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Abstract

We consider a generalised Gause predator-prey system with a generalised

Holling response function of type III: p(x) = mx
2

ax2+bx+1
. We study the cases

where b is positive or negative. We make a complete study of the bifurcation of
the singular points including: the Hopf bifurcation of codimension 1 and 2, the
Bogdanov-Takens bifurcation of codimension 2 and 3. Numerical simulations
are given to calculate the homoclinic orbit of the system. Based on the results
obtained, a bifurcation diagram is conjectured and a biological interpretation
is given.

1 Introduction

We consider a generalised Gause predator-prey system [15, 13] of the following
form







ẋ = rx
(

1 − x
k

)

− yp(x)
ẏ = y(−d + cp(x))
x(0) > 0, y(0) > 0

(1.1)

with a generalised Holling response function of type III

p(x) =
mx2

ax2 + bx + 1
. (1.2)

The system has seven parameters, the parameters a, c, d, k, m and r are positive.
We study the cases where b is positive or negative. The parameters a, b, m are
fitting parameters of the response function. The parameter d is the death rate of
the predator while c is the efficiency of the predator to convert prey into predators.
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Figure 1.1: Generalised Holling type III functional response.

The prey follows a logistic growth with a rate r in the absence of predator. The
environment has a prey capacity determined by k.

The case b ≥ 0 has been studied biologically by Jost and al. in 1973 [19, 20].
The generalised Holling functional response of type III was used to model the
predation of Tetrahymena pyriformis on Escherichia coli or Azotobacter vinelandii
in a chemostat. The chemostat system with the generalised Holling response
function of type III was used instead of the Holling response function of type
II (p(x) = bx

1+ax
) since the former response function gave better results. This is

partly due to the rate of predation which does not diminish sufficiently fast in
type II when the prey population tends to zero. Indeed, for type II (resp. III)
the response function has a nonzero (resp. zero) slope at x = 0 (see Fig. 1(a)).
We show that the case b > 0 is qualitatively equivalent to the case b = 0 (i.e.

p(x) = mx2

ax2+1
also known as Holling response function of type III [18, 12]). A

study of a predator-prey with a Holling response function of type IV, in a very
similar spirit, was recently done by Broer-Naudot-Roussarie-Saleh (see [4, 5]).

The case b < 0 provides a model for a functional response with limited group
defence. In opposition to the generalised Holling function of type IV (p(x) =

mx
ax2+bx+1

) studied in [1, 4, 5, 14, 23, 22, 24] where the response function tends to
zero as the prey population tends to infinity, the generalised function of type III
tends to a nonzero value L as the prey population tends to infinity (see Fig. 1(b)).
The functional response of type III with b < 0 has a maximum M at xM . It is
possible to obtain a, b, and m as functions of L, M and xM . When studying the
case b < 0 we will find a Bogdanov-Takens bifurcation of codimension 3 which is
an organizing center for the bifurcation diagram.

The system (1.1) has 7 parameters but, with the following scaling (X,Y, T ) =
( 1

k
x, 1

ck
y, cmk2t) of the variables, we are able to reduce the number of parameters

to 4. The system which we consider is






ẋ = ρx(1 − x) − yp(x)
ẏ = y(−δ + p(x))
x(0) > 0, y(0) > 0

(1.3)

where

p(x) =
x2

αx2 + βx + 1
(1.4)
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and the parameters are (α, β, δ, ρ) = (ak2, bk, d
cmk2 , r

cmk2 ). The parameter space is
of dimension 4 but we noticed that all but the homoclinic orbit bifurcation and the
bifurcation of the double limit cycle do not depend on the ρ parameter. Therefore
the bifurcation diagrams are given in the (α, δ) plane for values of β. The values
of β are either generic or bifurcation values.

The article is organized as follows: in section 2 we show that all trajectories
are attracted to a finite region of the plane. In section 3 we study the number
of singular points. In section 4 we study the saddle/anti-saddle character of the
singular points. In section 5 we discuss the Bogdanov-Takens bifurcation of codi-
mension 2 and 3. In section 6 we study the Hopf bifurcation of codimension 1 and
2. In section 7 a bifurcation diagram is conjectured. The proposed bifurcation
diagram is the simplest which extends the local bifurcations surfaces and curves
in the neighborhood of the Bogdanov-Takens bifurcations and takes into account
the saddle-node bifurcation where the saddle point exits the first quadrant: hence
the Bogdanov-Takens bifurcation of codimension 3 is really an organizing center
for the bifurcation diagram. Finally in section 8 we study the homoclinic bifurca-
tion by numerical simulation and find necessary conditions for the existence of a
homoclinic orbit. We discuss in section 9 a biological interpretation.

2 Behaviour of trajectories at infinity

In this section we show that all trajectories are attracted to a finite region of the
plane.

Theorem 2.1 For any parameter values (α, β, δ, ρ) there exists a box B = [0, 1]×
[0, R], where R = R(α, β, δ, ρ) such that all trajectories in the first quadrant have
their ω-limit set inside B.

Proof. Since ẋ < 0 for x > 1 all trajectories enter inside the region x ≤ 1. This
occurs in a finite time as soon as y(t) remains bounded away from 0. Moreover
ẏ < 0 for p(x) < δ. The region p(x) < δ contains a strip x ∈ [0, ε] for some positive

ε. Also, in the region x ∈ [0, 1], we have that ẋ < 0 as soon as y >
ρx(1−x)

p(x) . Let

N = max
x∈[ε,1]

ρx(1 − x)

p(x)
. (2.1)

Let us show that there exists a trajectory (x(t), y(t)), t ∈ (0, T ) such that x(0) = 1,
x(T ) = ε and for all t, y(t) ≥ N . Indeed

dy

dx
= − p(x) − δ

p(x) − ρx(1−x)
y

. (2.2)

For large y this tends to −p(x)−δ

p(x) which is bounded on x ∈ [ε, 1]. Let (x1(t), y1(t)),

t ∈ [0, T1] be the lowest such trajectory. Let

R = max
t∈[0,T1]

y1(t). (2.3)
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From (2.2) it is clear that dy
dx

is bounded in the half-strip x ∈ [ε, 1], y > N . Hence
trajectories cannot go to infinity in the positive y direction and they need enter
the strip x ∈ [0, ε]. Once a trajectory has entered this strip, either it remains in
this strip with decreasing y or it enters in the strip [ε, 1] at a height y < N . In
both cases it is trapped and it stays for ever below the height y = R. �

3 Bifurcation of Number of the Singular Points

We give different surfaces in the parameter space which describe the bifurcation
of the number of singular points in the first quadrant. There are always two
singular points on the x-axis: (0, 0) and (1, 0), but (1, 0) can change multiplicity
when singular points enter or exit the first quadrant. In addition, a singular point
of multiplicity 2 may appear in the first quadrant and bifurcate into 2 singular
points. In the case β ≥ 0 (resp. β < 0) there is a possibility of up to one singular
point (resp. two singular points) in the open first quadrant.

We want to determine the singular points of the system (1.3) apart from those
on the x-axis. There is the possibility of up to two singular points in the open
first quadrant which are the solutions of p(x) = δ with y = ρ

δ
x(1 − x). We must

verify the number of positive solutions of p(x) = δ such that ρ
δ
x(1 − x) ≥ 0. The

number of real solutions of p(x) = δ is determined by the sign of:

∆ = δ(δβ2 − 4αδ + 4). (3.1)

The study of the sign of y is more difficult, but y can only change sign by vanishing
or going to infinity. We will show that the latter is excluded when we are in the
first quadrant. Hence we will conclude that the number of singular points in the
first quadrant can only change in two ways. The first when a singular point passes
through the singular point (1, 0). The second when two singular points coalesce
and then vanish. We will study both bifurcations.

For the case β ≥ 0 we note that p′(x) > 0 for all x > 0, therefore p(x) = δ

has at most one positive solution x0. It is possible that a singular point (x0, y0) is
not in the first quadrant and, in consequence, has no biological significance. The
number of points in the first quadrant is given by the following theorem.

Theorem 3.1 For all parameter values, (0, 0) and (1, 0) are singular points of the
system (1.3). The number of singular points in the open first quadrant is given in
Fig. 3.1.

The surfaces appearing in Fig. 3.1 are defined below. To help define the sur-
faces we consider the Jacobian of the system (1.3):

A =

[

ρ − 2ρx − xy(βx+2)
(αx2+βx+1)2

−x2

αx2+βx+1
xy(βx+2)

(αx2+βx+1)2
−δ + x2

αx2+βx+1

]

. (3.2)

S1: The Jacobian has a zero eigenvalue at (1, 0) when the parameters are on

S1 : δ =
1

α + β + 1
.
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Figure 3.1: Surfaces of parameters and number of singular points.

This corresponds to (1, 0) being a saddle-node for β 6= −2 or a singular point
of multiplicity 3 if β = −2. When crossing S1 a singular point passes through
(1, 0) and changes quadrant. In the case where β > −2: if δ < 1

α+β+1 (resp.

δ > 1
α+β+1) then the singular point is in the first (resp. fourth) quadrant,

and we have the inverse situation when β < −2.

Sd: The surface Sd represents when a singular point in the open first quadrant is
of multiplicity 2. The surface has a biological significance when β ≤ −2. We
observe that p(x) = δ if and only if f(x) = 0 where

f(x) = (αδ − 1)x2 + βδx + δ. (3.3)

The surface Sd corresponds to the discriminant ∆ (see (3.1)) of f(x) being
zero. Therefore the surface Sd is given by

Sd : δ =
4

4α − β2
.

We observe that the surface Sd and S1 are identical when β = −2, in which
case (1, 0) is a singular point of multiplicity 3.

Sm: The surface Sm represents the boundary of the parameter region where the
model has biological significance in the first quadrant. The model has a
biological significance when the generalised Holling function of type III is
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Figure 4.1: Behavior of solutions in a neighborhood of the x-axis when the para-
menters are on the surface S1 and in a neighborhood of β = −2.

well defined (i.e. when the denominator of p(x) does not vanish). The
condition is β2 − 4α < 0 when β < 0 and the surface is given by

Sm : β2 = 4α.

S∞: This surface represents a singular point which passes to infinity as its x-
coordinate becomes infinite. The surface is given by

S∞ : δ =
1

α

Note that the surfaces S1 and S∞ are identical when β = −1. In addition
we notice that the surface S∞ is not relevant for the biological system since
it does not change the number of singular points in the first quadrant. This
comes from the fact that a singular point can only tend to infinity while
it is in the region y < 0 and hence it moves from the fourth to the third
quadrant.

4 Type of Singular Points

4.1 Statements of Results

Theorem 4.1 The singular point at the origin is a saddle. The type of (1, 0) is:

• δ > 1
α+β+1 : an attracting node,

• δ < 1
α+β+1 : a saddle,

• δ = 1
α+β+1 and

– β 6= −2: an attracting saddle-node (see Fig. 4.1),

– β = −2: an attracting semi-hyperbolic node (see Fig. 4.1).

The unfolding of the semi-hyperbolic node (1, 0) of codimension 2 is a cylinder
over the bifurcation diagram given in Fig. 4.2.
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Figure 4.2: Bifurcation diagram of the semi-hyperbolic point (1, 0) of codimension
2.

Theorem 4.2 If the parameters of the system (1.3) are on the surface Sd, β < −2
and β 6= −4 then there is a saddle-node in the open first quadrant. If β ∈ (−4,−2)
then the saddle-node is attracting. If β < −4 then the saddle-node is repelling.

Definition 4.3 A singular point is simple if the determinant det(A(x0,y0)) of the
Jacobian A(x0,y0) is not zero. A singular point is of saddle (resp. anti-saddle) type
if the determinant, det(A(x0,y0)), is negative (resp. positive).

It follows that a singular point of anti-saddle type is either a center, a node, a
focus, or a weak focus.

Theorem 4.4 If there exists exactly one simple singular point in the open first
quadrant then it is an anti-saddle. If there exists exactly two simple singular points
in the open first quadrant then the singular point on the left is an anti-saddle and
the singular point on the right is a saddle.

4.2 Proofs of Results

Proof of Theorem 4.1. The Jacobian A (see (3.2)) evaluated at (0, 0) is

A(0,0) =

[

ρ 0
0 −δ

]

.

It clearly follows that the origin is a saddle since it has eigenvalues ρ and −δ with
eigenvectors (1, 0) and (0, 1), respectively. We observe directly from the system
(1.3) that the x and y axes are invariant.

If A is evaluated at (1, 0) we obtain

A(1,0) =

[

−ρ − 1
α+β+1

0 −δ + 1
α+β+1

]

.
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We notice that −ρ is always an eigenvalue and its associated eigenvector is (1,0),
hence there is an heteroclinic connection between the singular points, on the x-
axis. The second eigenvalue is −δ + 1

α+β+1 , its sign depends on the parameters.

If the parameters are ‘above’ the surface S1, i.e. δ > 1
α+β+1 , then (1, 0) is an

attracting node. If the parameters are ‘below’ the surface S1, i.e. δ < 1
α+β+1 ,

then (1, 0) is a saddle.
If the parameters are on the surface S1 (i.e. satisfy the relation δ = 1

α+β+1 ),
then the second eigenvalue is zero. To determine the type of (1, 0), we first localise
the system at (1, 0) and diagonalise the linear part. We obtain the following system

Ẋ = −ρX + o(|X,Y |)
Ẏ = BY 2 + o(|X,Y |2)

(4.1)

where

B = − 2 + β

ρ(α + β + 1)3
.

If a change of coordinates is performed to bring the system onto the center mani-
fold, the term BY 2 does not change. Hence the local behavior of the solutions is
determined by B when B 6= 0. The singular point (1, 0) is an attracting saddle-
node when the parameters are on the surface S1 and β 6= −2.

The surfaces Sd and S1 intersect on β = −2, in which case (1, 0) is of multi-
plicity 3. Then (4.1) has the following form

Ẋ = −ρX + o(|X,Y |)
Ẏ = CY 3 + XO(|X,Y |2) + o(|X,Y |3)

where

C = − 1

ρ(α − 1)4ρ2
.

The term CY 3 is sufficient to determine the local behavior of the solutions since
it remains unchanged when reducing the flow on the center manifold. Hence (1, 0)
is a semi-hyperbolic attracting node since C is always negative. �

Proof of Theorem 4.2. The Jacobian A evaluated at the singular point (x0, y0) =

(− 2
β
,−2ρ(β+2)

δβ2 ) of multiplicity 2 is

A(x0,y0) =

[

ρ(β+4)
β

4
β2−4α

0 0

]

,

and its trace is equal to ρ(β+4)
β

. Hence (x0, y0) is an attracting (resp. repelling)
saddle-node for β < −4 (resp. β > −4). �

We introduce some relations and a function which will be used both for the
proof of Theorem 4.4 and for the study of the Hopf bifurcation. The singular point
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(x0, y0) is not necessarily on the x-axis if p(x0) = δ (see (1.4)), in which case the
following two relations are satisfied

I : δ =
x2

0

αx2
0 + βx0 + 1

, (4.2)

and

II : y0 =
ρ

δ
x0(1 − x0). (4.3)

To determine the type of the singular point we take the determinant of A (Jacobian
of the system, see (3.2)) and evaluate it at a singular point not necessarily on the
x-axis,

det(A(x0,y0)) =
x3
0
y0(βx0+2)

(αx2
0
+βx0+1)3

.

It is possible to simplify det(A(x0,y0)) by substituting II and I, yielding

det(A(x0,y0)) = −(−1 + x0)(x0β + 2)ρx2
0

(αx2
0 + x0β + 1)2

= −δ2(−1 + x0)(x0β + 2)ρ

= h(x0)

for h defined by

h(x) = δ2(1 − x)(xβ + 2)ρ. (4.4)

Proof of Theorem 4.4. By continuity the determinant of a singular point cannot
change sign without vanishing. There are only two posibilities for h(x) = 0, namely
x = 1 or x = −2

β
. We obtain a surface of parameters where the determinant is

zero at a singular point by evaluating f(x) (see (3.3)) for each case. The relation
f(1) = 0 and f(−2

β
) = 0 are in fact the surfaces S1 and Sd, respectively. Therefore

the sign of the determinant of a singular point in the first quadrant will only
change on the bifurcation surfaces S1 and Sd. Hence the sign of the determinant
of the Jacobian at a singular point in the open first quadrant is determined by the
local analysis of the bifurcations. As we have studied the bifurcations on S1 and
Sd, this completes the proof of the theorem. �

5 Bogdanov-Takens Bifurcation

Theorem 5.1 If the parameters are on Sd, β = −4, α > 4 and α 6= 8, then there
exists a Bogdanov-Takens bifurcation of codimension 2 at a singular point located
in the first quadrant: the system localised at the singular point of multiplicity 2 is
conjugate to

ẋ2 = y2

ẏ2 = x2
2 + Dx2y2 + o(|x2, y2|2)

(5.1)
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where

D = 2ρ(8−α)
α−4 . (5.2)

Theorem 5.2 Hence the Bogdanov-Takens bifurcaIf the parameters are on Sd

and (α, β) = (8,−4) then there exists an attracting Bogdanov-Takens bifurcation
of codimension 3 at a singular point located in the first quadrant: the system
localised at the singular point of multiplicity 2 is equivalent to

X ′ = Y

Y ′ = X2 + EX3Y + o(|X,Y |4)
(5.3)

where

E = −1024
ρ2 . (5.4)

Proof of Theorem 5.1. If the parameters are on the surface Sd and β = −4 then the
Jacobian evaluated at the singular point (x0, y0) = (− 2

β
,−2ρ(β+2)

δβ2 ) of multiplicity
2,

A(x0,y0) =

[

0 1
4−α

0 0

]

,

is nilpotent. Therefore it has two zero eigenvalues and we observe that 1
4−α

< 0

since β2 − 4α < 0 and β = −4 which implies α > 4 (restriction of the pa-
rameters by the surface Sm). This implies that the linear part of the system is
non-diagonalisable, hence there is a Bogdanov-Takens bifurcation.

To study the Bogdanov-Takens bifurcation, we want to put the system into the
form (5.1). We perform two changes of coordinates. The first step is to localise
the singular point (x0, y0) to the origin by means of (x1, y1) = (x−x0, y− y0) and
to perform a second changes of coordinates,

x2 =
4ρ

(α − 4)2
x1

y2 =
4ρ

(α − 4)2

(

1

4 − α
y1 +

8 − α

4 − α
x2

1 +
16ρ

4 − α
x3

1 +
16

(α − 4)2
x2

1y1

+
16(3α − 16)ρ

(α − 4)2
x4

1 +
−64

(α − 4)2
x3

1y1 + o(|x1, y1|4)
)

.

Simplifying we obtain a system of the form (5.1) with D given in (5.2). D is well
defined since α > 4. The coefficient D can change sign, therefore we continue the
analysis of the Bogdanov-Takens bifurcation.

If D 6= 0 and there exists an unfolding of (5.1) then we have a system of the
form

ẋ2 = y2

ẏ2 = µ1 + µ2y + x2
2 + Dx2y2 + o(|x2, y2|2),
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Figure 5.1: Bogdanov-Takens bifurcation diagram when D > 0.

and in the case D > 0 the system will have the bifurcation diagram given in
Fig. 5.1. In the case D < 0 the bifurcation diagram can be obtained by applying
the transformation (x2, y2, t, µ1, µ2) → (x2,−y2,−t, µ1,−µ2) to the bifurcation
diagram of Fig. 5.1. The Bogdanov-Takens bifurcation is studied in [2, 9, 17]. �

If α = 8 then D = 0 and we have the following system

ẋ2 = y2

ẏ2 = x2
2 −

16

ρ
x3

2 +
64

ρ2
x4

2

+ y2

(

−
(

16

ρ2
+

192

ρ

)

x2
2 +

(

256

ρ3
+

2048

ρ2

)

x3
2

)

+ y2
2

(

−128

ρ2
x2 +

3072

ρ3
x2

2

)

+ o(|x2, y2|4).

(5.5)

We want to bring it to the normal form (5.3), for that purpose we introduce the
following result.

Proposition 5.3 The system

ẋ = y

ẏ = x2 + a30x
3 + a40x

4 + y(a21x
2 + a31x

3) + y2(a12x + a22x
2) + o(|x, y|4)

(5.6)

is equivalent to the system

X ′ = Y

Y ′ = X2 + EX3Y + o(|X,Y |4)
(5.7)

where

E = a31 − a30a21 (5.8)
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after changes of coordinates and a rescaling of time.

Proof. The first change of coordinates removes the terms x2y, xy2, x2y2.

x = x3 + N1x3y3 + N2x
3
3 + N3x

4
3 + N4x

3
3y3

y = y3 + N1y
2
3 + N1x

3
3 + 3N2x

2
3y3 + a30N1x

4
3 + 4N3x

3
3y3 + 3N4x

2
3y

2
3

where (N1, N2, N3, N4) = (a21

3 , a12

6 ,
10a2

21
+9a22

108 , a21a12

6 ). Using the above change of
coordinate we obtain the system

ẋ3 = y3 + o(|x3, y3|4) = h(x3, y3)

ẏ3 = k(x3) + Ex3
3y3 + o(|x3, y3|4)

where k(x) = x2 + b30x
3 + b40x

4 and (b30, b40, E) = (a30, a40 − a12

6 , a31 − a30a21).
We perform a second change of coordinates,

x4 = x3

y4 = h(x3, y3) = y3 + n(x3, y3).

with h(x, y) = o(|x, y|4) which results in the system brings the system to

ẋ4 = y4 + o(|x4, y4|4)
ẏ4 = k(x4) + Ex3

4y4 + o(|x4, y4|4).

For the third change, let K(x) =
∫ x

0 k(z)dz and

X = (3K(x4))
1

3 = x4 + o(|x4|)
Y = y4

be a change of coordinates tangent to the identity. If we perform the change of
coordinates we obtain

Ẋ = (3K(x4))
− 2

3 k(x4)Y

Ẏ = k(x4) + Ex3
4Y + o(|x4, Y |4).

We then rescale the time by dividing the system by (3K(x4))
− 2

3 k(x4) = 1+O(|x4|)
this will not change the orientation nor the qualitative behavior of the solution
since the dividing factor is positive in a neighborhood of the bifurcation. With
proper substitution we obtain the system (5.7). �

Proof of Theorem 5.2. Using Proposition 5.3 the system (5.5) is equivalent to a
system of the form (5.3) where E is given in (5.4). �

The coefficient E is always negative and a system of this form has been studied
in [11, 9]. The bifurcation diagram for such a system is known and, if there exists
an unfolding, then the unfolding of the system (5.3) is equivalent to

ẋ = y

ẏ = µ1 + µ2y + µ3xy + x2 − x3y + o(|x, y|4).
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H2

HO2

C
DC

H−HO−

H+

HO+

BT +

BT −

SN−SN+
µ1

µ2

µ3

Figure 5.2: Bifurcation diagram for the Bogdanov-Takens singularity of codimen-
sion 3.
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VI

H2

HO2

C

DC

H− HO−

H+

HO+
BT +

BT −

SN−

SN+

I II III

IV V VI

Figure 5.3: Intersection of the bifurcation diagram of a Bogdanov-Takens bifurca-
tion of codimension 3 with a sphere minus a point and generic phase portraits.

We give a bifurcation diagram in Fig. 5.2 and Tab. 5 gives a description of the
bifurcation surfaces. The bifurcations BT − and BT + occur on the µ3-axis, sepa-
rated by the Bogdanov-Takens bifurcation of codimension 3.

To visualize the generic regions of the bifurcation diagram we notice that,
when µ1 > 0, there is no singular point, hence the bifurcations are in the half-
space where µ1 < 0. We take a sphere Sǫ = {(µ1, µ2, µ3) | µ2

1 + µ2
2 + µ2

3 = ǫ2},
which we intersect with the bifurcation diagram of Fig. 5.2 and we then remove
a point on the sphere in the region with no singular point. The sphere minus
the point can be represented on a plane and the bifurcation diagram appears in
Fig. 5.3.

Remark 5.4 Figure 5.2 will be found as an organizing center for our bifurcation
diagram. Indeed the role of the parameter µ2 will be played by β + 4. Consider
cutting the bifurcation diagram of Figure 5.2 with planes µ2 = C. This will cor-
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H+ repelling Hopf bifurcation
H− attracting Hopf bifurcation
HO+ repelling homoclinic bifurcation
HO− attracting homoclinic bifurcation
H2 Hopf bifurcation of codimension two
HO2 homoclinic bifurcation of codimension two
DC double limit cycle
C intersection of H and HO
BT + Bogdanov-Takens bifurcation with positive xy coefficient
BT − Bogdanov-Takens bifurcation with negative xy coefficient
SN+ repelling saddle-node
SN− attracting saddle-node

Table 1:

respond to our drawings in (α, δ) plane for β constant. The Hopf and homoclinic
bifurcation curves will be placed exactly as in the slices µ2 = C for C > 0 (resp.
C = 0, C < 0) when β ∈ (−4,−3) (resp. β = −4, β ∈ (−β0,−4), with β0 < −4).

6 Hopf Bifurcation

In this section we give a full analysis of the Hopf Bifurcation which is summarised
in the following theorem.

Theorem 6.1 The system (1.3) has a generic Hopf bifurcation of codimension 1
when β ≥ 0 (bifurcation diagram given in Fig. 6.1). It has a generic Hopf bifur-
cation of codimension 1 (bifurcation diagram given in Fig. 6.2) or 2 (bifurcation
diagram given in Fig. 6.3) when β < 0. In all cases it has a complete unfolding.

The proof of the theorem is spread throughout sections 6.1 to 6.4. In sec-
tion 6.1 we study some of the necessary conditions for the Hopf bifurcation. In
the sections 6.2 and 6.3 the method of Lyapunov coeffficients is used to determine
the codimension of the Hopf bifurcation. We then proceed in sections 6.3 and 6.4
to show that the bifurcation has a complete unfolding.

6.1 Necessary Conditions for the Hopf Bifurcation

We deduce two necessary conditions for the Hopf bifurcation to exist. The trace
(resp. determinant) of the Jacobian A(x0,y0) evaluated at a singular point in the
open first quadrant is zero (resp. positive).

The sign of the determinant of the Jacobian has already been studied in The-
orem 4.4.

The trace of A (see (3.2)) at a singular point (x0, y0) not necesserily on the

x-axis vanishes when ρ− 2ρx0 − x0y0(βx0+2)
(αx2

0
+βx0+1)2

= 0. With the use of relation I and
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α

δ S1

H

Figure 6.1: Hopf bifurcation diagram when β ≥ 0.

α

δ S1
H
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(a) −3 ≤ β < 0

α

δ S1
Sd

H
Sm

(b) −4 < β < −3

α

δ S1
Sd

H
Sm

(c) β = −4

α

δ S1
Sd

H
Sm

(d) β < −4

Figure 6.2: Hopf bifurcation of codimension 1 when β < 0.

II (see (4.2) and (4.3)) we obtain that the trace of A(x0,y0) is zero if and only if
g(x0) = 0 where

g(x) = −2x3 + (βδ + 1)x2 + δ(2 − β)x − 2δ. (6.1)

To obtain a surface in the parameter space which represents the trace of A(x0,y0)

vanishing for (x0, y0) in the first quadrant, we take the resultant of f(x) (see (3.3))
and g(x) with respect to x. This yields P (α, β, δ) = 0 where

P (α, β, δ) =
resultant(f(x), g(x), x)

δ2

= −α(α + β + 1)(4α − β2)δ3

+ (β2 − αβ2 + β3 + 8α2)δ2 + (−5α + 2β)δ + 1.

(6.2)

We note that P (α, β, δ) is a cubic with respect to δ. Hence its discriminant
gives information on the number of roots. The discriminant of P (α, β, δ) with
respect to δ is

Q(α, β) = Q1(α, β)Q2(α, β) (6.3)
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b

αBT 3 α

δ S1
Sd

H
Sm

(a) β = −4

b

αH2(β) α

δ S1
Sd

H
Sm

(b) βH2∩S1 < β < −4

b

αH2∩S1 α

δ S1
Sd

H
Sm

(c) β = βH2∩S1

b

αH2(β) α

δ S1
Sd

H
Sm

(d) −6 < β < βH2∩S1

Figure 6.3: Hopf bifurcation diagram of codimension 2 when β < 0.

where

Q1(α, β) = 4(−β3 + 3αβ2 − 3α2β − 27α2 + α3)

Q2(α, β) = (−2α + βα − β2 − β3)2.
(6.4)

When β is fixed we note that, apart from a double root α = α∗(β), Q2(α, β) is
always strictly positive, α∗(β) is positive if and only if β ∈ R\[−2, 2].

We analyse Q1(α, β) and, since it is cubic in α, we take its discriminant with
respect to α which is equal to −19683β2(β + 4). Hence if β > −4, (resp. β = −4,
β < −4) is fixed, then Q1(α, β) = 0 has three roots, (resp. one root of multiplicity
2, one root). For β < 0 there is always an even number of positive roots of
Q1(α, β) = 0. They are denoted α∗∗

1 and α∗∗
2 when they exist. When β > 0,

Q1(α, β) has exactly one positive root which is denoted α∗∗.

Proposition 6.2 If β0 = 3±
√

13
2 , −2, −4 then Q1(α, β0) = 0 and Q2(α, β0) = 0

have a common root.

Proof. The proof is trivial since the root of Q2(α, β) is explicitly known. �

Proposition 6.3 For β fixed, the graph of the function Q(α, β) and the algebraic
curve P (α, β, δ) = 0 are given (qualitatively) for generic or bifurcation values of
β in Fig. 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, 6.11, 6.12, 6.13, 6.14, 6.15.

Proof. The proof is lenghty but relatively straightforward and consists of a study
of Q(α, β) and P (α, β, δ) = 0 with algebraic tools. In particular a solution branch
of P (α, β, δ) = 0 tends to infinity with respect to δ for

α∞ = −1 − β.
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α

δ
SP
H

Sm

α∗(β)

δ∗(β)

Figure 6.4: Diagram of the curves SP and H for β < −4.

Full details appear in [21]. �

Not all solution branches given above satisfy the necessary condition for the
Hopf bifurcation. For example one branch represents a singular point that is not
in the first quadrant, while another branch represents a trace zero saddle in the
open first quadrant.

Proposition 6.4 Among the solution branches of P (α, β, δ) = 0, only the ones
in Fig. 6.1 for β ≥ 0 and in Fig. 6.2 for β < 0 satisfy the necessary conditions for
the Hopf bifurcation.

Proof. We eliminate the solution branches of P (α, β, δ) = 0 which either do not
represent a singular point (x0, y0) in the open first quadrant, or are attached to a
singular point with zero trace at which the determinant of the Jacobian A(x0,y0)

is negative. In the case β ≥ 0 a branch is easily discarded as part of it is located
in a region where the system has no singular point in the open first quadrant.
The same reasoning can be applied in the case β ∈ (−4, 0) and the upper left
solution branch is discarded. In the case β < −4, the branch which intersects the
valid Hopf solution branch, H, is discarded since it represents a trace zero saddle,
SP, see Fig. 6.4. However this branch will be of interest in section 8.4 where we
consider the homoclinic bifurcation of codimension 2, HO2. In the case β < 0 the
lowest solution branch (the one closest to the α-axis) represents a singular point
not in the first quadrant, hence it is discarded. Full details appear in [21], [8]. �

6.2 Hopf Bifurcation of Codimension 2

We study the Hopf bifurcation with the method of Lyapunov constants [3, 7, 6, 16].
We first localise the system at a singular point (x0, y0) in the open first quadrant.
We then rescale the time by dividing the system by p(x1 + x0) (see (1.4)). Since
p(x) > 0 for all x > 0, neither the orientation of trajectories, nor the number of
periodic solutions will change. The system has the form

x′
1 = h(x1) − y1 (6.5)

y′1 = (y1 + y0)

( −δ

p(x1 + x0)
+ 1

)

(6.6)
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αα∗∗ α∗

Q(α, β)

α∗α∗∗ α

δ P (α, β, δ) = 0

Figure 6.5: Q(α, β) and P (α, β, δ) = 0 when β > 3+
√

13
2 is fixed.

αα∗∗

Q(α, β)

α∗∗ α

δ P (α, β, δ) = 0

Figure 6.6: Q(α, β) and P (α, β, δ) = 0 when β = 3+
√

13
2 .

αα∗∗ α∗

Q(α, β)

α∗α∗∗ α

δ P (α, β, δ) = 0

Figure 6.7: Q(α, β) and P (α, β, δ) = 0 when 2 < β < 3+
√

13
2 is fixed.

where

h(x) =
ρ(−α(x + x0)

3 + (α − β)(x + x0)
2 + (β − 1)(x + x0) + 1)

x + x0
− y0.

We proceed with a second change of coordinates (x2, y2) = (x1, y1 − h(x1)) and
we obtain a system of the form

x′
2 = −y2

y′2 = (h(x2) + y0)

( −δ

p(x2 + x0)
+ 1

)

+ y2

(

dh(x2)

dx2
+ 1 − δ

p(x2 + x0)

)

=

5
∑

i=1

ai(λ)xi
2 + y2

(

4
∑

i=0

bi(λ)xi
2 + o(|x2|4)

)

+ o(|x2|5).

(6.7)
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α∗∗ α
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Figure 6.8: Q(α, β) and P (α, β, δ) = 0 when 0 ≤ β ≤ 2 is fixed.
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1
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Figure 6.9: Q(α, β) and P (α, β, δ) = 0 when −1 < β < 0 is fixed.
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Q(α, β)
Sm
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2 α

δ P (α, β, δ) = 0
Sm

Figure 6.10: Q(α, β) and P (α, β, δ) = 0 when β = −1.

The method of Lyapunov constants to study the Hopf bifurcation consists of
looking for a Lyapunov function for the system. The method is usually applied to
a system of the form

Ẋ = c(λ)X − Y + G1(X,Y, λ)

Ẏ = X + d(λ)Y + G2(X,Y, λ)
(6.8)

where c, d,G1, G2 are smooth functions with Gi(X,Y ) = o(|X,Y |) and, either
c ≡ 0 or c ≡ d and λ a multi-parameter.

Proposition 6.5 Consider a family of Liénard vector fields (6.7) with λ a multi-
parameter, to which we apply the change of coordinates

[

x2

y2

]

=

[

1 0
−b0(λ)

2

√
−b0(λ)2+4a1(λ)

2

]

[

X

Y

]

. (6.9)
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Figure 6.11: Q(α, β) and P (α, β, δ) = 0 when −2 < β < −1 is fixed.
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Figure 6.12: Q(α, β) and P (α, β, δ) = 0 when β = −2.
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Figure 6.13: Q(α, β) and P (α, β, δ) = 0 when −4 < β < −2 is fixed.

Then there exists a polynomial Fλ,

Fλ(X,Y ) =
1

2
(X2 + Y 2) +

6
∑

j=3

Fj(X,Y, λ),

with Fj a homogeneous polynomial of degree j with respect to X and Y . Then
there exists L0(λ) such that

Ḟλ = L0(λ)(X2 + Y 2) + o(|X,Y |2),

and for all values of λ such that L0(λ) = 0, there exist L1(λ) and L2(λ) such that

Ḟλ = L1(λ)(X2 + Y 2)2 + L2(λ)(X2 + Y 2)3 + o(|X,Y |6).
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Figure 6.14: Q(α, β) and P (α, β, δ) = 0 when β = −4.
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Figure 6.15: Q(α, β) and P (α, β, δ) = 0 when β < −4 is fixed.

The Lyapunov constants are

L0(λ) =
b0(λ)

2
,

L1(λ)
∣

∣

∣

L0=0
=

b2(λ)a1(λ) − b1(λ)a2(λ)

8a1(λ)
,

L2(λ)
∣

∣

∣

L0=0
=

1

192a1(λ)3
(L

(1)
2 (λ)(b2(λ)a1(λ) − b1(λ)a2(λ)) + L

(2)
2 (λ))

(6.10)

where

L
(1)
2 (λ) = −21a3(λ)a1(λ) + b1(λ)2a1(λ) − 10a2(λ)2

L
(2)
2 (λ) = 12a1(λ)3b4(λ) − 20a1(λ)2b3(λ)a2(λ)

− 12a1(λ)2b1(λ)a4(λ) + 20a2(λ)b1(λ)a3(λ)a1(λ).

(6.11)

In addition, L0, L1, L2 are smooth with respect to λ.

Proof. The Lyapunov method guarantees the existence and differentiability of
the Lyapunov constants of a system of the form (6.8) shown in [6]. After the
change of coordinates given by (6.9) is applied to the system (6.7) we determine
the Lyapunov constants. This is an algebraic procedure, therefore it is possible
to program it with a symbolic manipulation program. The program used in this
case was MAPLE. The calculations have been made independently by two authors.
�
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6.3 Analysis of the Lyapunov Constants

With the analysis of the Lyapunov constants we determine the codimension of
the Hopf Bifurcation depending on the parameters. We proceed with the L0

Lyapunov constant (see (6.10)), once the coefficient b0 is substituted, L0 depends
on α, β, δ, ρ, x0, y0. The use of two successive substitutions: substituting y0 with
the relation II (see (4.3)), substituting δ with the relation I (see (4.2)), removes
the dependence on y0 and δ. Hence, we obtain

L0 =
−(1 + (β − α)x2

0 + 2αx3
0)ρ

2x2
0

. (6.12)

As expected it follows that L0 = 0 if and only if the trace of the Jacobian A(x0,y0)

is zero, which we had shown to be equivalent to g(x) = 0 (see (6.1)). The locus
in the parameter space where L0 = 0 has already been studied in the analysis of
P (α, β, δ) = 0.

We continue with the analysis of the first Lyapunov constant L1 under the
hypothesis L0 = 0. Hence g(x0) = 0 (see (6.1)), and we can substitute δ with the
relation I and isolate α from the factor of the numerator that can vanish in the
open first quadrant. We obtain

III : α =
1 + βx2

0

x2
0(1 − 2x0)

. (6.13)

The constant L1 (see (6.10)) depends on α, β, δ, ρ, x0 , y0. The substitution of y0

with the relation II (see (4.3)), and of δ with the relation I (see (4.2)) and α with
the relation III, removes the dependence on y0, δ and α. Hence, this yields

L1 =
(2x3

0β
2 + (6x2

0 + 1)β + 6)ρ

8x3
0(βx0 + 2)(2x0 − 1)

. (6.14)

The following Lemma will be useful for the analysis of L1 and L2.

Lemma 6.6 For β ≥ 0 (resp. β < 0), if the system (1.3) has a Hopf bifurcation
at a point (x0, y0), then necessarily x0 < 1

2 (resp. x0 6= 1
2).

Proof. If we suppose x0 ≥ 1
2 then it implies that, if the numerator of L0 is zero

and α positive, then β is negative. In the case β < 0, if x0 = 1
2 and the Jacobian

trace is zero, then β = −4. It is then the case of the Bogdanov-Takens bifurcation.
�

Proposition 6.7 If β ≥ 0, the Hopf bifurcation is of codimension 1 and the sign
of the first Lyapunov constant, L1, is negative.

Proof. We observe that the numerator of L1 (see (6.14)) is always positive which
implies that the Hopf bifurcation is at most of codimension 1. By Lemma 6.6 the
denominator is negative. Hence L1 is negative. �

The next proposition explores the possibility of having L0 and L1 vanishing.
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Proposition 6.8 If β < 0, L0(λ) = 0 and α is equal to

αH2(β) =
β2

β + 6
(6.15)

then L1(λ) = 0. Moreover, if β ∈ (−6,−4) and α = αH2(β) then there exists
λ such that for λ = (αH2(β), β, δH2(β), ρ) the system has a Hopf bifurcation of
codimension at least 2. See Fig. 6.3.

Proof. It is sufficient to determine when the numerator of L0 and L1 have a root
in common. We take the resultant of the numerator of L0 and L1 with respect to
x0,

resultant(num(L0),num(L1), x0) = −2(β2 − αβ − 6α)3(β + 4)ρ6.

If L0(λ) = 0 and α is equal to β2

β+6 then L1(λ) = 0. The case β = −4 is not a
possibility since it is the Bogdanov-Takens bifurcation of codimension 3. �

The above proposition indicates that there exists values of the parameters such
that L0 and L1 are zero simultaneously. A corollary which follows directly is that
the maximum codimension of the Hopf bifurcation is at least 2. We analyse the
second Lyapunov constant L2 under the condition L0 = L1 = 0, it suffices to

analyse L
(2)
2 (see (6.10)). Using the same simplifications as for L1 and using that

L1 = 0 we get,

L
(2)
2 =

((5x2
0 − x0)β

2 + (76x2
0 + 17

2 − 47
2 x0 − 85x3

0 − 12x5
0 + 50x4

0)β

48x5
0(x0 − 1)3(βx0 + 2)2(2x0 − 1)

+
39 − 57x0 + 42x2

0 − 12x3
0)ρ

48x5
0(x0 − 1)3(βx0 + 2)2(2x0 − 1)

.

(6.16)

The next proposition yields that the codimension of the Hopf bifurcation is at
most 2.

Proposition 6.9 The Lyapunov constants L0, L1 and L2 never vanish simulta-
neously for a singular point in the first quadrant. Moreover the second Lyapunov
constant, L2, is negative when L1 = L0 = 0.

Proof. Under the hypothesis L0 = 0 it is sufficient to take the resultant of the
numerator of L1 and L2 with respect to β,

resultant(num(L1),num(L2), β) = −48x0(1 + 2x0 + 12x2
0)(2x0 − 1)2(x0 − 1)7ρ4.

Since we only consider a singular point in the open first quadrant then the only
possibility of a root in common is x0 = 1

2 . This is excluded by Lemma 6.6.
Therefore L1 and L2 never vanish simultaneously.
Secondly, it remains to show that L2 is negative. Since L1 and L2 are not zero
simultaneously, L2 does not change sign when L1 = 0 (by the intermediate value
theorem). If β0 = −9

2 ∈ (−6,−4) then for α = αH2(β) and x0 = 1
3 we have

L0 = L1 = 0. If we evaluate L
(2)
2 at (x0, α, β) = (1

3 , αH2
(

−9
2

)

,−9
2), we obtain

L
(2)
2 = −2187

16 ρ. Therefore L2 is negative when L1 = L0 = 0. �
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6.4 Submersion of the Lyapunov Constants

We show that all Hopf Bifurcations have a complete unfolding by showing that
L0 and (L0, L1) are submersions with respect to the parameters α and δ. For the
proof we will need:

∂x0(α, δ)

∂α
= − x0(α, δ)2δ

2x0(α, δ)αδ − 2x0(α, δ) + δβ
(6.17)

and

∂x0(α, δ)

∂δ
= − x0(α, δ)2α + βx0(α, δ) + 1

2x0(α, δ)αδ − 2x0(α, δ) + δβ
(6.18)

which are obtained by differentiating I (see (4.2)) with respect to α and δ, re-
spectively.

Proposition 6.10 The map λ = (α, β, δ, ρ) 7→ L0 is a submersion with respect to
α and δ when L0(λ) = 0.

Proof. It suffices to show that ∂L0

∂α
and ∂L0

∂δ
never vanish simultaneously. Using

(6.17), (6.18) and substituting α by the relation III (see (6.13)) we obtain

∂L0

∂α
= −(2x3

0β + (8 − 4β)x2
0 + (β − 14)x0 + 4)ρ

2(βx0 + 2)(2x0 − 1)

∂L0

∂δ
=

(x0 − 1)2(βx0 + 2)(x3
0β + 3x0 − 1)ρ

x4
0(2x0 − 1)3

.

We must verify that
[

∂L0

∂α
(λ) ∂L0

∂δ
(λ)
]

has rank 1 for all λ such that L0(λ) = 0.

The resultant of the numerators of ∂L0

∂α
and ∂L0

∂δ
with respect to β,

resultant

(

num

(

∂L0

∂δ

)

,num

(

∂L0

∂α

)

, β

)

= 2x2
0(x0 − 1)4(2x0 − 1)4ρ3,

does not vanish since x0 6= 0, 1
2 , 1, using Lemma 6.6. �

Proposition 6.11 The map λ 7→ (L0(λ), L1(λ)) is a submersion with respect to
α and δ when L0 = L1 = 0.

Proof. We want to show that the two vectors Vi =
(

∂Li

∂α
, ∂Li

∂δ

)

for i = 0, 1, are

linearly independent at all points in the parameter space λ0 where L0 = L1 = 0.
We use the following idea coming from Lemma 6 in [6]: for fixed β0, let (α0, δ0) be a
point where L0 = L1 = 0. Proposition 6.10 ensures that L0 = 0 is a smooth curve
near (α0, δ0) by the implicit function theorem and that V0 is normal to L0 = 0. We
now restrict L1 to L0(α, δ) = 0 and we show that this map is a submersion with
respect to δ when L0 = L1 = 0. This guarantees that V1 is linearly independent
from V0.
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Figure 6.16: Bifurcation diagram of the Hopf bifurcation of codimension 2.

We use the relation III (see (6.13)) to simplify L1 and calculate ∂L1

∂δ
. After

substituting ∂x0(δ)
∂δ

by the relation (6.18), we obtain

∂L1

∂δ
=

−1

4(2x0 − 1)4(2 + βx0)x
5
0

[(4x0 − 1)x4
0β

3 + (22x3
0 − 6x2

0 + 5x0 − 2)x0β
2

+ (−3 + 24x3
0 − 4x0 + 24x2

0)β + 48x0 − 18](x0 − 1)2ρ.

L1 and ∂L1

∂δ
do not vanish simultaneously as

resultant

(

num

(

∂L1

∂δ

)

,num(L1), β

)

= 216x6
0(2x0 − 1)4(x0 − 1)6ρ5

does not vanish since x0 6= 0, 1
2 , 1 using Lemma 6.6. �

We prove the main theorem of this section.

Proof of Theorem 6.1. If β ≥ 0 there is a Hopf bifurcation of codimension 1. The
bifurcation is called super-critical : the singular point is stable and, when a limit
cycle appears from the singular point, then the singular point becomes unstable
and the limit cycle is stable. This follows from the Propositions 6.4, 6.5, 6.7, 6.10
and the fact that the sign of L1 is negative when L0 = 0.

If β < 0 there is a Hopf bifurcation of codimension 1 or 2. In the case of the
codimension 2, the bifurcation will have the bifurcation diagram given in Fig. 6.16.
This follows from the Propositions 6.4, 6.5, 6.8, 6.9, 6.11 and the fact that the
sign of L2 is negative when L0 = L1 = 0. �

7 Bifurcation Diagram

In this section we conjecture the global topological bifurcation diagram based on
the local study of the singular points. In particular we use the local bifurcation
diagram near the Bogdanov-Takens bifurcations of codimension 2 and 3 which
yields bifurcation surfaces of the homoclinic orbit, HO, and the double limit cycle,
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Figure 7.1: Bifurcation diagram and phase portraits for generic regions of param-
eters.

DC, for β close to −4 (see Remark 5.4). Essentially we conjecture the global
extension of these surfaces for other values of β. For the bifurcation diagram we
do not consider the parameter ρ since we have shown that it does not have a role in
the bifurcation of singular points. We want to represent the bifurcation diagram
in the 3-parameter space (α, β, δ). This is accomplished by taking slices with β

fixed, where we give the bifurcation diagram in the (α, δ) plane. The values of β for
the different slices are either part of a generic interval or bifurcation values. The
bifurcation values are those which produce a topological change of the bifurcation
diagram in the (α, δ) plane.

For each slice of the bifurcation diagram we identify the open regions in the
parameter space: I, II, III, . . ., for each region we give a qualitative phase portrait.

For the case β ≥ −3 (see Fig. 1(a), 1(b), 1(c), 1(d)) there is no intersec-
tion between the Hopf bifurcation, H, and the surface S1. This follows from the
result that the intersection between the two surfaces has α-coordinate given by

αH∩S1(β) = (β+1)(β2+3β+1)
β+3 . Hence H is always located below S1 or Sd, yield-
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Figure 7.2: Bifurcation diagram and phase portraits for generic regions of param-
eters.

ing that H tends to the α-axis as α tends to infinity. Also, we conjecture for
β ∈ [−3,−2) (see Fig. 1(d)) that there is no homoclinic orbit, nor any limit cycle,
when there are two singular points in the open first quadrant.

In the case β < −3 (see Fig. 2(a), 2(b), 3(a), 3(b), 4(a), 4(b)) there is an
intersection between H and S1, hence a limit cycle may exist when there are two
singular points in the open first quadrant. In addition, from the unfolding of the
Bogdanov-Takens bifurcation of codimension 2 and 3, we know that there is a
curve of homoclinic bifurcation for fixed β near −4. We do not know at which
value of β such bifurcation curves starts to exist. Near (α, β, δ) = (8,−4, 1

4) the
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Figure 7.3: Bifurcation diagram and phase portraits for generic regions of param-
eters.

shape of the homoclinic bifurcation curve, HO, is given by taking slices of Fig. 5.2
where µ2 is constant. This yields the conjectured homoclinic bifurcation curve of
Fig. 7.2, 7.3 and 7.4. We conjecture that the homoclinic bifurcation curve tends
to infinity when β → −3 (i.e. its left extremum point goes to infinity at β = −3).
This comes from the fact that the region in which this curve may exist disappears
(the region is created by the intersection of H and S1). This curve was confirmed
numerically for β = −3.5 in section 8 (see Fig. 2(a)). The case β = −4 (see
Fig. 2(b)) is partially obtained by taking the slice µ2 = 0 of the Fig. 5.2.

For the cases β < −4 the dynamics are much richer. In particular we conjecture
the presence of a curve DC which represents the bifurcation of a double limit cycle.
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Figure 7.4: Bifurcation diagram and phase portraits for generic regions of param-
eters.

We have shown that it exists in a neighborhood of H2 and also in the unfolding
of the Bogdanov-Takens bifurcation of codimension 3. The curve DC starts at H2

and ends at the homoclinic bifurcation of codimension 2, HO2. We conjecture that
it is always the case. The HO exists in the neighborhood of the Bogdanov-Takens,
near β = −4. Its extension is necessarily, negatively further from β = −4 to obtain
a coherent bifurcation diagram. The main difference in the cases when β < −4 (see

Fig. 6.3) is the position of H2 determined by αH2(β) = β2

β+6 (see Proposition 6.8).

The bifurcation point H2 will eventually cross S1 at β = βH2∩S1 ≈ −4.866 and
tend to infinity as β → −6.
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Remark 7.1 The bifurcation diagram presented here is the simplest which is
compatible with all the constraints calculated so far. Since the bifurcation curves
for the fixed points are exactly determined, the only conjectural curves are the
curves DC and HO. The existence and position of DC is guaranteed near H2

and BT 3, while the existence and position of HO is known near BT . The other
bifurcation curves add additional constraints. For instance the curve BH can only
occur when there are two singular points in the first quadrant. This shows that
it always lie above S1. It also explains why it is expected to have disappeared for
β > −3. Indeed for β > −3, the Hopf bifurcation only occurs when there is a
unique singular point in the first quadrant.

8 Numerical Simulations and Homoclinic Bifurcation

For interesting fixed values of β, numerical bifurcation diagrams are given in the
(α, δ) plane of the parameter space. When β > 0 we have taken the particular
value β = 6 for which we have a generic numerical bifurcation diagram.

When β < 0 the values -3.5, -4, -5 of β are chosen to calculate the homoclinic
orbit before, at the Bogdanov-Takens bifurcation of codimension 2 and 3 and after.
Their choice allows to confirm numerically some of the conjectures of section 7.
The Hopf bifurcation, H, and the homoclinic bifurcation, HO, are calculated
using XPPAUTO in which some of the AUTO routines are integrated. The curve HO
is calculated by taking a periodic solution of very large period and following it in
the (α, δ) plane. This is one method to follow homoclinic bifurcation curves (see
for instance [10]). The parameter ρ has an effect on the homoclinic bifurcation
curve, HO, but we conjecture that it has no effect on the topological bifurcation
diagram. For ease of numerical computation we used ρ = 1

100 . This choice is based
on the fact that, when ρ is larger, for many parameter values the vector field looks
like a singular perturbation in at least one region of the first quadrant. The curves
S1,Sd and Sm are directly computed with MATLAB.

The phase portraits were calculated with ode45 of MATLAB. This is done by
calculating the solutions forward and backward in time for intial values located
on a equally spaced grid in the first quadrant. The grid size varies for best rep-
resentation of the vector field. The hollow circles on the phase portrait represent
the singular points.

8.1 A Typical Numerical Bifurcation Diagram for β > 0

The case β = 6 is a generic value and we obtain the numerical bifurcation diagram
of Fig. 8.1. We also give the typical phase portraits at points a, b and c in Fig. 8.1.
In Fig. 1(a) and Fig. 1(b), (1, 0) is a saddle point and in Fig. 1(c), (1, 0) is an
attracting node. The phase portrait Fig. 1(a) (resp. Fig. 1(b)) has a singular
point in the open first quadrant which is an attracting focus (resp. repelling focus),
while Fig. 1(c) has no singular point in the open first quadrant. In addition, in
Fig. 1(b) there is an attracting limit cycle around the singular point in the open
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Figure 8.1: Numerical bifurcation diagram and phase portraits (β = 6).

first quadrant. We notice that the numerical bifurcation diagram and numerical
phase portraits confirm the results established by the theory.

8.2 Numerical Simulations of the Homoclinic Orbit Bifurcation

The case β = −3.5 is a generic value and we obtain the numerical bifurcation
diagram of Fig. 8.2. This diagram confirms the ‘c’ shape of HO, conjectured in
Fig. 2(a), with the help of Fig. 5.2. Therefore, numerically, it is observed that
HO extends at least to β = −3.5. We conjectured that the curve will disappear
towards the right (the left extremal point tends to infinity) as β tends to −3. We
give a representation of different phase portraits in Fig. 8.3 for values a, b, c and d

appearing in Fig. 2(b). In all the examples of phase portraits the singular point
(1, 0) is an attracting node and the left singular point (resp. right singular point)
is a repelling focus (resp. saddle point). The examples show the change in the
gobal behavior of the system from: attracting limit cycle to homoclinic orbit, to
no limit cycle, and back to a limit cycle. We also notice that some of the phase
portraits are similar to those observed in singular perturbations: we explore this
phenomenon in section 8.3. We discuss the biological interpretation in section 9.

The case β = −4 is where we find the Bogdanov-Takens bifurcation of codimen-
sion 3: indeed it is observed numerically that HO and H meet at (α, δ) = (8, 1

4).
This confirms the behavior of Fig. 2(b) predicted by Fig. 5.2 when µ2 = 0. We
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Figure 8.3: Phase portraits (β = −3.5).

give a representation of some phase portraits in Fig. 8.4. The singular point (1, 0)
in Fig. 4(c) is a saddle point and for all other cases it is an attracting node. In
Fig. 4(a) and 4(c) the left singular point is an attracting focus, while in the re-
maining cases the left singular point is a repelling focus when it exists. In all cases
the right singular point is a saddle point when it exists.

The case β = −5 is more complex since there is a Hopf bifurcation of codimen-
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Figure 8.4: Zoom of the numerical bifurcation diagramme and phase portraits
(β = −4).

sion 2, H2, as predicted by the theory. While we could not numerically compute
DC which represents a double limit cycle, we give evidence that it exists locally
in a neighborhood of H2. Indeed we are able to find parameter values for which
there are two limit cycles around the singular point which undergoes the Hopf
bifurcation. The external limit cycle is attracting and the internal limit cycle is
repelling, as predicted by the theory. See Fig. 5(c). We had conjectured that
DC begins at H2 and ends at the homoclinic bifurcation of codimension 2, HO2.
The existence of HO2 is confirmed by the numerical existence of both a repelling
homoclinic orbit and an attracting homoclinic orbit. In section 8.4 we compute
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Figure 8.5: Zoom of the numerical bifurcation diagram and phase portraits (β =
−5).

the location of HO2, in particular when β = −5, its location is given in Fig. 8.5.
See Fig. 5(a), where the phase portrait shows a repelling homoclinic. In all three
phase portraits of Fig. 8.5 the singular points have the same type: (1, 0) is an at-
tracting node, the left singular point is an attracting focus, and the right singular
point is a saddle.

8.3 Condition of Existence of an Homoclinic Orbit in the Limit

Case of a Singular Perturbation

The system is a singular perturbation if the family of vector fields has the following
form

ẋ = ρx(1 − x) − yx2

αx2 + βx + 1

ẏ = ǫ(x, α, β, δ)y

(8.1)

where ǫ(x, α, β, δ) is very small for x ∈ (a − γ1, b + γ2), with γ1 ∈ (0, a) and γ2

is sufficiently large, where a and b are defined in Fig. 6(a). This implies that the
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Figure 8.6: Vector field in the limit case of a singular perturbation.

vector field is nearly horizontal far from the nullcline of ẋ. If the system (8.1) has
a limit cycle, it will have the appearance of the limit cycle shown in Fig. 6(b).
If the vector field is of the form (8.1) then there exists a homoclinic orbit at the
limit case (i.e. ǫ(x, α, β, δ) vanishing) when the singular point of saddle type is
approximately located at (b, ymin).

It is possible to compute in the parameter space, the surface which represents
the homoclinic orbit in the limit case of a singular perturbation.

Theorem 8.1 If a family of vector fields of the form (8.1) has a homoclinic orbit,
then at the limit (when ǫ(x, α, β, δ) → 0) the parameters satisfy H(α, β, δ) = 0
where

H(α, β, δ) = (α6 + 2α5b + 2α5 + 2α4b + α4 + α4β2)δ3

+ (2α2β3 − 2α5 − 18α4 − 2α4β − 16α3β + 2β2α3 − 2β2α2)δ2

+ (α4 + 32α3 + 16α2β − 2β2α2 + β4)δ − 16α2.

(8.2)

Proof. Let y(x) be the nullcline of ẋ then xmin is a solution of y′(x) = 0. We look
for the condition for which a local minimum (xmin, ymin) of the nullcline ẋ has the
same y coordinate as the saddle (x0, y0), that is d(xmin, x0) = y(xmin)−y(x0) = 0.
We want to obtain a condition in the parameter space, therefore we take the
resultant R of the numerator of d(xmin, x0) and f(x0) (where f is given in (3.3))
with respect to x0. We proceed to take the resultant of R and the numerator
of y′(xmin) with respect to xmin. We obtain α2ρ12P (α, β, δ)2H(α, β, δ) where
P (α, β, δ) is given in (6.2) and H(α, β, δ) given in (8.2). The factor P (α, β, δ)2

has already been studied and its solution branch does not represent a homoclinic
orbit: it corresponds to the case xmin = x0. �

Fig. 8.7 gives two examples with the nullcline of ẋ superposed with solution(s).
Fig. 7(a) gives a phase portrait which is not singular, while Fig. 7(b) is the phase
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Figure 8.7: Examples of vector fields with a homoclinic orbit.

β α δ ρ Fig.

−3.5 90.9751 0.0113545 1
100 7(a)

−3.5 90.9751 0.01134173 50 7(b)

Table 2: Parameter values for the examples of Fig. 8.7.

portrait of a singular perturbation vector field whose parameters satisfy the func-
tion H(α, β, δ) = 0. The parameters of both examples are given in Tab. 2.

8.4 Homoclinic Orbit of Codimension 2

The existence of a Bogdanov-Takens bifurcation of codimension 3 implies that
there exists, in a neighborhood of that bifurcation, a curve in the parameter space
for which there is a homoclinic bifurcation of codimension 2, HO2. It is difficult
to find the location of HO2 in the parameter space but, if HO were known, then
only a local additional condition is necessary to find HO2, namely the trace of the
Jacobian at the saddle vanishes. We have seen in section 6 that the trace of the
Jacobian vanishes at a singular point (x0, y0) precisely when P (α, β, δ) = 0 where
P is given in (6.2). Let (αHO2(β, ρ), δHO2(β, ρ)) be the coordinate of HO2 in the
parameter space which satisfies P (αHO2(β, ρ), β, δHO2(β, ρ)) = 0.

Proposition 8.2 If β < −4 and ρ are fixed then the point HO2 in the parameter
space is such that α∞ = 1 − β < αHO2(β, ρ).

Proof. This follows directly from the fact that the solution branch of P (α, β, δ) = 0
(see (6.2)) which represents the zero trace saddle tends to infinity with respect to
δ as α tends to α∞ = 1−β. In Fig. 8.8 we have added to the bifurcation diagram
a curve SP which represents the solution branch of P (α, β, δ) = 0 attached to the
zero trace saddle. �
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β β2

4 αHO2(β, ρ) α∗(β) αH2(β)

−4.1 1681
400 = 4.2025 8.5055 52111

6100 ≈ 8.5428 1681
190 ≈ 8.8474

−5 25
4 = 6.25 13.7771 100

7 ≈ 14.2857 25

−6 9 20.8609 45
2 ≈ 22.5 does not exist

−10 25 62.6862 75 does not exist

Table 3: Numerical simulation of the α-coordinate of HO2 where ρ = 1
100 .

We conjecture a better lower bound β2

4 < αHO2(β, ρ) and also that αHO2(β, ρ) →
∞ as β → −∞. This is based on numerical simulations given in Tab. 3.

9 A Biological Interpretation

The biological interpretation that can be directly observed from the conjectured
bifurcation diagram is for a family of systems such that k, c and m are constant.
That is we suppose that the carrying capacity of the prey, k, is constant, the
efficiency of the predator to convert prey into predator, c, is constant and that

the fitting parameter m = p′′(0)
2 which partially controls the limit of the response

function when it tends to infinity is constant.

Hence, if the parameter δ changes, this implies that the death rate d changes
linearly since δ = d

cmk2 . Similarly, if α changes it implies that a changes linearly
since α = ak2. The parameter a partially controls the limit, L, and the ‘hump’,
M , of the response function when b is negative (i.e. as a increases the limit, L,
decreases and the ‘hump’, M , will also decrease). This can be interpreted as the
predator being less effective against the prey.

Under the above assumptions we discuss a few dynamics of the populations
under different values of parameters. For all fixed β, we can assert the following
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two observations. We notice that if the death rate, δ, of the predator increases, this
will eventually result in the extinction of the predator. Similarly, if α increases,
then the predator will become extinct. Both of these statements are intuitively
sound.

In the case β ≥ −2, there are three possibilities of stable regimes for the
populations in the long term: extinction of the predator (no singular point in the
open first quadrant, see I), oscillating populations of predator and prey (stable
periodic solution, see III), or constant populations (attracting singular point in
the open first quadrant, see II). The effect of the group defence on the phase
portraits and on the bifurcation diagrams for fixed β can only be seen for β

sufficiently negative.
The case β < −2 has much richer dynamics partially caused by the possibility

of a second equilibrium in the open first quadrant. Indeed for fixed values of the
parameters different stable regimes are possible depending on the initial condi-
tions. For instance, if β ∈ [−3,−2) (see Fig. 1(d)) in region IV, the system will
have the possibility of two stable regimes depending on the initial condition, one
with the predators extinct and one with co-existing populations.

A more special case is for β ∈ (−4,−3) (see Fig. 2(a)): if α is fixed at a
sufficiently large value, starting with δ sufficiently small and increasing δ, the
stable regime of the system will change in the following manner:

• stable equilibrium of co-existing populations (attracting singular point, see
II),

• stable oscillation of the populations (stable limit cycle, see III),

• two stable regimes: a stable oscillation of the populations (stable limit cycle)
and one with extinction of the predator, depending on the initial condition
(see V),

• extinction of the predator (following the annihilation of the limit cycle
through the homoclinic orbit, passage from V to VI).

At this point a peculiar phenomenon occurs, if δ (death rate of the predator)
increases the predator has the possibility of not becoming extinct for good initial
conditions. This is caused by the global behavior of the system: the homoclinic
orbit, creates a limit cycle: for initial conditions inside that limit cycle the stable
regime is the stable oscillation of populations. The same suprising results has
been observed in the study of the Holling generalised function of type IV [24].
This global phenomenon can only happen with a response function which is non-
monotone. We conclude in asking if there is a biological interpretation for such a
phenomenon which seems counter-intuitive.
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[16] F. Göbber & K.-D. Willamowski, Ljapunov Approach of Multiple Hopf
Bifurcation, Journal of Mathematical Analysis and Applications, Vol. 71, 333–
350, 1979.

[17] J. Guckenheimer & P. Holmes, Nonlinear Oscillations, Dynamical Sys-
tems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.

[18] C. S. Holling, The Functional Response of Predators to Prey Density and
its Role in Mimicry and Population Regulation, Memoirs of the Entomological
Society of Canada, Vol. 45, 3–60, 1965.

[19] J. L. Jost, J. F. Drake, A. G. Fredrickson & H. M. Tsuchiya, Inter-
actions of Tetrahymena pyrisformis, Escherichia cole, Azotobacter vinelandii,
and Glucose in a Minimal Medium, Journal of Bacteriology, Vol. 113, 834–
840, 1973.

[20] J. L. Jost, J. F. Drake, H. M. Tsuchiya & A. G. Fredrickson, Mi-
crobial Food Chains and Food Webs, Journal of Theoretical Biology, Vol. 41,
461–484, 1973.

[21] Y. Lamontagne, Étude d’un système prédateur-proie avec fonction de
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