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Abstract. Normal form theory provides an algorithmic way to decide

if two germs of planar vector fields with a saddle-node or a resonant

saddle are equivalent under a C
N -change of coordinates, in which case,

the normal forms are polynomial. However, in the analytic case, the

formal change of coordinates to normal form generically diverges. An

explanation of this is found by considering unfoldings of the vector fields

and explaining the divergence in the limit process. We consider the or-

bital equivalence problem for germs of families of vector fields unfolding

a generic saddle-node or resonant saddle and give a complete modulus

of analytic classification for such families.

1 Introduction

The paper is a contribution to the general question of the equivalence problem
for analytic vector fields on Rn, namely

1. When are two germs of vector fields v and w locally orbitally equivalent?
2. When are two germs of families of vector fields vε and wε locally orbitally

equivalent? (ε can be a multi-parameter.)

We can of course always suppose that the germs of vector fields and parameters
are all localized at the origin.

Question 1 (resp. 2) has the answer “always” when v(0), w(0) 6= 0 (resp.
v0(0), w0(0) 6= 0). This is just a consequence of the blow-box theorem which is
valid for analytic families and implies that there is a unique equivalence class under
the hypothesis that the vector field does not vanish.

A strategy to try to solve the equivalence problem and identify the different
equivalence classes is to use normal form theory. Indeed the normal form can be
seen as a canonical element of the equivalence class.
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If we look to the case of a nonzero family of vector fields the flow-box theorem
states that the family is locally orbitally equivalent to

ẋ1 = 1
ẋ2 = 0
...
ẋn = = 0

(1.1)

which can be seen as a normal form for the family.

So the first nontrivial case is when the vector field has a singular point at
the origin v(0) = 0. In dimension 1 the problem has been completely solved by
Kostov [7] (except for Question 2 in the case where v0 ≡ 0). Indeed if v′(0) 6= 0,
then for any family vε unfolding v there exists an analytic linearizing change of
coordinates hε(x) = h(ε, x) defined in a neighborhood of the origin in (x, ε) space.
When v′(0) = 0 and v(k+1)(0) 6= 0 (this is the codimension k case), then for any
family vε unfolding v there exists an analytic change of coordinates hε(x) = h(ε, x)
defined in a neighborhood of the origin in (x, ε) and an analytic scaling of time
bringing the family to the normal form

ẋ = (ε0 + ε1x + · · · + εk−1x
k−1 + xk+1)(1 + a(ε)xk). (1.2)

For the rest of the paper we will limit ourselves to the two-dimensional case
n = 2.

The node case. We consider a vector field v0 which has a node at the origin with
eigenvalues λ1 and λ2 such that λ1/λ2 = µ0 ∈ R+. Let vε be an unfolding of v0

and µε be the quotient of the eigenvalues at the singular point. It goes back to
Poincaré that the family vε is locally orbitally equivalent to:

1. If µ0 /∈ N ∪ 1/N

ẋ = x
ẏ = µεy.

(1.3)

2. If µ0 ∈ N

ẋ = x
ẏ = µεy + a(ε)xµ0 .

(1.4)

3. If µ0 ∈ 1/N

ẋ = x + b(ε)y1/µ0

ẏ = µεy.
(1.5)

The saddle case. We consider a vector field v0 which has a saddle at the origin
with eigenvalues λ1 and λ2 such that λ1/λ2 = −µ0 ∈ R−.

1. If λ1/λ2 is irrational then there is a formal change of coordinates and a
formal time scaling to the linear system

ẋ = x
ẏ = −µ0

y .
(1.6)

If µ0 is diophantian (badly approximated by the rational numbers) then
there exists an analytic change of coordinates and time scaling to the lin-
ear system. However if µ0 is Liouvillian then divergence is the rule and
convergence is the exception [6]. The question we ask is “Why?”
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2. If λ2/λ1 = −p/q, then, in the generic (codimension 1) case, there exists
a formal change of coordinates and a formal time scaling transforming the
system to the polynomial normal form

ẋ = x
ẏ = y(−p

q + u + au2),
(1.7)

where u = xpyq. Again divergence is the rule. It is very exceptional that the
change of coordinate to normal form converges. Here also we ask “Why?”

The Hopf bifurcation case. We consider a vector field v0 which has a weak
focus of order 1 at the origin with eigenvalues λ1,2 = ±iω. Then there is a formal
change of coordinates and a formal time scaling to the system

ẋ = −ωy + x(x2 + y2) + ax(x2 + y2)2

ẏ = ωx + y(x2 + y2) + ay(x2 + y2)2.
(1.8)

Again divergence is the rule and it is very exceptional that the change of coordinate
to normal form converges. Again we ask “Why?”

The saddle-node case. We consider a vector field v0 which has a saddle-node of
codimension 1 at the origin. Then there exists a formal change of coordinates and
a formal time scaling to the system

ẋ = x2

ẏ = y(1 + ax).
(1.9)

Here also divergence is the rule and only exceptionally the change of coordinate to
normal form converges. Again we ask “Why?”

These questions are all related as non resonant (resp. resonant) saddles appear
in the perturbation of a resonant (resp. non resonant) saddle. And a saddle-node
is the coallescence of a saddle and a node. Hence, to answer these questions, it is
natural to study the unfoldings of these situations. Moreover as we are considering
convergence of power series it is necessary to enlarge the variables (x, y) to the
complex domain, namely to a neighborhood of (0, 0) in C2. This point of view
allows to unify the weak focus case with the saddle case as the ratio of eigenvalues
of a weak focus is −1.

The spirit of the general answer is the following. The dynamics of the
original system is very rich. It is much too rich to be encoded in the simple dynamics
of the normal form which depends of at most one parameter. Hence the divergence
of the normalizing series.

Strategy. We must learn to read the rich dynamics of the original system in order
to solve the equivalence problem.

In Section 2 we discuss the example of the saddle-node. In Section 3 we discuss
the equivalence problem for saddles and saddle-nodes via the holonomy map. In
Section 4 we discuss analytic changes of coordinates to normal form. Finally in
Section 5 we discuss applications to problems of finite cyclicity of graphics. We end
up with perspectives.
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2 The example of the saddle-node

As mentioned above, if v0 has a saddle-node of codimension 1 at the origin,
then there exists a formal change of coordinates and a formal time scaling to the
system

ẋ = x2

ẏ = y(1 + ax).
(2.1)

If vη is a generic family unfolding the saddle node then, for any k ∈ N, there exists
a Ck-change of coordinates and parameters and a Ck time scaling bringing the
family to the normal form

ẋ = x2 − ε
ẏ = y(1 + a(ε)x).

(2.2)

We call (2.1) the model and (2.2) the model family. Their phase portrait appear in
Figure 1.

x

y

(a) ε = 0

x
εε−

(b) ε 6= 0

Figure 1 The “model”

Starting with a single analytic vector field v0 with a saddle-node at the origin
it is possible to find an analytic change of coordinates and analytic time scaling to
bring the system to the form

ẋ = x2

ẏ = f0(x) + y(1 + ax) +
∑∞

j=2 fj(x)yj .
(2.3)

The model has the analytic center manifold y = 0. One obstruction to bring (2.3)
to normal form is the non-existence of an analytic center manifold. Indeed there
exists a formal center manifold

y =
∞
∑

n=2

bnxn, (2.4)

but generically the series is divergent. The generic divergence is this case is formu-
lated in this way. Suppose that the system (2.3) depends analytically on a finite
number of parameters η ∈ Rn. As soon as there exists a single value η0 for which the
series (2.4) is divergent, then the set of values of η for which the series is convergent
is an analytic set. In particular divergence occurs on a dense open set.
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To understand why divergence is the rule in this case we complexify x and y
so that (x, y) is now defined on a neighborhood of the origin in C2 and we unfold.
The model and model family appear in Figure 2.

x

y

(a) ε = 0

x

εε−

(b) ε 6= 0

Figure 2 The “model”

Given a generic unfolding of v0 it is possible to find an analytic change of
coordinates and parameter and an analytic time scaling to bring the family to the
form

ẋ = x2 − ε
ẏ = f0,ε(x) + y(1 + a(ε)x) +

∑∞

j=2 fj,ε(x)yj .
(2.5)

Let us now discuss the case where there exists no analytic center manifold, i.e.
the series given in (2.4) is divergent. However this series is 1-sumable (or Borel-
summable) [10] and yields a solution in a sectorial domain V of the universal
covering of the x-space punctured at 0 of the form V = {x̂; |x̂| < r, arg(x̂) ∈
(−π/2 + δ, 5π/2 − δ)}, where r, δ > 0 are small. As we will not use the theory of
summability we do not define it and refer the interested reader to [1]. This solution
is ramified (see Figure 3a).

(a) ε = 0

εε−

(b) ε 6= 0

Figure 3 The invariant manifold
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The Figure 3b) represents the case ε > 0, i.e. the system has a saddle and
a node. It is known that the saddle always has an analytic stable manifold with
equation y = gε(x). Let us now discuss the local model at the node. We have two
cases depending if the node is non resonant or resonant.

1. If the node is non resonant then the local model at the node is given by the
linear system

ẋ = λ1x
ẏ = y

(2.6)

with λ1 /∈ 1/N. All solution curves (except x = 0) are of the form y =
Cx1/λ1 . They are all ramified but one! We get the following:

Conclusion 1: When we unfold a system with no analytic center manifold,
then the analytic separatrices of the saddle and of the node do not match.

2. If the node is resonant then the local model at the node is the normal form

ẋ = x
n

ẏ = y + Axn.
(2.7)

If A = 0 then all solution curves at the node (except x = 0) are analytic
of the form y = Cxn. This case is obviously impossible when unfolding a
system as in Figure 3a) and we are forced to have A 6= 0, yielding that all
solutions (except x = 0) are of the form y = nAxn lnx + Cxn. Hence we
get:

Conclusion 2: When we unfold a system with no analytic center manifold
then the node is non linearizable as soon as resonant. This is the “parametric
resurgence phenomenon”.

Putting together Conclusions 1 and 2 we get:

Conclusion: The divergence of the series giving the center manifold reflects an
incompatibility between the two equilibrium points as their analytic separatrices do
not match. For sequences of parameter values the incompatibility is carried by the
singular point itself: this is the parametric resurgence phenomenon.

The non analyticity of the center manifold is expressed by the divergence of
the series (2.4) which is equivalent to the divergence of the change of coordinate
Y = y − ∑∞

n=2 bnxn removing the term f0(x) in (2.3). This is the first step in
transforming the system to the normal form which is our model.

The phenomenon we have described above is very general. If we were consid-
ering a system (2.3) in which f0 ≡ 0 (the system has an analytic center manifold)
we can look for a change of coordinates

Y = y +

∞
∑

k=0

∞
∑

j=2

bk,nxkyn (2.8)

removing the terms fj(x)yj in (2.3). This power series is generically divergent. Its
sum is defined as a ramified function on a domain of the form V ×W , where W is a
neighborhood of the origin in y-space and V is a sectorial domain of the universal
covering of the x-space punctured at 0 of the form V = {x̂; |x̂| < r, arg(x̂) ∈
(−3π/2 + δ, 3π/2 − δ)}, where r, δ > 0 are small. If the unfolding is of the form
(2.5) with f0,ε ≡ 0, then we can find an unfolded change of coordinates which
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is regular at the node and ramified at the saddle, the ramification reflecting an
incompatibility between normalizing changes of coordinates at the saddle and at
the node. Here again we observe parametric resurgence phenomena for sequences
of parameter values for which the saddle is resonant: for these parameter values
the saddle is not integrable.

This last step remains true when the system (2.3) has no analytic center mani-
fold, but the calculations cannot be done in a simple way on the series and the use
of geometric methods to handle the proofs is necessary.

Remark 2.1 Many papers in the literature describe the fact that, whenever
the normalizing series may diverge, then divergence is the rule and convergence the
exception (see for instance [6]). The above geometric explanation for the divergence
of the series for the center manifold explains why this is the case. It is indeed the
general situation that the analytic separatrices of the saddle and the node do not
match. It is also the generic situation that a resonant node be nonlinearizable.
When these generic behaviours persist till the limit case of the saddle-node there
exists no analytic center manifold.

3 The equivalence problem for resonant saddles and saddle-nodes

The equivalence problem is a problem in two-variables for 2-dimensional vector
fields. We will introduce the holonomy of each separatrix (resp. of the strong
separatrix) in the case of a saddle (resp. saddle-node). The holonomy is a 1-
dimensional map. We can make a parallel between its use and the use of the
Poincaré return map which allows to reduce the search for periodic trajectories of
a 2-dimensional vector field to the search of fixed points of a 1-dimensional map.
As the separatrices of an analytic saddle are analytic and similarly for the strong
separatrix of a saddle-node we can always use an analytic change of coordinates
transforming these separatrices to the coordinate axes.

To define the holonomy we need to extend the system to a neighborhood of
the origin in C. We also allow the time to be complex. So the trajectories are
parametrized by open sets in C and hence are complex curves in C2, which we can
think of as real 2-dimensional surfaces in R4. The trajectories are usually called
the leaves of the foliation given by the differential equation.

Definition 3.1 We consider a saddle point

ẋ = λ1x(1 + h1(x, y))
ẏ = λ2(y + h2(x, y))

(3.1)

or a saddle-node
ẋ = x2(1 + h1(x, y))
ẏ = λ3y + h3(x, y))

(3.2)

of a 2-dimensional vector field, where λj 6= 0, λ1λ2 < 0 and h1,2(x, y) = O(|x, y|),
h3(x, y) = o(|x, y|). We consider a section Σ = {|x| < δ, y = y0} where y0, δ >
0. The holonomy of the y-separatrix is a map f : U ⊂ Σ → Σ, where U is a
neighborhood of 0 in Σ. Let (x, y0) ∈ U . We lift the curve y = y0e

iθ, θ ∈ [0, 2π]
into the leaf of the foliation passing through (x, y0) ∈ U . The end point is the point
(f(x), y0), yielding the definition of f (Figure 4).

The following proposition is classical.
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x f(x)

Σ

x

y

Figure 4 The holonomy map

Proposition 3.2 The holonomy f of the y-axis has the form

f(x) = exp

(

2πi
λ2

λ1

)

x + o(x) (3.3)

for (3.1) and

f(x) = x + ax2 + o(x2), (3.4)

with a 6= 0 for a saddle-node.

Remark 3.3 If we choose a different section Σ1 = {y = y1} and if f1 is the
holonomy for the new section, then f and f1 are conjugate, i.e. there exists an
analytic diffeomorphism defined in a neighborhood of 0 such that f1 = h−1 ◦ f ◦ h.

Theorem 3.4 1. Two germs of vector fields (3.1) with a saddle at the ori-
gin and same formal normal form, are locally analytically orbitally equivalent
if and only if the holonomies of their y-separatrices are conjugate.

2. Two germs of vector fields (3.2) with a saddle-node at the origin and same
formal normal form, are locally analytically orbitally equivalent if and only
if the holonomies of their strong separatrices are conjugate.

Part 1 of the Theorem was proved by Mattei-Moussu [9] for resonant sad-
dles and Pérez-Marco-Yoccoz [14] for non resonant saddles. Part 2 was proved by
Martinet-Ramis [10].

The Theorem 3.4 shows that the equivalence problem for germs of vector fields
with a saddle or saddle-node is reduced to the conjugacy problem for germs of dif-
feomorphisms with a fixed point at the origin and multiplier on the unit circle. The
kind of results we will describe below applies to generic (codimension 1) resonant
saddles (λ2/λ1 ∈ Q) and saddle-nodes. But for the sake of simplicity we will limit
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ourselves to saddles with λ2/λ1 = 1 and saddle-nodes, which both have a holonomy
map tangent to the identity. We limit ourselves to saddle points which are non
integrable of order 1, i.e. orbitally analytically equivalent to the form

ẋ = x
ẏ = −y(1 + Axy + o(|xy|). (3.5)

Then, under an adequate scaling for x, the holonomy of the y-axis has the form

f(x) = x + x2 + o(x2). (3.6)

The conjugacy problem for germs of diffeomorphisms of the form (3.6) has been
solved by Ecalle-Voronin ([4] and [16]). (Ecalle has also solved the conjugacy prob-
lem in the more general case of a resonant multiplier exp(2πip

q ).)

Theorem 3.4 can be generalized to generic families unfolding a resonant saddle
or a saddle-node.

Theorem 3.5 ([2] and [15]) Two germs of generic families of analytic vector
fields unfolding a vector field with a resonant saddle (resp. saddle-node) at the
origin are analytically orbitally equivalent if and only if the families of their unfolded
holonomies are conjugate.

Hence the equivalence problem for germs of families of vector fields is reduced
to the conjugacy problem for germs of families of diffeomorphisms

fε(x) = x + x(x − ε) + o(x2), (3.7)

in the saddle-case and
fε(x) = x + x2 − ε + o(x2), (3.8)

in the saddle-node case. To solve the conjugacy problem we identify a complete
modulus of analytic classification, so that two families are analytically conjugate if
and only if they have the same modulus.

Before describing the modulus for the families we describe the Ecalle-Voronin
modulus in the case ε = 0. The principle is the following: Two germs of diffeomor-
phisms f1, f2 : (C, 0) → (C, 0) of the form

f(x) = x + x2 + Ax3 + o(x3) (3.9)

with same constant A (determined by the formal normal form) are conjugate if and
only if they have the same orbit space. The Ecalle-Voronin modulus is one way to
describe the orbit space. The orbit space is described in Figure 5: to explain its
construction we first remark that the diffeomorphism is topologically like the time-
one map of the vector field whose flow lines appear in Figure 5. We give ourselves a
first fundamental domain limited by the curve `1 and its image f(`1). If we identify
x ∈ `1 with its image f(x) the fundamental domain is conformally equivalent to
a sphere S1. The ends of the crescent limited by `1 and f(`1) correspond to the
points 0 and ∞ on the sphere. All orbits of f (except that of 0) are represented by
a most one point of the sphere. However there exists points in the neighborhood
of 0 whose orbits have no representative on the sphere. To cover the orbit space
we therefore need to take a second fundamental neighborhood limited by a second
curve `2 and its image f(`2). As before we identify x ∈ `2 with its image f(x) and
this fundamental domain is also conformally equivalent to a sphere S2. But there
exists points in the neighborhood of 0 (resp. ∞) in S1 and S2 which belong to the
same orbit. So we need to identify a neighborhood of 0 (resp. ∞) in S1 with a
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l1

f(l1)

x

f(x)

l2

f(l2)

ψ0

ψ 8

8 8

0 0
S2 S1

Figure 5 Orbit space of a generic diffeomorphim

neighborhood of 0 (resp. ∞) in S2. This is done via an analytic diffeomorphism
ψ0 (resp. ψ∞) sending 0 to 0 (resp. ∞ to ∞). The size of the neighborhoods
of 0 and ∞ depend on the curves `i but what is intrinsic is the germs of analytic
diffeomorphims:

{

ψ0 : (C, 0) → (C, 0)

ψ∞ : (C,∞) → (C,∞).
(3.10)

The only analytic changes of coordinates on Sj which preserve 0 and ∞ are the

linear maps. If we choose different coordinates on Sj we get different germs ψ
0

and ψ
∞

. The equivalence relation corresponding to changes of coordinates on Sj

preserving 0 and ∞ is

(ψ0, ψ∞) ∼ (ψ
0
, ψ

∞
) ⇐⇒ ∃C1, C2

{

ψ
0
(w) = C2ψ

0(C1w)

ψ
∞

(w) = C2ψ
∞(C1w).

(3.11)

Definition 3.6 The Ecalle-modulus of the diffeomorphism f is given by the
tuple (ψ0, ψ∞)/ ∼.

All tuples (ψ0, ψ∞) are realizable as the Ecalle-Voronin modulus of a germ of
diffeomorphism of the form (3.9).

Definition 3.7 The normal form of a germ of diffeomorphism of the form (3.9)
is the time-one map of a vector field

ẋ =
x2

1 + ax
(3.12)

where a = A − 1. a is called the formal invariant.
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Theorem 3.8 ([4] and [16]) For a germ of diffeomorphism of the form (3.9)
there always exist a formal change of coordinate to normal form. This change of
coordinate converges if and only if ψ0 and ψ∞ are linear.

This theorem remains true for generic families unfolding (3.9). Considering
such a family it is always possible to “prepare” the family so that the parameter
becomes canonical.

Theorem 3.9 We consider a generic germ of analytic family fη(x) depending
on the parameter η unfolding the germ f(x) given in (3.9) (the family is generic if
∂fη

∂η 6= 0). There exists a germ of analytic diffeomorphism (x, η) 7→ (y, ε) such that

in the coordinate y the diffeomorphism (3.9) becomes

f ε(y) = y + (y2 − ε)(1 + B(ε) + (y2 − ε)hε(y)), (3.13)

where

• The fixed points of f are given by y± = ±√
ε.

• The multipliers λ± of y± satisfy

1

lnλ+
− 1

lnλ−

=
1√
ε
. (3.14)

Moreover

a(ε) =
1

lnλ+
+

1

lnλ−

, (3.15)

so a(ε) is a “shift” between the two singular points.

Definition 3.10 The family (3.13) of Theorem 3.9 is called prepared. Its
parameter ε is called the canonical parameter.

We now consider the conjugacy problem for two prepared families. Then nec-
essarily the canonical parameter must be preserved as it is an analytic invariant of
the family.

Theorem 3.11 [11] Two germs of generic analytic famlies of diffeomorphisms

fε(x) = x + (x2 − ε) + o(x2) (3.16)

are analytically conjugate if and only if they have the same unfolded Ecalle-Voronin
modulus ((ψ0

ε̂ , ψ∞
ε̂ )/ ∼)ε̂ ∈ V , where

• V is a sectorial neighborhood of the origin in the universal covering of ε-
space punctured at the origin. The radius r(δ) of V depends on its opening
defined with the help of an arbitrarily small δ > 0:

V = {ε̂; |ε̂| < r(δ), arg(ε̂) ∈ (−π + δ, 3π − δ)}. (3.17)

• The fundamental neighborhoods unfold as in Figure 6. As before we glue
together the two curves `j and fε(`j) limiting the fundamental neighborhoods,
thus yielding domains which have the conformal structure of spheres Sj,ε,
j = 1, 2, the distinguished point 0 (resp. ∞) corresponding to the fixed point
−√

ε (resp.
√

ε).
•

{

ψ0
ε̂ : (C, 0) → (C, 0)

ψ∞
ε̂ : (C,∞) → (C,∞).

(3.18)

are germs of analytic diffeomorphisms depending analytically on ε̂ 6= 0 and
continuously on ε̂ near ε̂ = 0.
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Figure 6 Orbit space of a generic family of diffeomorphims

Theorem 3.12 [15] A germ of generic analytic family unfolding a saddle-node
is analytically orbitally equivalent to a prepared family

ẋ = x2 − ε
ẏ = g0(x)(x2 − ε) + y(1 + a(ε)x) + O(y2).

(3.19)

The modulus ((ψ0
ε̂ , ψ∞

ε̂ )/ ∼)ε̂∈V for the unfolded holonomy of the y-separatrix with
prepared form (3.13) is such that ψ∞

ε̂ is an affine transformation.

Open questions:

1. Identify precisely the modulus space of ((ψ0
ε̂ , ψ∞

ε̂ )/ ∼)ε̂∈V which are realiz-
able as moduli of families of diffeomorphims. It is known that all (ψ0, ψ∞)
are realizable for a single diffeomorphim (ε = 0), see[4] and [16]. The diffi-
culty is to identify precisely the dependence on ε̂ near ε̂ = 0. The (ψ0

ε̂ , ψ∞
ε̂ )

surely depend more than continuously on ε̂.
2. Derive similar theorems for the higher codimension case. The existence of

fundamental domains for all values of the parameters has been done by
Oudkerk ([12] and later work). It remains to organize them nicely in the
parameter space. As appearing in Figure 6 there can be different non equiv-
alent choices of fundamental domains to describe the orbit space for a single
value of ε.

4 Changes of coordinates to normal form

We discuss the case of the generic saddle-node family (3.19).



Normal forms for germs of analytic families of planar vector fields 13

Theorem 4.1 [15] There exists a change of coordinate

Y = y +
∞
∑

j=0

yjhj(ε̂, x) (4.1)

defined on a domain U × D × V where

• U is a domain in the universal covering of x-space ramified at ±√
ε as in

Figure 7,
• D is a neighborhood of 0 in y-space,
• V is a sectorial neighborhood of ε̂ = 0 as in (3.17),

bringing the family (3.19) to the model family

ẋ = x2 − ε

Ẏ = Y (1 + a(ε)x).
(4.2)

The model family has a first integral

H(x, Y ) = Y ka(x, ε), (4.3)

with

ka(x, ε) = (x −
√

ε)
−

1+a
√

ε

2
√

ε (x +
√

ε)
1−a

√

ε

2
√

ε . (4.4)

This yields a first integral

εε−

Figure 7 Domain U in x-space

H ε̂(x, y) (4.5)

for (3.19) which is ramified at x = ±√
ε. If we turn around

√
ε we get two branches

H1,ε̂ and H2,ε̂ related in the following way

H2,ε̂ = L(a, ε̂) ◦ ψ∞
ε̂ (H1,ε̂) (4.6)

where L(a, ε̂) is a linear map. Similarly if we turn around −√
ε we get two branches

H̃1,ε̂ and H̃2,ε̂ related in the following way

H̃2,ε̂ = L(a, ε̂) ◦ ψ0
ε̂ (H̃1,ε̂). (4.7)
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5 Applications to problems of finite cyclicity of graphics

Definition 5.1 A graphic of a vector field is a union of singular points and
characteristic trajectories joining them which is likely to produce limit cycles or
periodic trajectories under perturbation.

Definition 5.2 A graphic Γ of a vector field v0 has finite cyclicity inside a
family vλ unfolding v0 (where λ is a multi-parameter) if there exists N ∈ N, there
exists ε > 0, δ > 0 such that, for any λ with |λ| < δ, the vector field vλ has at
most N limit cycles γ1, . . . , γn, n ≤ N such that distH(γi,Γ) < ε, where distH is
the Hausdorff distance between compact sets. The graphic Γ has finite absolute
cyclicity (or simply finite cyclicity) if N can be chosen independent of the C∞

unfolding vλ.

5.1 The lips. The lips is a continuum of graphics as in Figure 8 with two
saddle-nodes and central transition through them. Each graphic is likely to create
periodic solutions or limit cycles in a perturbation where the singular points dis-
appear. In the finite cyclicity questions we are interested to give a bound on the
number of limit cycles which can be created from a single limit periodic set in the
bifurcation process.

P1 P2

R0

Π1 Σ2

Figure 8 The lips

Theorem 5.3 [8] We consider a C∞ family of vector fields vη having for v0

lips as in Figure (8). We consider Ck-normalizing changes of coordinates bringing
the vector field in the neighborhood of P1 and P2 to the respective normal forms

{

ẋ1 = x2
1 − ε1

ẏ1 = y1(1 + a1x1)

{

ẋ2 = x2
2 − ε2

ẏ2 = −y2(1 + a2x2),
(5.1)

and sections parallel to the yj-axes in the normalizing charts. We consider a graphic

intersecting Π1 in y1,0. If the regular transition R0 : Π1 → Σ2 satisfies R
(n)
0 (y1,0) 6=

0, where 1 < n < k, then the corresponding graphic has cyclicity less than or equal
to n. Moreover there exists a perturbation of v0 with exactly n limit cycles.

Proof The proof is easy. We consider sections Σi and Πi, i = 1, 2, as in
Figure 9. Limit cycles are given by zeros of the displacement map

Vη(y1) = Rη(y1) − D−1
2 ◦ S−1

η ◦ D−1
1 (y1). (5.2)

As the system is integrable in the neighborhood of P1 and P2 this allows to calculate
the Dulac maps Dj : Σj → Πj . These are linear maps of the form D1(y1) = M(ε1)y1

with limε1→0 M(ε1) = +∞ and D2(y2) = m(ε2) with limε2→0 m(ε2) = 0.
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Rη

Σ1 Σ2
Π1 Π2

Sη

D2D1

Figure 9 Transition maps for the lips

We exploit the freedom on the choice of normalizing coordinates to simplify
the map Sη and bring it to a mere affine map

Sη(y2) = A(η)y2 + B(η), (5.3)

with A(η) > 0 and B(0) = 0. Then D−1
2 ◦ S−1

η ◦ D−1
1 is affine. Hence

V (n)
η (y1) = R(n)

η (y1) 6= 0 (5.4)

for (y1, η) in a small neighborhood of (0, 0), which determines a neighborhood U1

of the origin on the section Π1. By Rolle’s theorem there are at most n periodic
solutions intersecting Π1 on U1.

Remark 5.4 1. The proof illustrates the power of a good “preparation”
to deal with problems of finite cyclicity. Indeed composing a Dulac map with
M(ε1) very large with one with m(ε2) very small yields indeterminacy. The
trick of transforming Sη to an affine map allows to see that the indeterminacy
is limited to constant and linear terms.

2. The theorem may seem completely useless in practice for C∞ vector fields
because it is impossible in practice to check the hypothesis. Fortunately this
is not so for analytic vector fields and we will see that there are a number of
cases where the hypothesis can be checked without nearly any calculation.

Theorem 5.5 [3] We consider an analytic family of vector fields with a saddle-
node at the origin. It is possible to choose Ck normalizing changes of coordinates
bringing the family to the normal form

Ẋ = X2 − ε

Ẏ = Y (1 + a(ε)X)
(5.5)

in such a way that there exists X0 > 0 such that, for all values of the parameters,
the sections X = ±X0 are analytic and parameterized by analytic coordinates.

Proof The proof uses the case ε = 0 of Theorem 4.1. This particular case of
Theorem 4.1 was proved in [3], with an additional step to prove that the change of
coordinates can be taken real.

Theorem 5.6 [3] We consider an analytic family of vector fields vη having for
v0 lips as in Figure 8.

1. If R0 is nonlinear at one point y1,0 it is nonlinear everywhere.
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2. Each graphic of the lips has finite cyclicity if for instance one of the following
conditions is satisfied

• One of the graphics has an additional saddle point with ratio of eigen-
values different of −1 (Figure 10(a)).

(a) (b)

Figure 10 Two types of bordering graphics

• The family of graphics ends in a graphic entering one saddle-node
through the strong manifold and the other saddle-node through a center
manifold (Figure 10(b)).

Proof 1. is just analytic extension principle.
2. • Let λ1 < 0 and λ2 > 0 be the eigenvalues of the saddle point and

r = −λ1/λ2. Let y = y1 − y1,0, where y1,0 corresponds to the graphic
through the saddle point. The transition map has the form R0(y) =
yr(C + O(y)) with C > 0 in the neighborhood of the graphic through
the saddle. This map is obviously nonlinear as soon as r 6= 1.

• No affine map can send a semi-infinite domain on a finite one. Hence
the map R0 is non affine.

Remark 5.7 1. These results only use the modulus of the vector field
(ε = 0) and not the modulus of the family. This is because of the genericity

condition R
(n)
0 (0) 6= 0 for n > 1.

2. We have seen that the method of Theorem 5.6 is extremely powerful, since
nearly no calculations are needed. The price to pay however is that we just
get results of finite cyclicity but cannot determine the exact cyclicity.

In the non generic case where R0 is linear, then we can hope for a full result
of finite cyclicity for analytic families depending on a finite number of parameters
and unfolding a vector field with lips. The tool would be an improved Theorem 4.1
where we would have a better control on the dependence on the parameter in the
neighborhood of ε̂ = 0.

5.2 The hp-graphic through a nilpotent elliptic point. We consider a
nilpotent elliptic point of multiplicity 3 inside a C∞ family of vector fields. Such a
point has a 3-jet C∞ orbitally equivalent to

ẋ = y
ẏ = −x3 + y(bx + o(x)) + y2h(x, y)

(5.6)

with b > 2
√

2. Such a point has a phase portrait as in Figure 11.
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(a) The nilpotent point (b) Its (weighted) blow-up

Figure 11 A nilpotent elliptic point of multiplicity 3

(a) (b) with the blow-up of the nilpotent

point

Figure 12 An hp-graphic

We consider an hp-graphic through such a point, i.e. a connection between
a separatrix of a hyperbolic sector and a characteristic curve of a parabolic sec-
tor (Figure 12). The following theorem proved in [18] made an essential use of
Theorem 5.5.

Theorem 5.8 We consider an hp-graphic through a nilpotent elliptic point of
multiplicity 3 in a C∞ vector field v0. There exists N ∈ N such that the graphic
has finite cyclicty inside any C∞ family of vector fields vλ unfolding v0.

6 Perspectives

Sections 2 and 3 illustrate that the divergence of the normalizing series reflects
that the dynamics of the system is much more complicated than that of the normal
form. We have also seen that embedding a vector field in a family so as to unfold
the situation and extending the phase variables to the complex domain allows to
give a geometric explanation of the divergence and why the divergence is so often
the rule.

Here we have only discussed the divergence of normalizing series in the resonant
cases: the divergence can essentially be explained as the incompatibility between
a finite number of objects: for instance two fixed points in the case of a generic
diffeomorphism tangent to the identity, one fixed point and one periodic point of
period q in the case of a generic diffeomorphism with multiplier exp(2πip

q ), one fixed

point and one periodic orbit in the case of a generic Hopf bifurcation, one saddle
and one node in the case of a saddle-node. There is another source of divergence
coming from the “small denominators”. This occurs for instance in the case of a
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diffeomorphism

f(z) = exp(2πiα)z + o(z) (6.1)

where α is irrational. It is also the case of a saddle point for which the quotient
of eigenvalues is irrational. In both cases the system is formally linearizable but
the linearizing change of coordinates is generically divergent when α (in the case
of a diffeomorphism) or the quotient of eigenvalues (in the case of a saddle) is
Liouvillian. Here again an explanation is suggested by unfolding. For instance if
we embed the diffeomorphism (6.1) inside a family

fε(z) = exp(2πi(α + ε))z + o(z) (6.2)

then we generically have the birth of a periodic orbit as soon as α+ε = p
q ∈ Q. If α is

Liouvillian (i.e. very well approximated by the rationals) then an infinite number of
periodic orbits cannot escape from a neighborhood of the origin sufficiently rapidly
and form an obstruction to linerizability. This was conjectured by Arnold and
Yoccoz showed that it indeed occurs [17]. Pérez-Marco showed that there are also
other kinds of obstructions to linearizability [13].

One interesting direction of research is to put together the two approaches:
indeed small divisors phenomena occur in the unfolding of a resonant situation.
The quadratic family

f(z) = exp(2πiα)z + z2 (6.3)

is a family for which the change of coordinate to normal form in the neighborhood
of the origin diverges for all α ∈ R.

A second direction of research is to make a systematic study of the meaning of
the divergence of the normalizing series for more complicated singular points.

In Section 5 we have shown the power of good normal forms in some applica-
tions to finite cyclicity problems. The results on normal forms presented here are
still partial as the dependence on the parameters is not enough precise. For instance
in the conjugacy problem for a germ of analytic family unfolding a germ of diffeo-
morphism (3.6) we are still missing a realization theorem describing exactly the
modulus space, i.e. identifying precisely which pairs of germs (ψ0

ε̂ , ψ∞
ε̂ )ε̂∈V can be

realized as the modulus of a germ of family. This problem is probably very difficult.
However its solution would open new perspectives in finite cyclicity problems.
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