,s′} gives Cousin data for the covering Ss of Σ0. Since Σ0

is a Stein manifold, there exist functions cj,s(ε) defined on each Ss, such that
for each s 6= s′, cj,s(ε)−1cj,s′(ε) = cj,s,s′(ε). The corrected Θε,Ss(x) = Gε ◦
diag(c1,s(ε), . . . , cn,s(ε))Tε,Ss(x) coincide on the overlaps of sectoral domains, and
can be glued together to obtain a global Θε(x), defined for (ε, x) ∈ Σ0 × Dr. From
their construction, the maps H±j,ε,Ss have a continuous limit at points of Dρ \ Σ0,
allowing to extend the Tε,Ss to these points. If we could prove that the functions
cj,s were bounded near the points of D̂ρ \Σ0, we could fill the holes analytically and
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Figure 9. An auto-intersection of Ss providing a tubular neigh-
bourhood of ∆ = 0.

the theorem would follow. But there is a simpler way: we will add Cousin data to
cover a generic subset of Dρ \Σ0, such that the remaining points form a subvariety
of codimension 2; indeed, for these remaining points we can apply Hartogs’ theo-
rem. We will enlarge Σ0 to Σ′0, where Σ′0 is the union of Σ0 plus the generic points
of ∆ = 0 where exactly two singular points coalesce, and we will construct an open
covering of Σ′0 by adding to the sectoral domain Ss some open neighbourhoods of
the points of Σ′0 \ Σ0.

The problem of considering what happens when exactly two zeros of pε(x) coa-
lesce as one varies ε reproduces, in a parametrised form (the extra parameters being
essentially the location of the other zeros) the k = 1 case studied in [8]. Indeed,
the coalescence of exactly two singular points at a given value ε′ of the parameter
is a codimension 1 phenomenon with the generic unfolding parameter η = ∆ in the
neighbourhood of ε′. Let η′ be (k−1)-parameters transverse to η, so that ε 7→ (η, η′)
is a biholomorphic change of parameters. Hence, a neighbourhood of ε′ is of the
form E = D× D′, where D (resp. D′) is an open disk in η-space (resp. polydisk in
η′-space).

Let Ss be a sectoral domain adherent to ε′. We can extend Ss in a ramified way
around η = 0 so that it self-intersects (see Figures 9 and 10).

An essential ingredient is that the construction of the sectors Ω±j,ε,Ss and trans-
formations H±j,ε,Ss have continuous limits when ε ∈ Ss tends to ε′ (and a finer
property described below). For η in a small neighbourhood D of 0, there are two
zeros of pε in a small disk, coalescing at η = 0 to a double zero. Taking the pa-
rameter η around a small circle around the origin interchanges the two zeros. The
issue is that at some point, the separatrices converging to the zeros bifurcate, and
change endpoints. Hence, we need to work with η̂ in the double covering of η-space
punctured at η = 0. We extend Ss in a ramified way so that for, each fixed η′, η̂
belongs to a ramified cover D̂ of D. On the auto-intersection of D̂, the map

T(η̂e2πi,η′),Ss(T(η̂,η′),Ss)
−1 = Ξε′,∩(ε) = Gε,Ss ◦ diag(d′1(η), . . . , d′n(η))

is an automorphism of the second system. We find invertible functions dj(η̂) defined
on D̂ ∩ {|η| < ρ′} for some ρ′ > 0 such that dj(η̂e2iπ)(dj(η̂))−1 = d′j(η) (details in
Lemma 6.3 below). Replacing T(η̂,η′),Ss by

Θ(η,η′),Ss = G(η,η′),Ss ◦ diag(d1(η̂)), . . . , dn(η̂))T(η̂,η′),Ss

yields a uniform Θ(η,η′),Ss over D \ {η = 0}. Note that the d′j(η) have the same
limit on all rays in Ê because of the chosen normalization in Section 5.3. Since it
is a one-dimensional phenomenon depending analytically on η′, there is an explicit
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Figure 10. The change of skeleton depending on η, where η = 0
corresponds to a generic point of ∆ = 0. Of course on the left
figures the gate sectors should be spiraling at the middle singular
points.

formula for the dj(η̂), which has a finite limit at η = 0. Hence we can extend
Θ(η,η′),Ss to η = 0 in an analytic way. The details are exactly the same as in [8],
and this is why we are brief here.

Adding the collection of Θ(η,η′),Ss to the former Θε, yields a collection of equiv-
alences between the two systems for ε ∈ Σ′0. Their comparisons two by two are
again symmetries of the second system, hence diagonal matrices, the coefficients of
which provide Cousin data. Since Σ′0 is again a Stein manifold, we can solve the
Cousin problem and correct the collection of equivalences to a uniform equivalence
over Σ′0. We can extend it to a uniform equivalence over Dρ by Hartogs’ theorem.

As for showing that a system pε(x)y′ = A(ε, x)y is diagonalizable, and hence
analytically equivalent to its formal normal form, if and only if all its unfolded
Stokes matrices are diagonal, it suffices to remark that the diagonal part of the
normalized Stokes matrices are uniquely determined by the formal normal form,
and to apply the first part of the theorem.

�

Lemma 6.3. There exists nonzero functions dj(η̂) defined on D̂ such that

(6.1) dj(η̂e
2iπ)(dj(η̂))−1 = d′j(η).

Proof. We change to the variable ν =
√
η̂. Then D̂ gives a sector V if we take

arg η̂ ∈ (−π − 2δ, π + 2δ) and we take a symmetric sector Ṽ = eπiV . These two
sectors have two intersections parts which we call V + when arg ν ∈ (π2 − δ,

π
2 + δ)

and V − when arg ν ∈ (−π2 − δ,−
π
2 + δ). The map d′j(η) yields two maps f+(ν) =

log(d′(η)) and f−(ν) = f+(−ν) over V + and V − respectively. We look for maps f
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Figure 11. The paths γ± in the proof of Lemma 6.3.

(resp. f̃) over V (resp. Ṽ ) such that

(6.2)

{
f − f̃ = f+, on V +,

f̃ − f = f−, on V −.

For that purpose, we look for a map f such that f(e2πiν)− f(ν) = f+(ν) on V +.
And we get the corresponding map ˜̃

f(ν) = f(−ν). The maps f and f̃ are then
obtained from f +

˜̃
f on the two simply connected sectors of the intersections of the

domains of f and ˜̃
f .

For the construction of f , we split the boundary of V + in two half-pieces, γ+

and γ−, each containing one ray and half of the boundary arc (see Figure 11). We
define

f(ν) =

{∫
γ+

f+(ζ)
ζ−ν dζ, arg(ν) ∈ (− 3π

2 − δ,−
π
2 + δ),∫

γ−

f+(ζ)
ζ−ν dζ, arg(ν) ∈ (−π2 − δ,

π
2 + δ).

Let γ = γ+ ∪ {−γ−} the closed curve with interior V +. Let us assume for the
moment that the integrals defining f(ν) converge. Then, for ν /∈ V +, the integral∫
γ
f+(ζ)
ζ−ν dζ vanishes, yielding that the two definitions of f(ν) coincide for arg(ν) ∈

(−π2 − δ,−
π
2 + δ). From Cauchy integral theorem we also have that

∫
γ
f+(ζ)
ζ−ν dζ =

f+(ν) for ν ∈ V +, and hence the solution obviously satisfies f(e2πiν)−f(ν) = f+(ν)
on V +.

We are only left with proving that the integrals defining f(ν) converge. For this
purpose, it suffices to prove that f+(ν)| ≤ c|ν| for some positive c. Many estimates
of this kind are derived in detail in [2] and [10], and hence we are sketchy on the
details. This will follow from an estimate on the fundamental matrix solutions
W±j,(η,η′),Ss of the form |W±j,(η,η′),Ss −W

±
j,(0,η′),Ss

| < |c′(x)| |η|, which will in turn
come from the application of Theorem 5.3 in Theorems 5.4 and 5.7. We need of
course limit ourselves to the intersection sectors adherent to the two singular points
which coalesce for η = 0. The vectors allowing to define the flags over Ω±j,(η,η′),Ss
in applying Theorem 5.3 are fixed points of an integral operator. The integrand
itself is C1 in η, but the path on which we integrate for η 6= 0 corresponds to a
horizontal segment of length of the order c

ν in t-space followed by a slanted half-line
when η 6= 0. We then divide each integral (the one for η 6= 0 and the one for η = 0)
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into two parts: a finite part on the horizontal segment and an infinite part on the
slanted half-line. The difference of the integrands in the finite parts is less than
c1|η| for some positive c1 while we integrate along a segment of length of the order
c
ν . Hence the difference of the integrals on the finite parts is of the order of c2|ν|.
Also each infinite part is less than c3|ν|. Indeed, the integrand is bounded, we
transform this integral in t into an integral in x and we can take the slanted part so
that the length of the corresponding curve in x be less than c4|ν|. This comes from
the fact that the distance between the holes (the preimages of the complement of
Dr) for that special strip we need to pass is of the order of C/√η. Indeed, it is the
two points that are coallescing for η = 0 which give the order of magnitude of the
distance between the holes.

The function dj in (6.1) is simply given by dj(η) = exp(f(
√
η)). �

7. Geometry of the unfolding and solutions with logarithmic terms

The unfolding we have obtained allows us to see that the geometry of solutions,
at the values of the parameter for which the system has an irregular singular point,
is tied to the geometry of the system at the Fuchsian singular points, and that this
is mediated by the monodromy matrices of our flag data.

When a Fuchsian singular point xl is resonant (Definition 3.3), the solutions at xl
generically have logarithmic terms and the local system is non diagonalizable. This
comes from the fact that the monodromy matrix, generically, has Jordan block(s)
corresponding to its equal eigenvalues.

The parametric resurgence phenomenon already described in [8] establishes that
when the Stokes matrices at ε = 0 are sufficiently generic, the resonant singular-
ities are forced to have logarithmic terms for sequences of resonant values of the
parameter ε converging to ε = 0.

As an example, consider values of ε in a sector domain Ss and a Fuchsian singular
point x` of ω-type to which are attached m intersection sectors ΩLj1,ε, . . . ,Ω

L
jm,ε

and
m gates sectors. Because the eigenvalues of the residue matrix at x` are of the form
λi(ε)
pε(x`)

, it is clear that we can have accumulations of resonances at x` of a given type
λi(ε) = λi′(ε) + n for n ∈ N with n → ∞. Let us suppose that the monodromy
around x` starting in an appropriate sector has the form

Mε = CLj1,εD1 . . . C
L
jm,εDm,

where the Di = (Cji+1,σ(ji+1),ε)
−1 are the inverses of the diagonal gate matrices

introduced in Definition 5.8 and uniquely determined from the formal invariants of
the system. The matrixMε is lower triangular and, because the CLji,ε are unipotent,
its diagonal part is D1 . . . Dm, which is precisely the diagonal part of the triangular
matrix

Nε = CLj1,0D1 . . . C
L
jm,0Dm.

Note that the dependence of this matrix on ε is only through the gate matrices Di.
We decide to approach ε = 0 along sequences {εm} of values of ε for which the ma-
trices Di are constant. Then Nε is constant along this sequence. We consider the
particular sequences {εm} for which Mε has multiple eigenvalues and some struc-
ture of Jordan blocks, with at least one non trivial Jordan block (such sequences
generically exist when the Stokes matrices CLji,ε are not all diagonal). Since the
CLji,ε depend continuously in ε, if Nεm has Jordan blocks, then Mεm is forced to
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have Jordan blocks at least as large for sufficiently large m. This phenomenon has
been studied in detail for the case k = 1 in Corollary 4.33 of [8].

8. Conclusion

In this paper we have identified a complete modulus of analytic classification for
germs of analytic families of linear differential systems at an irregular non resonant
singularity of Poincaré rank k. The next natural question is to identify the moduli
space: it has been solved in the case k = 1 in [8], and we are reasonably confident
that the same strategy could be applied here, even if the problem is significantly
more difficult. We hope to address this question in the near future.
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